• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diffraction separation and imaging based on double sparse transforms

    2022-06-02 04:59:52XueChenJingJieCoHeLongYngShoJinShiYongShuiGuo
    Petroleum Science 2022年2期

    Xue Chen ,Jing-Jie Co ,*,He-Long Yng ,Sho-Jin Shi ,Yong-Shui Guo

    a Hebei Key Laboratory of Strategic Critical Mineral Resources,Hebei GEO University,Shijiazhuang,Hebei 050031,China

    b Hebei Nautral Resources Archives,Shijiazhuang,Hebei 050037,China

    c The Third Hydrogeological Engineering Geological Brigade,Hengshui,Hebei 053000,China

    Keywords:Diffraction separation Common-offset domain Diffraction imaging High-resolution linear Radon transform Curvelet transform Sparse inversion

    ABSTRACT Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.

    1.Introduction

    Petroleum exploration has been changed from structural exploration to lithology exploration.The imaging of small scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,is becoming a hot topic presently since these small-scale discontinuous geological bodies are often associated with oil/gas reservoirs.Conventional seismic exploration is mainly based on reflection waves assuming that the reflecting interfaces are smooth and infinite planes.Therefore,small-scale geological bodies cannot be effectively identified.Diffractions are responses of small-scale discontinuous geological bodies (Krey,1952;Kunz,1960),thus diffractions imaging method is an important method to detect small-scale geological bodies.The separation and imaging of diffractions from seismic records are of great significance to determine underground faults,pinch-outs and smallscale diffractors.

    Diffractions and reflections have different kinematics and dynamics characteristics,furthermore,the energy of diffractions is usually one to two orders of magnitude weaker than the energy of reflections (Kamill et al.,1994).Even if the diffractions and reflections are accurately imaged,the diffraction wave will still be covered by reflection wave.Therefore,extraction of diffraction information and diffraction imaging are crucial for high-resolution imaging of small-scale geologic structures.

    The diffraction imaging methods are mainly divided into two categories at present.The first kind method is to realize separation of diffractions and reflections at first,and then perform migration imaging for separated diffractions.The diffractions extraction methods are mainly based on the kinematic and dynamic differences between diffractions and reflections.Landa et al.(1987)used the common-offset profile to construct a common-diffraction point profile and realized diffraction imaging,which can detect local discontinuous and heterogeneous geological bodies.Fomel (2002)and Fomel et al.(2007) applied a prediction-error filter which is constructed with the local slopes of reflections to suppress reflections and enhance diffractions.The plane-wave destruction(PWD)method is a practical diffractions separating method.Taner et al.(2006)and Kong et al.(2012,2017)used the PWD filters in the plane-wave domain to separate reflections with linear characteristics and diffractions with hyperbolic characteristics.Zhao et al.(2016a,b) used the sparse inversion method to extract diffractions to identify discontinuous and heterogeneous geological information after PWD filtering.Nowak and Imhof (2004) used the hyperbolic Radon transform to separate diffractions in the prestack seismic records.Khaidukov et al.(2004) exploited the focusingdefocusing method to remove the focused reflection wavefield and finally obtain the diffraction wavefield.Based on their method,the reflection energy can be focused to the reflection point while the diffraction wave energies are scattered.In contrast,Berkovitch et al.(2009)focused diffractions to the positions of diffracted points by multi-focusing method.This is done by using a correlation procedure that coherently focuses diffraction energy on a seismic section by flattening diffraction events using a new local-timecorrection formula to parameterize diffraction travel time curves.Liu et al.(2014) and Lin et al.(2020) applied the singular value spectrum analysis method in the frequency-space domain to suppress reflection wavefield with strong energy and linear characteristics in the common-offset gathers where the kinematic and dynamic differences between the reflections and the diffractions were simultaneously used.Klokov and Fomel(2012)used the linear Radon transform to realize separation of diffractions and reflections in the common-imaging point gathers.Gong et al.(2016)developed an improved sparse apex-shifted hyperbolic Radon transform(ASHRT) to separate diffractions before stacking.Serfaty et al.(2017) used deep learning methods to separate reflections and diffractions.Xu et al.(2019) and Shen et al.(2020) used dynamic correction to flatten reflections and then applied singular value spectrum analysis method to separate diffraction wavefield in the common-shot gathers.Schwarz (2019) proposed the coherent wavefield subtraction method to extract diffractions using a variety of wavefront filters based on common-reflection-surface (CRS)method.Zhao et al.(2020) developed a 3D low-rank diffraction imaging method that used the Mahalanobis-based low-rank and sparse matrix decomposition method for separating and imaging 3D diffractions in the azimuth-dip angle image matrix.

