孫文兵,謝文平
(邵陽(yáng)學(xué)院 理學(xué)院,湖南 邵陽(yáng) 422000)
孫文兵,謝文平
(邵陽(yáng)學(xué)院 理學(xué)院,湖南 邵陽(yáng) 422000)
構(gòu)造了一個(gè)帶參數(shù)的Riemann-Liouville分?jǐn)?shù)階積分恒等式,得到幾個(gè)關(guān)于-預(yù)不變凸函數(shù)的帶參數(shù)的分?jǐn)?shù)階積分不等式。當(dāng)參數(shù)取特殊值時(shí),分別得到了“中點(diǎn)型”“梯形型”和“Simpson型”積分不等式。利用構(gòu)建的不等式得到了幾個(gè)經(jīng)典數(shù)值積分的誤差估計(jì)式。
-預(yù)不變凸函數(shù);Hermite-Hadamard 型不等式;Simpson型不等式;Riemann-Liouville分?jǐn)?shù)階積分;誤差估計(jì)
具有某種凸性的函數(shù)往往具備一些良好的性質(zhì),因此凸函數(shù)在工程、經(jīng)濟(jì)等領(lǐng)域應(yīng)用廣泛。不少著名不等式的建立或改進(jìn)也與函數(shù)凸性有關(guān),如Hermite-Hadamard積分不等式、Simpson積分不等式等。
定理1(Hermite-Hadamard積分不等式) 設(shè)為凸函數(shù),若且,則有
長(zhǎng)期以來(lái),學(xué)者對(duì)Hermite-Hadamard和Simpson積分不等式進(jìn)行了不斷推廣和改進(jìn),一是從函數(shù)凸性角度,因?yàn)閷?shí)際問(wèn)題中函數(shù)難以滿足經(jīng)典凸性的條件,但可滿足某種廣義凸性,因此通過(guò)推廣凸函數(shù)的定義對(duì)不等式進(jìn)行改進(jìn)具有一定實(shí)際意義,如文獻(xiàn)[1-6];二是從引入?yún)?shù)角度,通過(guò)改變參數(shù)調(diào)整不等式,使不等式具有更廣的適用性,如文獻(xiàn)[7]。近年來(lái),這幾類不等式被推廣至分?jǐn)?shù)階積分領(lǐng)域,如Riemann-Liouville分?jǐn)?shù)階[8]、共形分?jǐn)?shù)階[9-10]、局部分?jǐn)?shù)階[11-13]等。筆者基于上述不等式改進(jìn)思想,對(duì)具有-預(yù)不變凸性[14]的函數(shù)構(gòu)建了幾個(gè)帶參數(shù)的Riemann-Liouville分?jǐn)?shù)階積分不等式。當(dāng)參數(shù)取特殊值時(shí),可得到“中點(diǎn)型”“梯形型”和“Simpson型”等特殊形式的積分不等式,利用構(gòu)建的不等式還得到了幾個(gè)經(jīng)典數(shù)值積分的誤差估計(jì)式。
證明 對(duì)等式右邊部分分別進(jìn)行分部積分,得到
同理
式(2)加式(3),可得式(1)。
證明 由引理1及模的性質(zhì),可得
由式(5)和式(6),計(jì)算可得式(4)。
定理3得證。
其中,
定理4得證。
證明 對(duì)引理1的不等式兩邊取模,利用H?lder不等式以及為-預(yù)不變凸函數(shù),可得
定理5得證。
所以
命題1得證。
所以
命題2得證。
所以
命題3得證。
[1]ANASTASSIOU G, KASHURI A,LIKO R. Local fractional integrals involving generalized stronglym-convex mappings[J]. Arabian Journal of Mathematics,2019(8): 95-107. DOI:10.1007/s40065-018-0214-8
[2]KASHURI A, LIKO R. Some different type integral inequalities concerning twice differentiable generalized relative semi-(r;m,h)-preinvex mappings[J]. Tbilisi Mathematical Journal, 2018,11(1): 79-97. DOI:10.2478/tmj-2018-0006
[3]LIAO J G, WU S H, DU T S. The Sugeno integral with respect toα-preinvex functions[J]. Fuzzy Sets and Systems, 2020(379):102-114. DOI:10.1016/j.fss.2018.11.008
[4]NOOR M A, NOOR K I,RASHID S. Some new classes of preinvex functions and inequalities[J]. Mathematics. 2019,7(1): 1-16. DOI:10.3390/ math7010029
[5]SUN W B, LIU Q. New Hermite-Hadamard-type inequalities for (α,m)-convex functions and applications to special means[J]. Journal of Mathematical Inequalities, 2017,11(2): 383-397. DOI:10.1016/j.fss.2018.11.008
[6]孫文兵. 關(guān)于(h,m)-凸函數(shù)乘積的Hadamard-型不等式及應(yīng)用(英文)[J]. 中國(guó)科學(xué)院大學(xué)學(xué)報(bào),2018, 35(2):145-153. DOI:10.7523/j.issn.2095-6134. 2018.02.001
SUN W B. Hadamard-type inequalities for products of (h,m)-convex functions and their applications[J]. Journal of University of Chinese Academy of Sciences, 2018,35(2): 145-153. DOI:10. 7523/j. issn.2095-6134.2018.02.001
[7]SARIKAYA M Z, AKTAN N. On the generalization of some integral inequalities and their applications[J]. Mathematical and Computer Modelling, 2011,54(9/10):2175-2182. DOI:10.1016/j.mcm.2011. 05.026
