劉凱,顏京強,張鯤,齊浩山,趙俊成,李大林
[摘要]目的? ?探討下肢靜脈高壓對血小板活化及靜脈管壁重構(gòu)的影響。 方法? ?將30只SD大鼠隨機分成3組,各10只。A、C組應(yīng)用髂靜脈、股靜脈縮窄法建立大鼠后肢靜脈高壓模型,分別以生理鹽水、氯吡格雷25 mg/(kg·d)飼喂;B組為假手術(shù)組。14 d后,檢測大鼠斷尾出血時間;同時心臟取血,分離純化血小板和單核細胞,應(yīng)用流式細胞術(shù)檢測血小板內(nèi)部殘留血小板因子4(PF4)以及單核細胞分化抗原115(CD115)-CD41雙陽性比例,以評估血小板活化及血小板-單核細胞聚合比例;同時取大鼠股靜脈組織進行Masson及CD115免疫組化染色。再取[STBX]C57小鼠15只,隨機分為3組,各5只,富血小板血漿(PRP)+凝血酶(thrombin)+氯吡格雷(clopi)組以氯吡格雷10 mg/(kg·d)灌胃,PRP組及PRP+thrombin組以等量生理鹽水灌胃,7 d后內(nèi)眥取血,離心獲得PRP,將PBS及3組PRP分別與無血清DMEM制成體積分數(shù)0.05的條件培養(yǎng)液,分別與RAW264.7小鼠腹腔巨噬細胞Transwell共培養(yǎng)(PRP+thrombin組及PRP+thrombin+clopi組以激活劑活化),檢測血小板對單核巨噬細胞遷移功能的影響。 結(jié)果? ?3組斷尾出血時間比較,C組明顯長于A組和B組,差異有統(tǒng)計學(xué)意義(F=243.10,P<0.01);A組與B組差異無顯著性(P>0.05)。A組循環(huán)血小板內(nèi)的PF4殘余較B組和C組減少,血小板-單核細胞聚合百分比、股靜脈管壁CD115表達及纖維化程度均明顯升高,差異有顯著性(F=26.40~243.10,P<0.01)。Transwell實驗顯示,PBS組細胞遷移數(shù)明顯少于PRP組,PRP+thrombin組明顯多于PRP+thrombin+clopi組,差異有顯著性(F=25.70,P<0.01)。 結(jié)論? ?下肢靜脈高壓可以引起血小板異?;罨把“?單核細胞聚合比例增高,并最終引起靜脈管壁重塑。氯吡格雷可有效抑制靜脈高壓引起的血小板活化,同時可減輕管壁纖維化。
[關(guān)鍵詞]靜脈壓;血小板活化;單核細胞;血管重塑;氯吡格雷
[中圖分類號]R543.6
[文獻標志碼]A
[文章編號]2096-5532(2022)04-0615-06
doi:10.11712/jms.2096-5532.2022.58.081
[開放科學(xué)(資源服務(wù))標識碼(OSID)]
[網(wǎng)絡(luò)出版]https://kns.cnki.net/kcms/detail/37.1517.R.20220617.1618.003.html;[JY]2022-06-2016:20:04
CORRELATION BETWEEN LOWER LIMB VENOUS HYPERTENSION AND DEGREE OF PLATELET ACTIVATION
LIU Kai, YAN Jingqiang, ZHANG Kun, QI Haoshan, ZHAO Juncheng, LI Dalin
(Department of Vascular Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the influence of lower limb venous hypertension on platelet activation and vein wall remodeling.
