• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rotational failure analysis of spherical-cylindrical shell pressure controllers related to gas hydrate drilling investigations

    2022-06-02 05:00:50CongLiJinLingPiNinHnWuGuiKngLiuWiHungZhiXuDiRuiWngZhoFnChnWiChngLong
    Petroleum Science 2022年2期

    Cong Li ,Jin-Ling Pi ,Nin-Hn Wu ,Gui-Kng Liu ,Wi Hung ,Zhi-Xu Di ,Rui-Z Wng ,Zho-Fn Chn ,Wi-Chng Long

    a MOE Key Laboratory of Deep Earth Science and Engineering,Sichuan University,College of Water Resource and Hydropower,Sichuan University,Chengdu,610065,China

    b Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization,Institute of Deep Earth Sciences and Green Energy,College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,518060,China

    c China Pingmei Shenma Energy and Chemical Industry Group Co.,Ltd.,Pingdingshan,467000,China

    d State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,Pingdingshan,467000,China

    e Xi'an Research Institute,China Coal Technology and Engineering Group,Xi'an,710077,China

    Keywords:Exploration of oil and gas resources Pressure coring controller Sphere flapper valve Failure modes Stress deviation rate

    ABSTRACT In situ pressure-preserved coring (IPP-Coring) technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the success of pressure coring.In this paper,a novel spherical-cylindrical shell pressure controller was proposed.The finite element analysis model was used to analyze the stress distribution and deformation characteristics of the pressure controller at different rotation angles.The seal failure mechanism caused by the rotation of the pressure controller was discussed.The stress deviation rate was defined to quantitatively characterize the stress concentration.Based on the test equipment designed in this laboratory,the ultimate bearing strength of the pressure controller was tested.The results show that the rotation of the valve cover causes an increase in the deformation on its lower side.Furthermore,the specific sealing pressure in the weak zone is greatly reduced by a statistically significant amount,resulting in seal failure.When the valve cover rotates 5° around the major axis,the stress deviation rate is -92.6%.To prevent rotating failure of the pressure controller,it is necessary to control the rotation angle of the valve cover within 1° around the major axis.The results of this research can help engineers reduce failure-related accidents,provide countermeasures for pressure coring,and contribute to the exploration and evaluation of deep oil and gas resources.

    1.Introduction

    Natural gas hydrate is widely considered the most promising clean energy source for the future (Sloan,2003;Pang et al.,2021).Countries worldwide are actively exploring the technology of natural gas-hydrates,which has greatly promoted the development of natural gas hydrates(Hu et al.,2021;Saberi et al.,2021;Gao et al.,2022).The potential impact of NGH development on the global carbon cycle (Dickens et al.,1997),sustainable environmental change (Archer,2007),drilling hazards and future energy production (Boswell and Collett,2011) are issues to be explored at the frontier of science (Singh et al.,1993).Scientific research mainly focuses on the following aspects:

    ●the development of exploration technology and equipment,including physical exploration technology and pressure coring technology,and the establishment of a scientific evaluation system(Jin et al.,2014;Gao et al.,2021;He et al.,2021;Huang et al.,2021;Kida et al.,2021),

    ●the study of the physical and mechanical properties of in-situ NGH and the development of economic and efficient mining methods (Konno et al.,2013;Jing et al.,2015;Aydin and Merey,2021;Fu et al.,2021;Gao et al.,2021;Gao et al.2021,2021;Ruan et al.,2021),and

    ●the assessment of natural hazards brought about by largescale mining and the formulation of corresponding preventive measures (Borowski et al.,1996;Chen and Guo,1998;Collett,2002;Wang and Sun,2009;Gao et al.2018,2020;Veluswamy and Linga,2021).

    However,the formation mechanism of NGH reservoirs is very complex (Zhang et al.,2011;Shagapov and Tazetdinov 2014).During sampling,core recovery or subsequent testing,if the temperature and pressure environment of NGH changes,then the physical properties,internal structure and mechanical properties of hydrate-bearing sediments may change to a statistically significant extent (Gao et al.2020,2021;He et al.,2021).It is difficult to retrieve in situ NGH.To solve this problem,in-situ pressurepreserved coring (IPP-Coring) has been developed as an effective method to extract hydrate deposits from underground sediments and preserve the samples under in situ hydrostatic pressure (Dai and Santamarina,2014).