    Another type of diffraction imaging method is to realize separation and imaging of diffractions by modification of the migration operator in the imaging process.Zhu and Wu(2010)identified and imaged diffraction energy based on the energy-angle distribution differences in the local image matrix that reflection energy exhibits linear distribution along a certain dip direction,whereas diffraction energy shows a scattered distribution in the entire matrix.Zhu et al.(2013) used local dip filtering and prediction inversion jointly to separate diffractions,overcoming loss of low-dip information when diffractions are separated by a single dip difference.Yu et al.(2017)improved imaging condition based on dynamic properties of diffractions,reflections can be suppressed and diffractions imaging can be realized.Zhao et al.(2015) proposed a least-squares fitting method based on double exponential functions to study the amplitude function of diffractions,they modified the traditional Kirchhoff imaging conditions to form a new imaging formula,and used the polarity reversal of diffractions to eliminate strong reflections.Taking into account dynamic differences between reflections and diffractions in the common-shot gathers,Zhao et al.(2016a,b) developed a Mahalanobis-based diffraction imaging method by modifying the classic Kirchhoff formula with an exponential function,reflections can be attenuated and diffractions can be enhanced automatically.Liu et al.(2017) constructed an antistationary phase filter into the Gaussian beam migration with the help of dip-scanning and kinematic/dynamic ray tracing,and the anti-stationary phase filter operator was used to modify migration operator to obtain diffraction imaging profile.Zhang and Zhang(2014) proposed a method to accurately estimate the Fresnel zone in the dip-angle offset gathers,and the Fresnel zones related to reflections were muted and phases of diffractions were corrected,therefore diffractions in the migrated gathers can be enhanced(Li et al.,2018).Wang et al.(2020)and Kong et al.(2020)analyzed the differences of diffractions and reflections in the dipangle gathers,and realized wavefield separation in the dip-angle domain.

    In this paper,we follow the idea of separating diffractions and reflections in the common-offset domain.According to the features that reflections are mostly smooth linear events in the commonoffset domain,while diffractions are still hyperbolic events,we propose a diffraction wave extraction method based on double sparse transforms.Two types of sparse transforms are exploited to represent diffractions and reflections.The high-resolution Radon transform is used to represent reflections,and the Curvelet transform is used to represent diffractions.A sparse inversion model is established,and the alternating direction method is used to solve the inversion model to realize separation of diffractions and reflections.The effectiveness of this method is verified by the separation and imaging results of two simulation data and a field data.The numerical results show that this diffractions extraction method based on double sparse transforms can get acceptable imaging quality of faults and other small-scale geological bodies,and the resolution of seismic exploration can be improved obviously.

    2.Methodology

    2.1.High-resolution linear Radon transform

    The integration path of linear Radon transform is linear,so it can focus the linear events in seismic records.The forward and inverse transforms of the conventional linear Radon transform are defined as

    where m is the data in the Radon domain,τ is the intercept,p is the slope,d is the data in the time-space domain,t is the travel time,and x is the offset.

    The forward and inverse Radon transforms can be expressed in the form of operators as follows

    where L represents the Radon transform operator,LHis the conjugate transpose operator of L,and the objective function of the inversion model of the conventional Radon transform is defined as

    For the high-resolution linear Radon transform,the L1 norm constraint condition is introduced to improve the resolution of conventional linear Radon transform.The objective function of the inversion model of the high-resolution linear Radon transform is

    where α is a weighting factor,and m is the result of the Radon transform,which can be obtained by seeking the minimum value of the above objective function.High-resolution linear Radon transform has a better focusing effect on linear events than conventional Radon transform.

    2.2.Curvelet transform

    The strong sparseness of coefficients of seismic data in the Curvelet domain enables the Curvelet transform accurately express seismic signals with the least coefficients.In addition,multi-scale and directional characteristics of the Curvelet transform renders it a better focusing effect on curve events.

    For the 2D data,the allowable condition of the window function in the Curvelet transform is

    where r is the radius of polar coordinate,t is the variable in time domain,W(r)and V(t)are the radius and angle window functions in the polar coordinates (where W ≥0,V∈R),θ is a polar coordinate,and ω is the variable in frequency domain.The support intervals are r∈(1/2,2)and t∈[-1,1],respectively.And the window function in the frequency domain is defined as

    where Rθ is the rotation matrix.Curvelet transform can be written in the form of inner product of signal f and the Curvelet function:

    According to the Plancherel theory,the formula of Curvelet transform in the frequency domain can be written as

    2.3.Diffraction wave separation method

    Assuming that dobsis the seismic data in the common-offset domain,which is composed of reflections and diffractions,the reflections events are linear or nearly linear with strong energy,and the diffractions exhibit hyperbolic events with weak energy in the common-offset domain.Suppose dlinerepresents the linear signal,corresponding to the reflection information,dcurverepresents the hyperbolic signal,corresponding to the diffraction information,and ε represents the random noise.Their relationship can be expressed as

    Since the linear events can be sparsely represented in the Radon domain,it can be assumed that xline=Φdlineis sparse,where Φ represents the high-resolution linear Radon transform,and Φ-1represents the inverse high-resolution linear Radon transform.Similarly,events with curved shapes are sparse in the Curvelet domain.Assuming xcurve=Ψdcurveis sparse,Ψ represents the Curvelet transform,and Ψ-1is the inverse Curvelet transform.Therefore,Eq.(13) can be expressed as

    Based on the sparsity of xlineand xcurve,the following sparsity inversion problem can be established

    In this solving process,THλ(·)denotes the soft thresholding operation,can be reduced exponently,take small values.