Methods A total of 30 Sprague-Dawley rats were randomly divided into groups A, B, and C, with 10 rats in each group.? The rats in groups A and C were used to establish a rat model of hindlimb venous hypertension by narrowing the iliac and femoral veins and were fed with normal saline and clopidogrel 25 mg/(kg·d), respectively, while those in group B were established as a sham-operation group.? After 14 d, bleeding time was measured by tail cutting; cardiac blood was collected to isolate and purify platelets and monocytes, and flow cytometry was used to measure residual platelet factor 4 (PF4) in platelets and CD115-CD41 double positive ratio of monocytes to evaluate platelet activation and the percentage of platelet-monocyte aggregates; femoral vein tissue was collected for Masson staining and CD115 immunohistochemical staining.? A total of 15 [STBX]C57 mice were randomly divided into platelet-rich plasma (PRP)+thrombin+clopidogrel (clopi) group, PRP group, and PRP+thrombin group, with 5 mice in each group.? The mice in the PRP+thrombin+clopi group was given clopidogrel 10 mg/(kg·d) by gavage, and those in the PRP group and the PRP+thrombin group were given an equal volume of normal saline by gavage.? After 7 d, blood was collected from the inner canthus and was then centrifuged to obtain PRP.? PBS and PRP from the three groups were respectively added with serum-free DMEM to prepare a conditioned medium with a volume fraction of 0.05, and the 4 types of conditioned medium were respectively co-cultured with RAW264.7 mouse peritoneal macrophages in Transwell assay (the PRP+thrombin group and the PRP+thrombin+clopi group were activated by an activator) to evaluate the influence of platelets on the migration function of macrophages.
Results Group C had a significantly longer bleeding time than groups A and B (F=243.10,P<0.01), while there was no significant difference between group A and group B (P>0.05).? Compared with groups B and C, group A had a significantly lower level of PF4 residues and significant increases in the percentage of