[8]孫文兵.分?jǐn)?shù)次積分下關(guān)于S-凸函數(shù)的新Hermite-Hadamard型不等式[J]. 浙江大學(xué)學(xué)報(bào)(理學(xué)版), 2017,44(5): 531-537. DOI:10.3785/j.issn.1008-9497.2017.05.006
SUN W B. New Hermite-Hadamard type inequalities forS-convex functions via fractional integrals[J].Journal of Zhejiang University (Science Edition), 2017,44(5): 531-537. DOI:10. 3785/j.issn.1008-9497.2017.05.006
[9]SET E, SARIKAYA M Z,G?ZPINAR A. Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities[J]. Creative Mathematics and Informatics, 2017,26(2): 221-229. DOI:10.37193/CMI.2017.02.11
[10]KASHURI A, IQBAL S,LIKO R, et al. Integral inequalities fors-convex functions via generalized conformable fractional integral operators[J]. Advances in Difference Equations, 2020(2020):217. DOI:10.1186/s13662-020-02671-4
[11]SUN W B. Some new inequalities for generalizedh-convex functions involving local fractional integral operators with Mittag-Leffler kernel[J]. Mathematical Methods in the Applied Sciences, 2021, 44(6):4985-4998. DOI:10.1002/mma.7081
[12]SUN W B. Some local fractional integral inequalities for generalized preinvex functions and applications to numerical quadrature[J]. Fractals,2019, 27(5):1950071. DOI:10.1142/S0218348X19500713
[13]DU T S, WANG H,KHAN M A, et al. Certain integral inequalities considering generalizedm-convexity on fractal sets and their applications[J]. Fractals,2019, 27(7):1950117.DOI:10.1142/S0218348X19501172
[14]NOOR M A, NOOR K I,AWAN M U, et al. On Hermite-Hadamard inequalities forh-preinvex functions[J]. Filomat,2014, 28(7):1463-1474. DOI:10.2298/FIL1407463N
[15]WEIR T, MOND B. Preinvex functions in multiple objective optimization[J]. Journal of Mathematical Analysis and Applications, 1988,136(1): 29-38. DOI:10.1016/0022-247X(88)90113-8
[16]WEIR T, JEYAKUMAR V. A class of nonconvex functions and mathematical programming[J]. Bulletin of the Australian Mathematical Society, 1988,38: 177-189. DOI:10.1017/S0004972700027441
Some fractional integrals inequalities for-preinvex functions and applications to numerical integration
SUN Wenbing, XIE Wenping
(School of Science,Shaoyang University,Shaoyang422000,Hunan Province,China)
An identity with parameters is constructed via Riemann-Liouville fractional integrals. With that, we derive some fractional integrals inequalities with parameters for-preinvex functions. The quot;midpoint typequot;, quot;trapezoidal typequot; and quot;Simpson typequot; integral inequalities are obtained respectively when the parameters are given special values. Finally, the error estimates of numerical integration are proposed to illustrate the applications of the results.
-preinvex functions; Hermite-Hadamard type inequalities; Simpson type inequalities; Riemann-Liouville fractional integrals; error estimation
O 178
A
1008?9497(2022)03?308?08
10.3785/j.issn.1008-9497.2022.03.007
2021?03?22.
湖南省教育廳重點(diǎn)項(xiàng)目(21A0472);湖南省自然科學(xué)基金資助項(xiàng)目(2020JJ4554);湖南省普通高等學(xué)校教學(xué)改革研究項(xiàng)目(湘教通〔2019〕291號(hào)(787)).
孫文兵(1978—),ORCID:https://orcid.org/0000-0002-5673-4519,男,碩士,副教授,主要從事解析不等式研究,E-mail:swb0520@163.com.