    There are various pressure coring systems,but all of these systems aim to transfer unchanged cores to the surface(Li et al.,2016).In the 1970s,the early Pressure Core Barrel (PCB) was adopted by the Deep Sea Drilling Project (DSDP).The success rate of core recovery was very low due to the ball valve closing problem.In 1983,the international Ocean Drilling Program (ODP) developed the Pressure Core Sampler(PCS)and obtained samples of NGH without affecting their pressure from the Blake Outer Ridge.The sediment was recovered by a rotary or push rod coring machine and sealed by a ball valve.The operating pressure was 70 MPa.The first systematic pressure core sampling occurred during ODP 164 drilling in 1995.The Hydrate Autoclave Coring Equipment System (HYACE),funded by the European Union's Marine Science and Technology Program,was developed in the late 1990s.Two types of wireline pressure corers were developed within the HYACE:the Fugro Pressure Core (FPC) and the HYACE Rotary Corer (HRC) samplers.The more recent HYACINTH (Deployment of HYACE tools In New Tests on Hydrates) project is designed to transfer the collected cores from the coring device to the measuring chamber without pressure leakage.The HYACINTH system includes not only coring tools,such as the FPC,HRC,the Fugro Rotary Pressure Core(FRPC)and the Submarine Gas Hydraulic Reserves (SUGAR) corer (SUCO)but so a series of subsequent core testing and processing equipment.The MAC (Multiple Autoclave Corer) and DAPC (Dynamic Autoclave Piston Corer) were developed and used in Germany in 2002 and 2003,respectively.In 2005,the Joint Industry Project(JIP)used HYACE FPC and HRC to obtain pressure cores,and the Instrumented Pressure Testing Chamber (IPTC) instrument developed by USGS and Georgia Institute of Technology to analyze cores under in situ pressure environments.PCB,PCS,HRC and FPC could not maintain the in situ temperature.Therefore,Japan Oil,Gas and Metals National Corporation(JOGMEC)invented the PTCS(Pressure Temperature Core Sampler) for the first time,which can work under a pressure of 30 MPa and has been used in the Nankai Trough.The PTCS is effective in sandstone sediments.Since 2000,the Hybrid-Pressure Core Sampler (Hybrid-PCS) or Pressure Core Tool with Ballvalve(PCTB)has been used in offshore drilling projects in China(Zhang et al.,2019),the UK and other countries.The HYACE/Fugro FPC and FRPC systems are also used offshore Korea and in the Gulf of Mexico.In China,Zhejiang University developed a gravity piston-type coring device.Zhu et al.developed an NGH coring device with the Pressure and Temperature Preservation System(PTPS).A brief overview of the IPP-Coring is shown in Fig.1.

    In conclusion,core is the first complete data in the process of petroleum exploration and development.The pressure controller of the coring device is the key to the success of the IPP-Coring (Xie et al.,2021).Ball valve or flap valve is commonly used as the sealing structure in existing pressure coring devices.Among the hydrate-bearing sediment samples retrieved by pressure coring devices,more than 30%of the samples do not retain the pressure or only retain part of the in situ pressure,resulting in high deployments cost.This study proposes a new shell pressure controller with a novel spheric-cylindric structure intended to have a higher ultimate bearing strength and investigates its rotation failure.Further,the recovery rate of pressure maintaining coring is improved through failure mechanism analysis.

    2.Design of spherical-cylindrical shell pressure controllers

    Fig.1.A brief overview of pressure coring technologies.

    The pressure controller is a sealing mechanism(generally a ball valve or flap valve)and determines the ultimate pressure strength of the pressure coring device(Gao et al.,2021).This paper presents a new principle of pressure coring for maintaining the coring pressure.The valve cover of the pressure controller is initially erected in the corer (shown in Fig.2).When the coring is completed,the inner cylinder is released.Then,the valve cover turns over to the matching valve seat.Flapper valve sealing mechanisms can maximize the core diameter and downhole drive mechanisms to ensure core quality.Based on the principle of intersecting spherical shells and cylindrical shells,this new configuration,referred to as a spherical-cylindrical shell pressure controller (Fig.2),is proposed.The spherical-cylindrical shell pressure controller consists of a cylindrical valve cover with a spherical edge and a matching seat.The traditional conical contact has a horizontal thrust,which greatly affects the pressurepreserved capacity of the IPP-Coring.The new structure adjusts the contact form between the valve cover and the valve seat so that there is only a normal support force.Compared with the conventional conical pressure controller,the spherical-cylindrical shell pressure controller has smaller structural deformation and higher bearing strength (Li et al.,2021).However,the contact pattern of the spherical-cylindrical shell pressure controller is similar to that of the spherical hinge.Thus,the two parts easily rotate around the common spherical center (Fig.3).The maintenance of oil and gas pressure puts forward strict requirements for the performance of the structure (Li et al.,2021).The rotation failure of the pressure controller needs to be further studied.

    Fig.2.Spherical-cylindrical shell pressure controller.

    3.Influence of rotation angle on spherical-cylindrical shell pressure controllers

    3.1.Simulation procedures

    ABAQUS is a powerful engineering numerical simulation software based on finite element method,which can solve linear and nonlinear problems in a wide range of fields.In the paper,to analyze the failure mechanism of the structure,numerical simulation is carried out based on ABAQUS software.The elastoplastic model is adopted,which is based on the fundament assumptions of isotropic elasticity continuum,i.e.,elasticity,homogeneity,isotropy and small deformation(see Fig.4).

    Based on the ABAQUS/CAE User's Manual and elasto-plasticity theory (Lubarda,2002),the general constitutive equation for an elastic-plastic material is briefly introduced.The stress increment,{dσ} can be expressed in terms of the elastic strain increment,{dεe},as

    Fig.3.Rotation of spherical-cylindrical shell pressure controllers.