    Fig.1.Schematic diagram of collapse model.

    3.Numerical tests

    3.1.Simple collapse model example

    In this section,a collapse model data is used to verify the performance of the proposed method for diffraction separation.Fig.1 is a schematic diagram of collapsed model which contains 14 horizontal and inclined reflective interfaces of different lengths,and four independent diffraction points are set between the interfaces.The background velocity of model is 2000 m/s.Fig.2a shows the zero-offset synthetic seismic record of the collapse model.In this record,the reflections behave as linear events,while the diffractions appear as hyperbolic events,and the energy of diffractions is weaker than that of reflections.There is a certain degree of events superposition between the reflections and diffractions,and between different diffractions.Fig.2b and c show the separated reflections and diffractions according to the proposed method.There still left some diffractions in the reflection image due to the energy of reflections and diffractions are overlaped at the apexs of the diffraction hyperbolic events,but the method performs well in the whole result,and the diffractions are obviously strengthened in Fig.2c.

    Fig.3a is the full wavefield imaging result obtained by one-way wave depth migration.Since the reflections energy is much stronger than that of the diffractions,the imaging profile mainly reflects large-scale geological information,and it is difficult to identify small-scale structures such as diffraction points.Fig.3b and c are the imaging results of the separated reflections and diffractions,respectively.The separated reflections imaging results reflect the situation of reflective interfaces,while the separated diffractions imaging can better reflect the situation of fault breakpoints,the boundary points of interface and the independent diffraction points.The imaging accuracy of diffractions are higher in the positions of diffraction points.Although there are some artifacts and noise at fault breakpoints and boundary positions,the results still reveal good performance of the proposed method in separating reflections and enhancing diffractions,which is beneficial to the identification and positioning of small-scale geological anomalies.

    To test the anti-noise capability of the proposed method,we add Gaussian noise to the synthetic data with S/N of 5 as shown in Fig.4a.The amplitude of the noise is equivalent to that of the diffractions.The corresponding separated reflections and diffractions are shown in Fig.4b and c,respectively.Compared with reflections,diffractions have lower energy and are more affected by noise.The corresponding imaging results are shown in Fig.5.The imaging result of separated diffractions can still reflect the situation of fault breakpoints,the boundary points of interface and even the independent diffraction points very well.

    Fig.2.Synthetic seismic data and separation results of the collapse model

    Fig.3.Full-wavefield imaging result and separated data imaging results of the collapse model

    Fig.4.Noisy data with S/N of 5

    Fig.5.Full-wavefield imaging result and separated data imaging results of the noisy data

    (a) Full-wavefield imaging result;(b) separated reflection imaging result;(c) separated diffraction imaging result.

    3.2.Sigsbee 2A model example

    Fig.6.A part of the Sigsbee 2A velocity model.

    A part of the Sigsbee 2A data is used to verify the effectiveness of the proposed method for complex geological structures.The model is shown in Fig.6,in which some faults and point diffractors are marked by solid black lines and red circles,respectively.The zerooffset data is shown in Fig.7a,which contains complex reflections and diffractions.The separated results of reflections and diffractions by the proposed method are shown in Fig.7b and c.The method still has a good performance for complex data,the reflections and diffractions can be well separated.

    To highlights the separation effect of diffractions,the time windows shown in Fig.7 are extracted from the full-wavefield data,the separated reflections data and the diffractions data,respectively,as shown in Fig.8 and Fig.9.The method shows good separation effect,and most of reflections in the wavefield can be separated and diffractions are enhanced in the two time-windows.A small defect is the apexes of the hyperbolic events of diffractions are mixed with reflection events,and diffraction energy will be misjudged as reflection energy,causing a certain amount of energy loss of diffractions.

    Fig.10a,F(xiàn)igs.10b and 10c are the imaging results of the fullwavefield,the separated reflections and the diffractions,respectively.In the full-wavefield imaging result,the fault surfaces and point diffractors are covered up by reflection energy from continuous strata.The reflections imaging result mainly reflects largescale geological structures,though some diffraction energy still left in it.In the diffractions imaging result,the fault surfaces(marked by black circle)and point diffractors(marked by red circle)can still be clearly displayed compared with the full-wavefield imaging result although parts of reflection energy with steep dips remains,and the boundary shape of salt dome is also well preserved.The combination of the diffraction imaging and the fullwavefield imaging results can improve the positioning accuracy of diffractor targets,and provide more detailed structure information for seismic interpretation.