plateletmonocyte aggregates, the expression of CD115 in the femoral vein wall, and the degree of fibrosis of the femoral vein wall (F=26.40-243.10,P<0.01).? Transwell assay showed that the PBS group had a significantly lower number of migrated cells than the PRP group, and the PRP+thrombin group had a significantly higher number of migrated cells than the PRP+thrombin+clopi group (F=25.70,P<0.01).
Conclusion Lower limb venous hypertension lead to abnormal activation of platelets and an increase in the percentage of platelet-monocyte aggregates and finally cause vein wall remodeling.? Clopidogrel can effectively inhibit platelet activation caused by venous hypertension and alleviate fibrosis of the vein wall.
[KEY WORDS] venous pressure;? platelet activation; monocytes; vascular remodeling; clopidogrel
血小板在止血、炎性反應(yīng)、血栓形成以及器官移植排斥等生理與病理反應(yīng)中具有重要作用,而其活化不當(dāng)可導(dǎo)致許多疾病,如血栓性疾病、出血性疾病、心腦血管疾病、惡性腫瘤、糖尿病、風(fēng)濕免疫性疾病、運動誘導(dǎo)血小板活化等[1]。目前認為,血小板的異?;罨c血管內(nèi)皮損傷、高血流量剪切力、低氧、血液淤積等誘因密不可分,在動脈壓波動及血流剪切力的作用下血小板的活化程度發(fā)生了明顯的改變[2-3]。而靜脈壓增高是否會影響血小板活化甚至影響管壁重塑尚未見相關(guān)報道。本研究通過建立后肢靜脈高壓大鼠模型,探討靜脈高壓對血小板活化和管壁重塑的影響。
1材料與方法
1.1實驗動物與分組
選取6~8周齡雄性SD大鼠30只,體質(zhì)量(282.66±20.23)g,SPF級(杰思捷實驗動物實驗中心)。適應(yīng)性飼喂4周后隨機分為3組,每組10只。A組為下肢靜脈高壓+生理鹽水灌胃組;B組為假手術(shù)組;C組為下肢靜脈高壓+氯吡格雷灌胃組。
1.2下肢靜脈高壓模型制備及各組處理方法
A組、C組應(yīng)用髂靜脈、股靜脈縮窄法建立大鼠后肢靜脈高壓模型:大鼠用6 g/L的戊巴比妥鈉(35 mg/kg)腹腔注射麻醉,仰臥位固定于鼠板,備皮后消毒,正中切口進入下腹腔,顯微鏡輔助下于上1/3處分離右髂外動靜脈,在游離段髂外靜脈腔外表面置一直徑0.25 mm超滑導(dǎo)絲(與之平行),用1號絲線結(jié)扎靜脈與導(dǎo)絲后,抽出導(dǎo)絲;同法環(huán)縮右股靜脈,以可吸收縫線分層關(guān)腹。B組手術(shù)方法同上,但絲線置于管壁周圍不作結(jié)扎[4]。模型構(gòu)建成功后,3組大鼠均飼喂于20~24 ℃的恒溫環(huán)境中,飲水、飼料均一致。C組大鼠以氯吡格雷25 mg/(kg·d)連續(xù)灌胃2周,A組和B組大鼠以等量生理鹽水連續(xù)灌胃2周。
1.3出血時間檢測
將無菌生理鹽水加入50 mL的試管中,在37 ℃的水浴中加熱1 h。飼喂2周后的SD大鼠尾尖褪毛消毒后剪去遠端的10 mm,將尾尖浸泡在37 ℃預(yù)溫生理鹽水中,記錄出血時間(從有清晰可見的血流持續(xù)流動開始至無明顯血流為止)。為了防止實驗大鼠因失血過多而死亡,全部出血試驗在20 min后停止。
1.4標本采集
建模2周后,大鼠以6 g/L戊巴比妥鈉(35 mg/kg)腹腔注射麻醉,仰臥位并固定四肢于鼠板。備皮后消毒,依次打開胸腹腔,首先以1 mL空針于心臟左心室取血收集于含有檸檬酸鈉抗凝管中,后由左心室置灌洗導(dǎo)管于升主動脈并結(jié)扎。開放右心耳后,先后以4 ℃的PBS及甲醛進行循環(huán)沖洗,待灌洗液澄清后,于右髂外靜脈兩結(jié)扎位點遠端取股髂靜脈組織,置于40 g/L多聚甲醛固定液中,4 ℃恒溫環(huán)境中保存待染色。
1.5檢測指標及方法