    Fig.4.Establishment of a solid mechanics problem.

    Fig.5.The mesh of a spherical-cylindrical shell pressure controller.

    and

    with

    Fig.6.Boundary conditions.

    where[C]is the tensor of elastic modulus in matrix form,{dε}is the total strain increment,{dεp}is the plastic strain increment,dλ is the scalar function,{?g/?{σ}} is the gradient vector of the plastic potential function,L is the loading criterion function,h is the positive scalar function.The stress calculation will be performed for all Gaussian sampling points.

    3.2.Model setup

    To study the stress distribution and failure mechanism,a geometric model(shown in Fig.5)is established.The sealing groove is simplified.Hexahedral mesh is used.The boundary condition is shown in Fig.6.The underside of the seat is fully restrained.A simulated in situ hydrostatic pressure is applied to the top surface of the valve cover.Alloy 304 stainless steel is used as the test material.The original gauge length of the specimen is 32 mm.The tensile test(shown in Fig.7)is carried out on a Shimadzu electronic testing machine.The yield strength and tensile strength are 613.6 MPa and 828.6 MPa,respectively.The friction coefficient of the contact surface is 0.2.

    Fig.7.Tensile test results of stainless steel.

    Fig.8.Equivalent stress distribution of valve cover with different rotation angles.

    3.3.Simulation results

    The stress distribution of the valve cover is shown in Fig.8 with different rotation angles.There are two low stress zones,A and B,in the middle bottom surface of the valve cover.With the increase in the z-axis rotation angle,the left equivalent stress gradually decreases,and the left low stress area C expands.With the increase in the rotation angle around the x-axis and z-axis,the equivalent stresses in A and D increase continuously.The equivalent stress in zone C decreases continuously.This means that zone C may not be able to provide effective sealing pressure,which is the potential weak site of leakage.

    Three measuring lines are defined(as shown in Fig.9(a))where L1 and L2 are the monitoring lines along the minor axis and major axis,respectively,and L3 is the circumferential monitoring line of the valve cover.Fig.9(b)shows that with increasing z-axis rotation angle,the stress on L1 shows a decreasing trend.The stress deviation rate is defined as

    where ω is the stress deviation rate,and σNand σRare the stress values without rotation and after a certain angle of rotation,respectively.

    The stress deviation rates of L1 are -11.2,-75.4,and -92.6%when rotating 1,3,and 5°around the z-axis and rotating 0°around the x-axis.Fig.9 (c) and Fig.9 (d) show the stress distributions of the L1 and L2 measuring lines with different x-axis rotation angles.With the increase in the x-axis rotation angle,the stress deviation increases gradually.Compared with the x-axis rotation,the rotation around the z-axis has a more obvious effect on the stress deviation of L1.In fact,spherical-cylindrical shell pressure controllers may simultaneously experience the influences of x-axis and z-axis rotations.Fig.10 shows the stress distribution of L1 under the xz compound rotation.When rotating 5°around the x-axis,the stress deviation rates for 0,1,3 and 5°around the z-axis are-10.7,-58.9,-72.2 and-92.4%,respectively.The larger the xaxis rotation angle is,the greater the stress drop.

    According to the numerical simulation results,the valve cover can form a strong support along the major axis.The low stress zone C is likely to be the weak site of leakage.The deformation along the minor axis is the main factor affecting the structural strength of the valve cover.The effect of z-axis rotation on the monitoring line L3 is much higher than that of the x-axis(see Fig.11).For instance,when rotating 5°around the z-axis and 0°around the x-axis,the stress deviation rate reaches 92.6%.It is difficult to provide enough contact pressure for the sealing surface.Finally,the overall strength of the pressure controller is invalid.In the engineering practice of pressure coring,the sealing performance is very important for maintaining oil and gas pressure.Due to the stress redistribution during the rotation of the structure,the stress at the edge of the valve cover is reduced,and the fluid medium with pressure will leak from the contact surfaces.

    Fig.9.Equivalent stress distribution of different measuring lines.

    4.Failure pressure of spherical shell pressure controller

    The deformation characteristics and sealing stability of the pressure controller are very important to the success rate of pressure coring.However,there is no special test device for evaluating pressure controllers domestically and abroad.Therefore,we developed a pressure controller test platform that,according to the size of the coring device,can test the failure pressure of pressure controllers with different configurations.

    4.1.Testing system

    To obtain the failure pressure of the spherical-cylindrical shell pressure controllers under different working conditions,an experimental platform(Fig.12)was designed in this laboratory.The specimen was installed inside the test chamber.Then,water was pumped to the chamber through the injection port until the specimen failed.The watertight joint provided a data channel for the strain gauge at the top of the valve cover.According to the numerical simulations,the positions of three strain gauges were determined.Among them,SG-1,SG-2 and SG-3 were the equivalent stress concentration area,the large deformation area and the stress concentration edge,respectively.