    Fig.7.Full-wavefield seismic data and separation results of Sigsbee 2A data

    Fig.8.Shallow time window results of the Sigsbee 2A model data and separated data

    Fig.9.Deep time window results of the Sigsbee 2A model data and separated data

    Fig.10.Full-wavefield imaging result and separated data imaging results of Sigsbee 2A

    Fig.11.Field data DMO stacked section.

    3.3.Field data example

    Fig.12.Full-wavefield imaging result of field data.

    A field data (open source data from Madagascar software) is used to further verify the effectiveness of the proposed method.The data is a deep water 2D line acquired to image the Nankai Trough subduction zone (Moore et al.,1990;Moore and Shipley,1993;Decker et al.,2017).We used a fragment of the line whose dip-moveout correction (DMO) stacked section is shown in Fig.11(Decker et al.,2017) to test our method.The corresponding oneway wave time imaging result is shown in Fig.12.The timemigration velocity model is from Decker et al.(2017).The shallow part of the data between 6 s and 7 s contain reflections and diffractions,and a few of diffractions are strong.This part of the data is complicated because of the complex geologic structures.The central part of the data approximately 7.1 s contain weak reflections and diffractions.The deeper part of the data approximately 7.5 s contain strong reflections and some weak diffractions generated from the discontinuities.

    Fig.14.Separated diffraction imaging result

    The corresponding separated results are shown in Fig.13.Fig.13a is the separated reflections and Fig.13b is the separated diffractions.There is a little remaining linear noise in Fig.13b because of the leakage of the diffraction energy.The method has a good performance for the whole data,the reflections and diffractions can be well separated especially for the central and deeper part of the data.Fig.14 shows the migration result of the separated reflections and diffractions.Compared with original data imaging result (Fig.12),both images highlight fault surfaces,and the separated diffractions imaging result (Fig.14b) is better in displaying finer discontinuities,such as those associated with the rough surface of the subducting plate crust,located near 7.5 s (Moore and Shipley,1993).

    4.Conclusion

    We have proposed an inversion method based on double sparse transforms to separate diffractions and reflections.In the common-offset domain,reflections appear as linear events and diffractions behave as hyperbolic events.Two transforms are used to represent these two types of signals:the high-resolution linear Radon transform is used to represent reflections,and the Curvelet transform is used to represent diffractions.A sparse inversion model was built and can be solved by an alternating direction method.Numerical results indicated that the proposed method can separate diffractions and reflections in the common-offset domain,and the imaging results can clearly display small-scale geological structures.By comparing the imaging results of diffractions and reflections,the diffractions imaging results have higher resolution for small-scale fractures,cracks,and heterogeneity.The extracted diffraction can be used as a kind of comparative data to help geologists study small-scale geological anomalies.

    Acknowledgements

    This work is supported by National Natural Science Foundation of China(41974166),Natural Science Foundation of Hebei Province(D2019403082,D2021403010) and Hebei Province “three-threethree talent project” (A202005009) and Funding for the Science and Technology Innovation Team Project of Hebei GEO University(KJCXTD202106).