1.5.1血小板和單核細胞流式細胞術(shù)檢測①血小板:獲取血標本馬上以1 600 r/min離心10 min,上清即為富血小板血漿(PRP),將PRP以1 000 r/min離心6 min,去除沉淀,將所得上清液再次以5 600 r/min離心5 min即可獲得純化血小板。穿膜處理后按流程孵育抗體(Anti-PF4、ab49735)后,流式細胞儀檢測血小板內(nèi)殘余血小板因子4(PF4)含量,以評估血小板活化比例。②單核細胞:獲取大鼠循環(huán)血后,按照文獻方法[5]離心獲得單核細胞,抗體孵育后,流式細胞儀檢測CD115-CD41雙陽性單核細胞,以獲得血小板-單核細胞聚合比例(P-M)。以Flowjo V10軟件分析獲取原始數(shù)據(jù)。
1.5.2靜脈組織Masson和CD115免疫組化染色
將靜脈標本石蠟包埋、切片后,按照文獻方法[6]行CD115免疫組化、Masson染色,以Image J軟件進行圖像定量分析,觀察靜脈管壁CD115表達及纖維化面積比例。
1.5.3巨噬細胞遷移實驗制備含血小板條件培養(yǎng)液:選取6~8周雄性[STBX]C57小鼠15只,隨機分3組,各5只。PRP+凝血酶(thrombin)+氯吡格雷(clopi)組以氯吡格雷10 mg/(kg·d)灌胃,PRP組及PRP+thrombin組以等量的生理鹽水灌胃,7 d后各組小鼠均內(nèi)眥取血,所得血樣組內(nèi)合并,各取5 mL兩次離心法獲得PRP。將PBS及3組PRP分別與無血清DMEM混勻制成體積分數(shù)0.05條件培養(yǎng)液。共培養(yǎng):選取RAW264.7小鼠腹腔巨噬細胞,饑餓24 h后,選用直徑6.5 mm、孔徑0.5 μm的24孔板,以每孔1×105個細胞的密度種植于4個Transwell小室上方,然后分別加入4種新制備的條件培養(yǎng)液,共培養(yǎng)24 h(其中PRP+thrombin組和PRP+thrombin+clopi組在共培養(yǎng)前30 min按照1∶9的體積比加入激活劑(0.5 mol/L氯化鈣+100 kU/L牛凝血酶thrombin),培養(yǎng)后以40 g/L多聚甲醛固定小室,棉簽擦掉上方細胞,以1 g/L結(jié)晶紫染色觀察。拍照后,應(yīng)用Image J軟件進行圖像定量分析。
1.6統(tǒng)計學(xué)處理
應(yīng)用Graph Pad Prism 8.0統(tǒng)計學(xué)軟件進行數(shù)據(jù)處理。計量資料結(jié)果以[AKx-D]±s形式表示,多組均數(shù)間的比較采用單因素方差分析,兩兩比較采用q檢驗。以P<0.05 表示差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1各組血小板內(nèi)殘余PF4及P-M比較
A組血小板內(nèi)殘余PF4低于B組,C組高于A組和B組,差異有顯著性(F=26.40,P<0.01)。3組P-M比較,差異有統(tǒng)計學(xué)意義(F=32.77,P<0.01),其中A組最高,B組最低。見表1。
2.2各組出血時間比較
各組斷尾出血時間比較,C組明顯長于A組和B組,差異有統(tǒng)計學(xué)意義(F=243.10,P<0.01);A組與B組比較,差異無顯著性(P>0.05)。見表1。
2.3各組靜脈管壁CD115表達及纖維化面積比例比較
各組的靜脈管壁CD115表達熒光強度及纖維化面積比例差異有統(tǒng)計學(xué)意義(F=32.67、38.68,P<0.01),其中A組CD115表達熒光強度及纖維化面積比例明顯高于B組和C組,差異有統(tǒng)計學(xué)意義(P<0.01);B組與C組間比較,差異無顯著性(P>0.05)。見圖1、2和表2。
2.4各組巨噬細胞Transwell跨膜遷移數(shù)量比較
PBS組、PRP組、PRP+thrombin組、PRP+thrombin+clopi組細胞遷移數(shù)分別為(139.0±17.6)、(188.0±13.7)、(323.7±43.5)、(221.0±17.8)個,4組間差異有統(tǒng)計學(xué)意義(F=25.70,P<0.01),其中PBS組細胞遷移數(shù)少于PRP組,PRP+thrombin組明顯多于PRP+thrombin+clopi組,差異有統(tǒng)計學(xué)意義(P<0.01)。
3討論