    4.2.Physical experiment results

    Two tests were carried out based on the test system.The pressure controllers before and after the test are shown in Fig.13(a).Under the condition of high pressure,the sealing ring was damaged due to the insufficient contact pressure in the weak area C.

    Fig.14(a)shows that with the increasing load,the strains of SG-1Z and SG-2Z were gradually increasing tensile deformation,while the strains of SG-1X,SG-2X and SG-3X were compressive deformation.After a certain rotation angle,the ultimate bearing strength was only 8.4 MPa.After the failure of the pressure controller,the pressure in the test chamber decreases,and the strain data tended to zero.The compressive strains in SG-1X and SG-2X were the largest,4.02 × 10-4and 4.43 × 10-4,respectively.Torsional instability occurred in the pressure controller,and the force on the valve cover was uneven.There was a notch on one side of the seat(Fig.15).According to the second test results under the same conditions,the maximum bearing strength of the spherical pressure controller was 43.8 MPa (shown in Fig.14(b)).There was a great gap due to the rotation of the structure.Therefore,it was necessary to add a limiting surface to reduce the rotation of the structure.

    According to the numerical simulations and laboratory tests,the bearing strengths are greatly reduced by rotation to any angle.The strains predicted by the numerical simulations are basically consistent with the experimental results.As seen from Fig.16,the strain on the left side of the cover is very small,which means that the contact pressure at this position is small.The sealing ring is extruded from the enlarged gap,which is consistent with the physical experimental results.Therefore,by adjusting the angle of the valve cover,the structural strength is increased from 8.4 to 43.8 MPa.

    Fig.10.Stress distribution of L1 under XZ compound rotation.

    Fig.11.Equivalent stress distributions of L3 under different rotation angles.

    The in situ physical and mechanical properties are crucial for deep oil and gas exploration.The paper focuses on the pressure controllers,which is one of the key components of deep-sea pressure coring device.It can obtain cores with deep-sea in situ pressure.On the one hand,pressure cores are the premise of quantitative evaluation of in situ permeability and saturation of oil and gas.It is of great significance for understanding geological conditions,evaluating recoverable reserves and improving recovery rate.On the other hand,it provides a technical means for the study of in situ mechanical parameters of natural gas hydrate,affecting the efficiency of industrial production.Through the research of this paper,the strength of the developed IPP-Coring can be suitable for in situ applications at depths of thousands of meters,and cores with higher pressures can be obtained.This capability of the newly developed pressure coring device not only effectively ensures the safety and lives of on-site operators,but also brings certain economic benefits.

    Fig.12.Test equipment designed in this laboratory.

    Fig.13.Spherical pressure controller.

    Fig.14.Physical test results.

    5.Conclusion

    The conclusions are as follows:

    1.Based on the principle of intersecting spherical shells and cylindrical shells,a new structure for a spherical-cylindrical shell pressure retaining controller is designed.Through numerical simulation and experimental test,its ultimate bearing strength reaches 43.8 MPa.

    Fig.15.Unbalanced notch in the valve seat caused by structural rotation.

    Fig.16.Strain of the pressure controller.

    2.The rotation of the valve cover increases the deformation of the valve cover,which greatly reduces the contact pressure of the sealing surface,resulting in sealing failure.To quantitatively characterize the stress concentration caused by the rotation,the stress deviation rate is defined.The effect of z-axis rotation is much greater than that of x-axis rotation.When rotating 5°around the z-axis,the equivalent stress drop is -92.6%.

    3.The contact pressure reduction caused by rotation is the root cause of the failure of the pressure maintaining controller.To prevent the rotational failure,an anti-rotation structure should be adopted to control the valve cover rotation within 1°around the major axis.

    IPP-Coring has a great influence on the measurement of oil and gas saturation parameters.The fluid saturation provided by analysis of core obtained by pressure coring can better represent the original reservoir state than that provided by conventional core analysis,especially in cases of the evaluation of gas reservoir reserves and the feasibility of enhanced oil recovery.This study reveals the rotation failure principle of spherical pressure controllers,which can help to improve the success rate of pressure coring and provide technical support for the exploration and evaluation of deep oil and gas resources.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The paper was supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (No.2019ZT08G315) and National Natural Science Foundation of China No.51827901 and U2013603.