    一级毛片电影观看| 青春草亚洲视频在线观看| 欧美激情国产日韩精品一区| 嫩草影院新地址| 男人舔奶头视频| 午夜视频国产福利| 国产精品一区二区在线不卡| 国产在线男女| av女优亚洲男人天堂| 在线观看三级黄色| 大陆偷拍与自拍| 免费黄网站久久成人精品| 丰满少妇做爰视频| 欧美日韩在线观看h| 欧美日本视频| 极品教师在线视频| 国产亚洲最大av| 男人舔奶头视频| 一个人看的www免费观看视频| 国产乱人偷精品视频| 国产人妻一区二区三区在| 狂野欧美激情性xxxx在线观看| 一级毛片黄色毛片免费观看视频| 国产色婷婷99| 麻豆成人午夜福利视频| 免费不卡的大黄色大毛片视频在线观看| 日本-黄色视频高清免费观看| 国产亚洲av片在线观看秒播厂| 国产成人a∨麻豆精品| 日韩精品有码人妻一区| 黑丝袜美女国产一区| 亚洲三级黄色毛片| 久久久色成人| 亚洲欧洲日产国产| 日韩一本色道免费dvd| 另类亚洲欧美激情| 国产无遮挡羞羞视频在线观看| 一二三四中文在线观看免费高清| 黑人高潮一二区| 亚洲欧美日韩无卡精品| 欧美最新免费一区二区三区| 精品亚洲成a人片在线观看 | 一个人免费看片子| 久久国内精品自在自线图片| 少妇的逼好多水| 边亲边吃奶的免费视频| 久久久久久久亚洲中文字幕| 久久精品国产亚洲网站| 91在线精品国自产拍蜜月| 成人黄色视频免费在线看| 久久国产精品大桥未久av | 欧美成人a在线观看| 最新中文字幕久久久久| 高清黄色对白视频在线免费看 | 青春草国产在线视频| 亚洲av福利一区| 精品一区二区三卡| 久久国内精品自在自线图片| av一本久久久久| 亚洲美女黄色视频免费看| 亚洲成人av在线免费| 男人添女人高潮全过程视频| 国产精品一二三区在线看| 美女xxoo啪啪120秒动态图| 草草在线视频免费看| 成人免费观看视频高清| 在线观看一区二区三区激情| 亚洲av在线观看美女高潮| 婷婷色av中文字幕| 夜夜爽夜夜爽视频| 美女视频免费永久观看网站| 在线观看免费高清a一片| 哪个播放器可以免费观看大片| 大话2 男鬼变身卡| a级一级毛片免费在线观看| 热re99久久精品国产66热6| 在线观看美女被高潮喷水网站| 少妇人妻 视频| 边亲边吃奶的免费视频| 亚洲最大成人中文| 伊人久久国产一区二区| 国产精品精品国产色婷婷| 深夜a级毛片| 国产伦理片在线播放av一区| 中文字幕制服av| 日韩 亚洲 欧美在线| 能在线免费看毛片的网站| 一级二级三级毛片免费看| 日韩中字成人| 亚洲av欧美aⅴ国产| 国产精品一区二区在线观看99| 免费少妇av软件| 欧美极品一区二区三区四区| 亚洲国产色片| 91在线精品国自产拍蜜月| 免费久久久久久久精品成人欧美视频 | 2018国产大陆天天弄谢| 精品久久久久久久久亚洲| 日韩一本色道免费dvd| 波野结衣二区三区在线| 中文资源天堂在线| 在线观看免费视频网站a站| 又黄又爽又刺激的免费视频.| 欧美3d第一页| 久久久久网色| 一级毛片我不卡| 午夜福利视频精品| 一级毛片久久久久久久久女| 日韩中文字幕视频在线看片 | 99久久精品国产国产毛片| 日日摸夜夜添夜夜爱| 成人18禁高潮啪啪吃奶动态图 | 99九九线精品视频在线观看视频| 国产国拍精品亚洲av在线观看| 色婷婷av一区二区三区视频| 午夜福利在线在线| 永久免费av网站大全| 国产又色又爽无遮挡免| av黄色大香蕉| 免费黄网站久久成人精品| 久久久久性生活片| 男人和女人高潮做爰伦理| 日韩欧美精品免费久久| 国产免费视频播放在线视频| 超碰av人人做人人爽久久| 我的女老师完整版在线观看| 亚洲怡红院男人天堂| 日韩精品有码人妻一区| 少妇被粗大猛烈的视频| 亚洲激情五月婷婷啪啪| 熟女电影av网| 夫妻性生交免费视频一级片| 看十八女毛片水多多多| 欧美变态另类bdsm刘玥| 精品一品国产午夜福利视频| 夜夜爽夜夜爽视频| 亚洲三级黄色毛片| 亚洲丝袜综合中文字幕| 国产在线一区二区三区精| 国产v大片淫在线免费观看| 国产精品一区www在线观看| 高清不卡的av网站| 91在线精品国自产拍蜜月| 夜夜爽夜夜爽视频| 中文在线观看免费www的网站| 精品亚洲乱码少妇综合久久| av线在线观看网站| 热re99久久精品国产66热6| 国产亚洲一区二区精品| 久久久久国产精品人妻一区二区| 日本一二三区视频观看| av国产久精品久网站免费入址| 六月丁香七月| 日日摸夜夜添夜夜爱| 久久99热这里只频精品6学生| 在线观看美女被高潮喷水网站| 少妇的逼好多水| 啦啦啦在线观看免费高清www| 亚洲精品乱久久久久久| 久久久久久伊人网av| 