    国产在线精品亚洲第一网站| 嫩草影院精品99| 十八禁人妻一区二区| 99久久精品国产亚洲精品| xxx96com| 麻豆成人av在线观看| 国产av在哪里看| 亚洲精品国产精品久久久不卡| 麻豆av在线久日| 成人三级做爰电影| 97人妻天天添夜夜摸| 女人高潮潮喷娇喘18禁视频| 女性生殖器流出的白浆| 亚洲色图 男人天堂 中文字幕| 国产片内射在线| 美女国产高潮福利片在线看| 欧美在线黄色| 久久99一区二区三区| 国产97色在线日韩免费| 久久精品亚洲精品国产色婷小说| 亚洲伊人色综图| 99在线人妻在线中文字幕| 男人的好看免费观看在线视频 | 亚洲中文字幕日韩| 深夜精品福利| 久久久国产成人免费| 黄片播放在线免费| 免费在线观看影片大全网站| 亚洲av美国av| 一区在线观看完整版| 最近最新中文字幕大全电影3 | 国产精品 欧美亚洲| 国产精品乱码一区二三区的特点 | 亚洲精品粉嫩美女一区| 国产国语露脸激情在线看| 夜夜躁狠狠躁天天躁| 亚洲欧美激情在线| 亚洲av成人av| 欧美日韩福利视频一区二区| 亚洲 欧美一区二区三区| 在线观看www视频免费| 另类亚洲欧美激情| 国产精华一区二区三区| 怎么达到女性高潮| 久久人人97超碰香蕉20202| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 欧美人与性动交α欧美软件| 美女午夜性视频免费| 黄频高清免费视频| 首页视频小说图片口味搜索| 热99国产精品久久久久久7| 午夜影院日韩av| 精品久久久久久久毛片微露脸| 操出白浆在线播放| 人人澡人人妻人| 天堂俺去俺来也www色官网| 宅男免费午夜| 后天国语完整版免费观看| 久久久久久久久免费视频了| 悠悠久久av| www.999成人在线观看| 欧美精品一区二区免费开放| 国产av一区在线观看免费| 九色亚洲精品在线播放| 一区福利在线观看| 交换朋友夫妻互换小说| 最新在线观看一区二区三区| 久久青草综合色| 免费一级毛片在线播放高清视频 | videosex国产| 大香蕉久久成人网| 精品一区二区三区四区五区乱码| 日韩精品青青久久久久久| 国产蜜桃级精品一区二区三区| 欧美日韩av久久| 国产一区二区三区视频了| 黄色女人牲交| 国产成人精品无人区| e午夜精品久久久久久久| 一级毛片女人18水好多| 美女国产高潮福利片在线看| 一进一出抽搐gif免费好疼 | 超色免费av| 成人国语在线视频| 国产1区2区3区精品| 色老头精品视频在线观看| 日韩中文字幕欧美一区二区| 人人妻,人人澡人人爽秒播| 国产高清激情床上av| 久久久国产精品麻豆| 日韩高清综合在线| 极品人妻少妇av视频| 欧美久久黑人一区二区| 中文字幕精品免费在线观看视频| 精品一区二区三区视频在线观看免费 | 麻豆久久精品国产亚洲av | 久久精品国产99精品国产亚洲性色 | 在线观看免费午夜福利视频| 美国免费a级毛片| 美女午夜性视频免费| 国产精品久久视频播放| 可以在线观看毛片的网站| 18禁观看日本| 精品免费久久久久久久清纯| 最近最新中文字幕大全电影3 | 黄色毛片三级朝国网站| 亚洲第一av免费看| 国产精华一区二区三区| 欧美乱码精品一区二区三区| 精品人妻在线不人妻| 99riav亚洲国产免费| 亚洲欧美日韩高清在线视频| 久久人人精品亚洲av| 久久精品国产亚洲av高清一级| 一级片'在线观看视频| av免费在线观看网站| 99热只有精品国产| 日本撒尿小便嘘嘘汇集6| 老司机深夜福利视频在线观看| 在线观看一区二区三区| 99在线视频只有这里精品首页| 真人做人爱边吃奶动态| 久久精品aⅴ一区二区三区四区| 高清毛片免费观看视频网站 | 他把我摸到了高潮在线观看| 午夜老司机福利片| 亚洲午夜精品一区,二区,三区| av视频免费观看在线观看| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| 丁香欧美五月| 青草久久国产| 无限看片的www在线观看| 国产xxxxx性猛交| 免费搜索国产男女视频| 精品日产1卡2卡| 99久久99久久久精品蜜桃| 午夜激情av网站| 亚洲精品一区av在线观看| 丰满的人妻完整版| 满18在线观看网站| 国产精品亚洲av一区麻豆| 欧洲精品卡2卡3卡4卡5卡区| 欧美乱码精品一区二区三区| 精品国产一区二区三区四区第35| 波多野结衣一区麻豆| 9191精品国产免费久久| 宅男免费午夜| 夜夜夜夜夜久久久久| 欧美不卡视频在线免费观看 | 人人妻人人添人人爽欧美一区卜| 国产在线观看jvid| 国产欧美日韩一区二区精品| 女人爽到高潮嗷嗷叫在线视频| 精品一品国产午夜福利视频| 国产成人av教育| 亚洲自偷自拍图片 自拍| 80岁老熟妇乱子伦牲交| bbb黄色大片| 国产免费男女视频| av视频免费观看在线观看| 麻豆国产av国片精品| 亚洲欧美一区二区三区久久| a级片在线免费高清观看视频| 中文字幕人妻熟女乱码| 97人妻天天添夜夜摸| 亚洲av成人av| 人妻久久中文字幕网| 亚洲成人免费电影在线观看| 成在线人永久免费视频| 国产成人啪精品午夜网站| 久久久久久免费高清国产稀缺| 淫秽高清视频在线观看| 国产aⅴ精品一区二区三区波| 日本免费一区二区三区高清不卡 | 99久久综合精品五月天人人| 老司机靠b影院| 亚洲九九香蕉| xxx96com| 精品国产一区二区三区四区第35| 国产国语露脸激情在线看| 色婷婷久久久亚洲欧美| 国产一区二区激情短视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲三区欧美一区| 男女之事视频高清在线观看| 可以在线观看毛片的网站| 搡老岳熟女国产| 如日韩欧美国产精品一区二区三区| 在线观看舔阴道视频| 在线观看免费视频网站a站| 午夜精品在线福利| 国产精品99久久99久久久不卡| 国产一区二区三区综合在线观看| 亚洲国产中文字幕在线视频| 日本五十路高清| 久久中文字幕人妻熟女| 日本撒尿小便嘘嘘汇集6| 夜夜躁狠狠躁天天躁| 亚洲欧美日韩另类电影网站| 国产高清激情床上av| 精品国产美女av久久久久小说| 中文字幕另类日韩欧美亚洲嫩草| 国产麻豆69| 91精品国产国语对白视频| 成人av一区二区三区在线看| 久久精品影院6| 麻豆国产av国片精品| 国产精品电影一区二区三区| 999久久久精品免费观看国产| 久久中文看片网| 久久久久九九精品影院| 91大片在线观看| 久久精品91蜜桃| a级片在线免费高清观看视频| 十八禁人妻一区二区| 夜夜躁狠狠躁天天躁| 18禁观看日本| 黑丝袜美女国产一区| 欧美另类亚洲清纯唯美| 亚洲专区国产一区二区| 91精品三级在线观看| 中出人妻视频一区二区| 久久久久亚洲av毛片大全| 国产精品 国内视频| 色综合婷婷激情| 免费av毛片视频| 三级毛片av免费| 欧美精品亚洲一区二区| 国产亚洲精品久久久久5区| 两个人看的免费小视频| 欧美黑人精品巨大| 久久久国产成人精品二区 | bbb黄色大片| 又紧又爽又黄一区二区| 欧美成人性av电影在线观看| 亚洲av成人一区二区三| 天堂动漫精品| 久久午夜综合久久蜜桃| 一a级毛片在线观看| 视频区图区小说| 亚洲欧美日韩另类电影网站| 人成视频在线观看免费观看| 亚洲自偷自拍图片 自拍| 欧美日本中文国产一区发布| 91大片在线观看| 亚洲国产精品999在线| 欧美色视频一区免费| 欧美激情久久久久久爽电影 | 午夜老司机福利片| 悠悠久久av| 日韩人妻精品一区2区三区| 精品卡一卡二卡四卡免费| 亚洲精品一二三| 日本vs欧美在线观看视频| 一区二区三区激情视频| 夜夜爽天天搞| 99国产精品一区二区三区| 国产三级黄色录像| 两个人看的免费小视频| 免费av毛片视频| www国产在线视频色| 欧美一区二区精品小视频在线| 国产精品 国内视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久久久99蜜臀| 欧美日韩亚洲国产一区二区在线观看| 国产野战对白在线观看| bbb黄色大片| 亚洲 欧美 日韩 在线 免费| 麻豆av在线久日| 免费在线观看视频国产中文字幕亚洲| 黑丝袜美女国产一区| 黄色怎么调成土黄色| 久久精品国产亚洲av香蕉五月| 国产亚洲欧美98| 悠悠久久av| 在线观看午夜福利视频| 国产精品98久久久久久宅男小说| 男女下面插进去视频免费观看| 麻豆一二三区av精品| 亚洲精品一二三| 久久久国产一区二区| 日本五十路高清| 别揉我奶头~嗯~啊~动态视频| 女同久久另类99精品国产91| av网站免费在线观看视频| 亚洲av成人一区二区三| 国产免费现黄频在线看| 9色porny在线观看| 欧美激情 高清一区二区三区| 久久久国产一区二区| 国产男靠女视频免费网站| 中文字幕人妻熟女乱码| 免费在线观看影片大全网站| 国产av又大| 在线观看66精品国产| 日韩欧美免费精品| 搡老熟女国产l中国老女人| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 巨乳人妻的诱惑在线观看| 国产成人一区二区三区免费视频网站| 国产高清视频在线播放一区| 久久久国产成人免费| 国产亚洲精品久久久久久毛片| 高清黄色对白视频在线免费看| 女人爽到高潮嗷嗷叫在线视频| 五月开心婷婷网| 