少妇人妻久久综合中文| 九九久久精品国产亚洲av麻豆| 美女主播在线视频| 日韩伦理黄色片| 26uuu在线亚洲综合色| 国产午夜精品久久久久久一区二区三区| 亚洲精品亚洲一区二区| 亚洲精品自拍成人| 日韩人妻高清精品专区| 汤姆久久久久久久影院中文字幕| 午夜日本视频在线| 亚洲精品视频女| 亚洲精品亚洲一区二区| 91午夜精品亚洲一区二区三区| 成人毛片a级毛片在线播放| 人妻夜夜爽99麻豆av| 1000部很黄的大片| 日本免费在线观看一区| 久久久久久九九精品二区国产| 亚洲第一区二区三区不卡| 中文字幕av成人在线电影| 亚洲一区二区三区欧美精品| 91久久精品电影网| 国产永久视频网站| 亚洲精品视频女| 中文欧美无线码| 免费观看a级毛片全部| 亚洲天堂av无毛| 草草在线视频免费看| 国产伦精品一区二区三区视频9| 草草在线视频免费看| av免费在线看不卡| 十分钟在线观看高清视频www | 小蜜桃在线观看免费完整版高清| 国产午夜精品一二区理论片| 欧美变态另类bdsm刘玥| 高清视频免费观看一区二区| 久久久久久久久久成人| av专区在线播放| 日日摸夜夜添夜夜添av毛片| 尾随美女入室| 岛国毛片在线播放| 一个人看的www免费观看视频| 亚洲成人av在线免费| 国产免费福利视频在线观看| 91久久精品电影网| 男女啪啪激烈高潮av片| 婷婷色麻豆天堂久久| 国产精品国产三级专区第一集| 深夜a级毛片| 日韩不卡一区二区三区视频在线| 国产成人91sexporn| 国产成人精品婷婷| 国产高清国产精品国产三级 | 亚洲av成人精品一区久久| 亚洲最大成人中文| 国产精品偷伦视频观看了| 亚洲精品自拍成人| 国产女主播在线喷水免费视频网站| 两个人的视频大全免费| 日韩av在线免费看完整版不卡| 欧美日韩视频精品一区| 免费播放大片免费观看视频在线观看| 国内揄拍国产精品人妻在线| 成人国产av品久久久| 少妇裸体淫交视频免费看高清| 亚洲综合精品二区| 天天躁日日操中文字幕| 国产免费一区二区三区四区乱码| 亚洲精品日本国产第一区| 日本黄色片子视频| 97在线人人人人妻| 久久精品熟女亚洲av麻豆精品| 国产免费一级a男人的天堂| 一级毛片电影观看| 国产有黄有色有爽视频| 亚洲欧美精品自产自拍| 国产午夜精品久久久久久一区二区三区| 亚洲国产精品专区欧美| 国产亚洲欧美精品永久| 色视频在线一区二区三区| 18禁在线无遮挡免费观看视频| 下体分泌物呈黄色| 免费看av在线观看网站| 亚洲av在线观看美女高潮| 人妻 亚洲 视频| 亚洲中文av在线| 肉色欧美久久久久久久蜜桃| 午夜福利在线在线| 久久精品久久久久久噜噜老黄| 国产亚洲欧美精品永久| 丰满迷人的少妇在线观看| 97热精品久久久久久| 久久久久国产精品人妻一区二区| 特大巨黑吊av在线直播| 成人一区二区视频在线观看| 国产精品99久久久久久久久| 美女脱内裤让男人舔精品视频| 国产高潮美女av| 欧美日韩视频精品一区| 国产一区亚洲一区在线观看| 亚洲av电影在线观看一区二区三区| 欧美xxxx黑人xx丫x性爽| 久久久久国产精品人妻一区二区| 久久久久久久大尺度免费视频| 亚洲三级黄色毛片| 国产一区二区三区综合在线观看 | 久热这里只有精品99| 欧美成人精品欧美一级黄| 观看免费一级毛片| 欧美+日韩+精品| 免费观看av网站的网址| 欧美日韩在线观看h| 黑人高潮一二区| 亚洲精品久久午夜乱码| 一本一本综合久久| 国产精品久久久久久精品古装| 久久久久久久亚洲中文字幕| 中国美白少妇内射xxxbb| 夜夜看夜夜爽夜夜摸| 久久99精品国语久久久| 日韩av免费高清视频| 啦啦啦视频在线资源免费观看| 直男gayav资源| 亚洲精品第二区| 18禁裸乳无遮挡动漫免费视频| 我要看黄色一级片免费的| 欧美日本视频| 亚洲欧洲国产日韩| 欧美成人a在线观看| 免费看不卡的av| 99热国产这里只有精品6| 水蜜桃什么品种好| 成人亚洲欧美一区二区av| 一级毛片 在线播放| 国精品久久久久久国模美| 精品一区二区三卡| 黄片wwwwww| 熟女人妻精品中文字幕| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区| 嫩草影院入口| 国产又色又爽无遮挡免| 丰满人妻一区二区三区视频av| 91精品国产九色| 中文字幕av成人在线电影| 国产成人a∨麻豆精品| 日本欧美视频一区| 国产乱人视频| 欧美成人a在线观看| 国产成人午夜福利电影在线观看| 男女下面进入的视频免费午夜| 一区二区三区乱码不卡18| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 