国产人伦9x9x在线观看| 男女做爰动态图高潮gif福利片 | 麻豆国产av国片精品| 手机成人av网站| 国产91精品成人一区二区三区| 亚洲成a人片在线一区二区| 一进一出抽搐gif免费好疼 | 国产一区在线观看成人免费| 老司机午夜福利在线观看视频| 亚洲精品在线观看二区| 亚洲欧美激情综合另类| 女人高潮潮喷娇喘18禁视频| av片东京热男人的天堂| 亚洲精品一区av在线观看| 18禁黄网站禁片午夜丰满| 亚洲精品在线美女| 两性夫妻黄色片| 亚洲精品成人av观看孕妇| 国产成人精品无人区| 亚洲自偷自拍图片 自拍| 亚洲av电影在线进入| 看免费av毛片| 日本黄色日本黄色录像| 国产激情欧美一区二区| 亚洲熟妇熟女久久| 久久 成人 亚洲| 亚洲成av片中文字幕在线观看| 免费av中文字幕在线| 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| 久热这里只有精品99| 欧美成人免费av一区二区三区| 国产三级在线视频| 两人在一起打扑克的视频| 国产深夜福利视频在线观看| 美女 人体艺术 gogo| 午夜视频精品福利| 99久久国产精品久久久| 黑人巨大精品欧美一区二区蜜桃| 国产成人一区二区三区免费视频网站| 国产精品影院久久| 亚洲欧美激情综合另类| 久久国产乱子伦精品免费另类| 国产精品秋霞免费鲁丝片| 日本免费一区二区三区高清不卡 | 黄色毛片三级朝国网站| 日本黄色日本黄色录像| 久久国产亚洲av麻豆专区| 欧美激情极品国产一区二区三区| 国产精品电影一区二区三区| 色综合站精品国产| 亚洲午夜理论影院| 国内毛片毛片毛片毛片毛片| 99国产精品一区二区三区| 亚洲av成人av| 亚洲精品国产一区二区精华液| 国产亚洲精品久久久久久毛片| 亚洲精品美女久久久久99蜜臀| 女人精品久久久久毛片| 成人特级黄色片久久久久久久| 在线免费观看的www视频| av片东京热男人的天堂| 亚洲熟女毛片儿| 叶爱在线成人免费视频播放| 精品第一国产精品| 亚洲成人精品中文字幕电影 | xxxhd国产人妻xxx| 国产又色又爽无遮挡免费看| 视频区图区小说| 久热爱精品视频在线9| 天天添夜夜摸| 淫妇啪啪啪对白视频| 精品一区二区三卡| 亚洲人成电影免费在线| 又黄又粗又硬又大视频| 在线永久观看黄色视频| 国产aⅴ精品一区二区三区波| 欧美激情 高清一区二区三区| xxx96com| 国产一区二区激情短视频| 美女福利国产在线| 嫩草影院精品99| 国产亚洲精品一区二区www| 叶爱在线成人免费视频播放| 亚洲国产精品合色在线| 午夜福利在线观看吧| 侵犯人妻中文字幕一二三四区| 视频在线观看一区二区三区| 天堂俺去俺来也www色官网| 香蕉国产在线看| 亚洲精品国产区一区二| 国产精品美女特级片免费视频播放器 | www.自偷自拍.com| 日本撒尿小便嘘嘘汇集6| 午夜影院日韩av| 亚洲第一欧美日韩一区二区三区| 男人舔女人下体高潮全视频| 91大片在线观看| 91精品三级在线观看| 日日爽夜夜爽网站| 琪琪午夜伦伦电影理论片6080| 男男h啪啪无遮挡| 99精国产麻豆久久婷婷| 亚洲va日本ⅴa欧美va伊人久久| 人成视频在线观看免费观看| 亚洲中文字幕日韩| 99精品久久久久人妻精品| 成人国产一区最新在线观看| 久久久久久亚洲精品国产蜜桃av| 国产真人三级小视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 午夜免费观看网址| 国产激情欧美一区二区| 久久中文字幕人妻熟女| 欧美日韩av久久| 18禁裸乳无遮挡免费网站照片 | 国产成人av激情在线播放| 国产欧美日韩精品亚洲av| 真人做人爱边吃奶动态| 一夜夜www| 亚洲午夜精品一区,二区,三区| 久久精品91无色码中文字幕| 久久热在线av| 亚洲av成人av| 韩国av一区二区三区四区| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲熟妇少妇任你| 国产精品 国内视频| 久久精品91蜜桃| 亚洲人成电影免费在线| 精品久久久久久,| 亚洲avbb在线观看| 深夜精品福利| 精品国产国语对白av| 亚洲欧美一区二区三区黑人| av免费在线观看网站| 国产精品成人在线| 嫩草影视91久久| 久久精品国产99精品国产亚洲性色 | 亚洲专区中文字幕在线| 性欧美人与动物交配| 亚洲精品久久成人aⅴ小说| 久久影院123| 亚洲精品国产精品久久久不卡| 搡老熟女国产l中国老女人| 国产成人精品久久二区二区91| 亚洲精品一卡2卡三卡4卡5卡| 中文欧美无线码| 成人国产一区最新在线观看| 