久久久久久久久久久免费av| xxx大片免费视频| 国产精品蜜桃在线观看| 日本-黄色视频高清免费观看| 久久综合国产亚洲精品| 97在线人人人人妻| 国产精品一区二区性色av| 成人漫画全彩无遮挡| 国产色爽女视频免费观看| 日本色播在线视频| 亚洲人与动物交配视频| 亚洲电影在线观看av| 一级毛片久久久久久久久女| 干丝袜人妻中文字幕| 日韩av在线免费看完整版不卡| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 日本wwww免费看| 啦啦啦啦在线视频资源| 国产女主播在线喷水免费视频网站| 最近中文字幕高清免费大全6| 亚洲人成网站在线播| 女性生殖器流出的白浆| 久久久久人妻精品一区果冻| 91精品国产九色| 国产高潮美女av| 在线观看免费高清a一片| 欧美老熟妇乱子伦牲交| 免费不卡的大黄色大毛片视频在线观看| 日本黄色片子视频| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品专区欧美| 亚洲欧美日韩另类电影网站 | 这个男人来自地球电影免费观看 | 成人无遮挡网站| 美女视频免费永久观看网站| 成人亚洲欧美一区二区av| 男女边吃奶边做爰视频| 观看美女的网站| 久久精品夜色国产| 国产午夜精品一二区理论片| 亚洲美女黄色视频免费看| 国产免费一区二区三区四区乱码| 我要看黄色一级片免费的| 欧美极品一区二区三区四区| 精品久久久噜噜| 欧美+日韩+精品| 欧美精品一区二区大全| 九九久久精品国产亚洲av麻豆| 午夜老司机福利剧场| 日日啪夜夜爽| 人体艺术视频欧美日本| 精品久久久久久电影网| 美女cb高潮喷水在线观看| 晚上一个人看的免费电影| 成人高潮视频无遮挡免费网站| 日韩av不卡免费在线播放| 观看美女的网站| 久久精品夜色国产| 少妇精品久久久久久久| 欧美激情极品国产一区二区三区 | 婷婷色av中文字幕| 日韩人妻高清精品专区| 男人和女人高潮做爰伦理| 精品酒店卫生间| 国产高清国产精品国产三级 | 国产伦精品一区二区三区视频9| 麻豆精品久久久久久蜜桃| 国产免费福利视频在线观看| 性色avwww在线观看| 免费大片黄手机在线观看| 激情 狠狠 欧美| 国产成人a区在线观看| 少妇被粗大猛烈的视频| 婷婷色av中文字幕| 亚洲精品亚洲一区二区| av不卡在线播放| 亚洲色图av天堂| 国产免费一区二区三区四区乱码| 亚洲欧美成人精品一区二区| 啦啦啦在线观看免费高清www| 国产视频内射| 亚洲成色77777| 少妇裸体淫交视频免费看高清| av视频免费观看在线观看| 国产精品人妻久久久影院| 欧美97在线视频| 最近最新中文字幕免费大全7| 亚洲精品一区蜜桃| 亚洲成人中文字幕在线播放| 国产视频内射| 日韩av在线免费看完整版不卡| 国产乱来视频区| 亚洲av欧美aⅴ国产| 国产亚洲精品久久久com| 大话2 男鬼变身卡| 久久国内精品自在自线图片| 在线天堂最新版资源| 91精品伊人久久大香线蕉| 国产在线视频一区二区| 黄色怎么调成土黄色| 成年女人在线观看亚洲视频| 成人国产av品久久久| 天美传媒精品一区二区| 中文资源天堂在线| 男女国产视频网站| 大又大粗又爽又黄少妇毛片口| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 十分钟在线观看高清视频www | 欧美xxxx性猛交bbbb| 人妻夜夜爽99麻豆av| 午夜福利影视在线免费观看| 人体艺术视频欧美日本| 国精品久久久久久国模美| 亚洲,欧美,日韩| 在线观看国产h片| 精品视频人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 亚洲图色成人| 99热国产这里只有精品6| 久久精品国产亚洲av涩爱| 深夜a级毛片| 国产片特级美女逼逼视频| 国产永久视频网站| 麻豆精品久久久久久蜜桃| 亚洲成人中文字幕在线播放| 新久久久久国产一级毛片| 在线亚洲精品国产二区图片欧美 | 男的添女的下面高潮视频| 建设人人有责人人尽责人人享有的 | 免费av中文字幕在线| 蜜桃在线观看..| 啦啦啦中文免费视频观看日本| 夫妻性生交免费视频一级片| 五月天丁香电影| 婷婷色麻豆天堂久久| 久久精品久久久久久久性| 亚洲美女黄色视频免费看| 国产视频内射| 99久久精品热视频| 亚洲丝袜综合中文字幕| 少妇裸体淫交视频免费看高清| 黄色一级大片看看| 国内精品宾馆在线| av在线观看视频网站免费| 亚洲人成网站在线播| 各种免费的搞黄视频| 赤兔流量卡办理| 最近中文字幕高清免费大全6| 国产男女超爽视频在线观看| 国产人妻一区二区三区在| 中文欧美无线码| 国产精品久久久久久久久免| 一本—道久久a久久精品蜜桃钙片| 久热这里只有精品99| 久久99热这里只频精品6学生| 国产av精品麻豆| 熟女人妻精品中文字幕| 美女主播在线视频| 亚洲人成网站高清观看| 99九九线精品视频在线观看视频| 欧美最新免费一区二区三区| 国产精品99久久99久久久不卡 | 国产爱豆传媒在线观看| 晚上一个人看的免费电影| 日韩大片免费观看网站| 国产精品人妻久久久久久| 久久 成人 亚洲| 国产成人精品久久久久久| 免费在线观看成人毛片| 精品久久久久久电影网| 国产av一区二区精品久久 | 亚洲欧美成人精品一区二区| 天天躁日日操中文字幕| 国产永久视频网站| 国产91av在线免费观看| 国产男女内射视频| 岛国毛片在线播放| 亚洲国产色片| 精品久久久久久久久亚洲| 少妇精品久久久久久久| 一级二级三级毛片免费看| 国产男女超爽视频在线观看| 久久精品夜色国产| 国产精品秋霞免费鲁丝片| 亚洲丝袜综合中文字幕| 久久6这里有精品| 男女免费视频国产| 成人二区视频| 国产成人免费观看mmmm| 国产亚洲av片在线观看秒播厂| 亚洲精品乱久久久久久| 国产69精品久久久久777片| 熟妇人妻不卡中文字幕| 美女主播在线视频| 高清毛片免费看| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 亚洲国产精品专区欧美| tube8黄色片| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片| 国产av国产精品国产| 国产av码专区亚洲av| 亚洲欧美中文字幕日韩二区| 一区二区三区精品91| 成年av动漫网址| 亚洲自偷自拍三级| 国产成人午夜福利电影在线观看| 亚洲精品久久午夜乱码| 久久久久久久久久人人人人人人| 一本一本综合久久| 蜜臀久久99精品久久宅男| 狠狠精品人妻久久久久久综合| 久久99热这里只有精品18| 男人添女人高潮全过程视频| 久久ye,这里只有精品| www.av在线官网国产| 夜夜骑夜夜射夜夜干| 日韩av在线免费看完整版不卡| 嘟嘟电影网在线观看| 高清日韩中文字幕在线| 久久这里有精品视频免费| 观看美女的网站| 最近中文字幕2019免费版| 国产精品久久久久久精品电影小说 | 99精国产麻豆久久婷婷| 欧美xxxx黑人xx丫x性爽| 欧美日韩综合久久久久久| 夜夜骑夜夜射夜夜干| 亚洲欧美一区二区三区黑人 | 色哟哟·www| 亚洲人成网站在线观看播放| 一级二级三级毛片免费看| 日韩国内少妇激情av| 美女福利国产在线 | 啦啦啦在线观看免费高清www| 久久精品熟女亚洲av麻豆精品| 91久久精品国产一区二区三区| 国产伦在线观看视频一区| 亚洲,一卡二卡三卡| 欧美日韩综合久久久久久| 久久久色成人| 亚洲av国产av综合av卡| 国产精品久久久久久精品古装| 99热国产这里只有精品6| 国产 一区 欧美 日韩| 高清日韩中文字幕在线| 国产伦理片在线播放av一区| 一本一本综合久久| 又大又黄又爽视频免费| 免费看不卡的av| 亚洲欧美清纯卡通| 精华霜和精华液先用哪个| 成人一区二区视频在线观看| 精品久久久久久久末码| 国产精品成人在线| 联通29元200g的流量卡| 亚洲婷婷狠狠爱综合网| 久久99蜜桃精品久久| 精品亚洲成a人片在线观看 | 黄色日韩在线| 国产亚洲一区二区精品| 久久人人爽人人爽人人片va| 成人亚洲精品一区在线观看 | 欧美精品人与动牲交sv欧美| 久久久久久久久久久丰满| 欧美一区二区亚洲| 边亲边吃奶的免费视频| 国产在线一区二区三区精| 久久综合国产亚洲精品| 午夜福利网站1000一区二区三区| 国产久久久一区二区三区| 18禁在线播放成人免费| 高清午夜精品一区二区三区| 韩国av在线不卡| 最近最新中文字幕免费大全7| 国产一区二区三区综合在线观看 | 只有这里有精品99| 中文字幕久久专区| 精品久久久久久久末码| 国产午夜精品久久久久久一区二区三区| 美女中出高潮动态图| 久久国产亚洲av麻豆专区| 免费高清在线观看视频在线观看| 日本欧美视频一区| 国产精品久久久久久av不卡| 国产精品成人在线| 在线观看免费视频网站a站| 亚洲高清免费不卡视频| 国产精品成人在线| 日韩一区二区视频免费看| 一区二区三区乱码不卡18| 精品久久久久久久久亚洲| 18+在线观看网站| 99久国产av精品国产电影| 国产精品av视频在线免费观看| 亚洲无线观看免费| 乱系列少妇在线播放|