欧美成人免费av一区二区三区| 欧美午夜高清在线| 日日摸夜夜添夜夜添小说| 久久久精品欧美日韩精品| 日韩精品中文字幕看吧| 国产精品偷伦视频观看了| 自线自在国产av| 国产单亲对白刺激| 久久精品aⅴ一区二区三区四区| 久久人人爽av亚洲精品天堂| 国产精品爽爽va在线观看网站 | 中文字幕色久视频| 欧美午夜高清在线| 在线观看免费高清a一片| 天堂中文最新版在线下载| 一级黄色大片毛片| 女警被强在线播放| 美女午夜性视频免费| 丰满迷人的少妇在线观看| 视频区欧美日本亚洲| 国产免费男女视频| 高清毛片免费观看视频网站 | 91国产中文字幕| 韩国精品一区二区三区| 色综合欧美亚洲国产小说| 精品乱码久久久久久99久播| 美女福利国产在线| 免费人成视频x8x8入口观看| 悠悠久久av| 欧美中文日本在线观看视频| 国产精品免费一区二区三区在线| 精品高清国产在线一区| cao死你这个sao货| 12—13女人毛片做爰片一| 亚洲成a人片在线一区二区| 两个人免费观看高清视频| xxxhd国产人妻xxx| 一夜夜www| 亚洲欧美激情在线| 日本撒尿小便嘘嘘汇集6| 婷婷六月久久综合丁香| 黄色毛片三级朝国网站| 欧美在线一区亚洲| 欧美日韩亚洲高清精品| 人妻久久中文字幕网| 99国产精品免费福利视频| 91在线观看av| 又大又爽又粗| 亚洲 国产 在线| 亚洲avbb在线观看| 欧美激情极品国产一区二区三区| 欧美激情久久久久久爽电影 | 免费在线观看日本一区| 精品免费久久久久久久清纯| 激情视频va一区二区三区| 无人区码免费观看不卡| 男女下面进入的视频免费午夜 | 免费在线观看黄色视频的| 亚洲国产精品sss在线观看 | 久久精品aⅴ一区二区三区四区| av国产精品久久久久影院| 一夜夜www| 国产无遮挡羞羞视频在线观看| 日韩一卡2卡3卡4卡2021年| 男女做爰动态图高潮gif福利片 | 亚洲一区中文字幕在线| 一区在线观看完整版| 丁香欧美五月| xxxhd国产人妻xxx| 在线看a的网站| 国产一区二区三区视频了| 亚洲成国产人片在线观看| 亚洲男人天堂网一区| 日韩免费高清中文字幕av| 一区二区三区精品91| 亚洲精品在线观看二区| 国产精品一区二区在线不卡| 亚洲九九香蕉| 动漫黄色视频在线观看| 狂野欧美激情性xxxx| 人人妻人人爽人人添夜夜欢视频| 久久精品亚洲精品国产色婷小说| 国产色视频综合| 亚洲国产毛片av蜜桃av| 黄色a级毛片大全视频| 91av网站免费观看| 国产一区二区三区视频了| 中出人妻视频一区二区| 久久久水蜜桃国产精品网| 女性被躁到高潮视频| 99在线视频只有这里精品首页| 国产一区在线观看成人免费| 丁香六月欧美| 精品福利永久在线观看| 97碰自拍视频| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久毛片微露脸| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人看| 国产野战对白在线观看| 夫妻午夜视频| 欧美日本中文国产一区发布| av电影中文网址| 亚洲aⅴ乱码一区二区在线播放 | 精品国产一区二区久久| 国产深夜福利视频在线观看| av片东京热男人的天堂| 精品一区二区三卡| 久久午夜综合久久蜜桃| 视频区欧美日本亚洲| 欧美性长视频在线观看| 亚洲一码二码三码区别大吗| 精品福利观看| 欧美精品一区二区免费开放| 亚洲国产欧美日韩在线播放| bbb黄色大片| 在线视频色国产色| 精品久久久久久成人av| 国产91精品成人一区二区三区| av国产精品久久久久影院| 成在线人永久免费视频| 美女国产高潮福利片在线看| 桃红色精品国产亚洲av| 精品电影一区二区在线| 女人被狂操c到高潮| 两个人免费观看高清视频| 欧美最黄视频在线播放免费 | 99久久综合精品五月天人人| 另类亚洲欧美激情| 国产99久久九九免费精品| 日韩视频一区二区在线观看| 免费日韩欧美在线观看| 嫁个100分男人电影在线观看| 国产精品影院久久| 99久久综合精品五月天人人| 亚洲精品一二三| 看片在线看免费视频| 黄频高清免费视频| 中文亚洲av片在线观看爽| 99久久国产精品久久久| 日韩 欧美 亚洲 中文字幕| 国产在线精品亚洲第一网站| 免费高清在线观看日韩| 老熟妇乱子伦视频在线观看| 成年人黄色毛片网站| 国产男靠女视频免费网站| 免费av中文字幕在线| 在线天堂中文资源库| 一本综合久久免费| 久久精品成人免费网站| 三上悠亚av全集在线观看| 欧美一级毛片孕妇| 国产成年人精品一区二区 | 俄罗斯特黄特色一大片| 国产精品1区2区在线观看.| 午夜精品在线福利|