在全球范圍內(nèi),由血栓問題引起的心臟和外周血管系統(tǒng)的紊亂已經(jīng)成為危害人類健康的頭號殺手[7]。深靜脈血栓形成(DVT)是一種臨床常見病、多發(fā)病,多數(shù)是由于血流速度緩慢、血管內(nèi)皮損傷、血液高凝狀態(tài)等因素所誘發(fā)[8]。早期DVT可以并發(fā)肺動脈栓塞(PE),有較高的致死率,存活者若未得到及時治療,隨病情發(fā)展其中有20%~50%發(fā)展為血栓后綜合征(PTS),更有多達5%的病人發(fā)展為不可逆性PTS[9],嚴重影響病人生活質(zhì)量[10-11]。PTS病情進展的實質(zhì)是靜脈管壁的慢性重塑,這種重塑的首要誘因便是靜脈高壓[12]。關(guān)于靜脈高壓誘導(dǎo)管壁重塑機制至今仍未完全明確,本文應(yīng)用大鼠后肢靜脈高壓模型對血小板活化所引起的管壁纖維化機制進行了初步探索。
1948年CONLEY等學(xué)者發(fā)現(xiàn),肝素在循環(huán)血小板含量下降的病人體內(nèi)的敏感度明顯增高,推斷很有可能是血小板所釋放的某種蛋白質(zhì)對抗了肝素的抗凝性。此后的數(shù)年間此種蛋白逐漸被認識并命名為PF4[13]。PF4主要是在巨核細胞內(nèi)合成,隱藏在α顆粒內(nèi)部,它的釋放是血小板活化及巨核細胞成熟的直觀體現(xiàn)[14]。釋放入血的PF4作為趨化因子CXC家族的一員,一方面因不具備ELR(Glu-Leu-Arg)結(jié)構(gòu)域造就了其抑制血管新生、抑制內(nèi)皮細胞增殖、抑制造血的負性功能[15];另一方面,PF4可以通過阻止單核細胞凋亡和介導(dǎo)分化標志物的上調(diào)來誘導(dǎo)單核細胞向巨噬細胞的分化[16]以及巨噬細胞的募集[17]。已有研究顯示,高血壓病人血小板活化和P-M明顯升高,且其升高幅度與血壓呈正相關(guān)[18-19]。本文動物實驗顯示,術(shù)后14 d靜脈高壓+生理鹽水灌胃組大鼠血小板內(nèi)剩余PF4及P-M明顯少于假手術(shù)組和靜脈高壓+氯吡格雷灌胃組,推斷血小板的活化和P-M會在靜脈性高壓作用下異常增高,而靜脈高壓+氯吡格雷灌胃組血小板內(nèi)PF4殘余高于假手術(shù)組,而P-M低于假手術(shù)組,均證實氯吡格雷能在一定程度上抑制此類病理過程。
血小板主要通過兩種機制介導(dǎo)血管炎癥反應(yīng)。①血小板內(nèi)部的α顆粒作為趨化因子、細胞因子和生長因子的富集體,在血小板活化時可以向血液循環(huán)和血管壁釋放大量的炎癥遞質(zhì),促進內(nèi)皮細胞損傷[20-21]或血管平滑肌細胞增殖[22-23],引起管壁重構(gòu)。②血小板可以通過血小板-單核巨噬細胞結(jié)合促進炎癥反應(yīng)[24]。有研究顯示,在心肌梗死、血壓過高因素誘導(dǎo)下,血小板和單核巨噬細胞可在心臟組織中富集[25-26]。提示異?;罨难“迮c巨噬細胞向周圍組織的遷移及慢性炎癥浸潤關(guān)系密切。本研究巨噬細胞Transwell跨膜遷移實驗結(jié)果顯示,PRP組(富血小板血漿條件培養(yǎng)液)遷移細胞數(shù)量明顯多于PBS組;同時PRP+thrombin+clopi組細胞遷移量少于PRP+thrombin組,提示活化血小板對巨噬細胞的遷移功能有明顯的促進作用,氯吡格雷可以通過抑制血小板活化而減弱其對巨噬細胞遷移的趨化作用。
巨噬細胞集落刺激因子受體(M-CSFR)又名集落刺激因子1受體(CSF1R)或CD115。CD115作為蛋白酪氨酸激酶Ⅲ(PTKⅢ)家族中的一員,在哺乳動物中,其主要通過與CSF1和IL-34兩種配體之間的相互作用發(fā)揮其對巨噬細胞增殖、活化及分化功能的干預(yù)[27]。有研究發(fā)現(xiàn),CD115相關(guān)信號通路在巨噬細胞介導(dǎo)組織慢性炎癥的過程中起到了至關(guān)重要的作用[28],因此CD115表達情況可以作為巨噬細胞浸潤及其所介導(dǎo)組織慢性炎癥程度的重要指標。本研究組織染色結(jié)果顯示,靜脈高壓+生理鹽水灌胃組術(shù)后14 d大鼠后肢股靜脈CD115熒光強度和纖維化程度都明顯高于假手術(shù)組以及靜脈高壓+氯吡格雷灌胃組,提示在靜脈高壓的持續(xù)作用下,靜脈管壁中巨噬細胞的浸潤及其所介導(dǎo)的炎癥反應(yīng)均有顯著增加,而這種慢性炎癥的長期存在,也最終導(dǎo)致了靜脈管壁纖維化程度的加重。
噻吩吡啶類藥物通過抑制ADP受體達到抗血小板活化作用[29],氯吡格雷作為該類藥物的代表,除了有抗血栓形成作用外,在臨床上合理應(yīng)用氯吡格雷也大大降低了支架置入術(shù)病人血清中各種炎癥細胞因子的水平[30-31]。也有研究表明,長期規(guī)律服用氯吡格雷可以減少高血壓引起的心肌纖維化[32]。然而,氯吡格雷改善血管炎癥的作用機制尚不清楚。
有研究發(fā)現(xiàn),血小板活化所釋放的PF4參與了巨噬細胞的極化過程[33],并最終增加了巨噬細胞向M1型[34](促炎型)、M4型[35](新型促炎)極化的比例。本文研究結(jié)果也顯示,氯吡格雷對靜脈高壓大鼠外周血小板活化、血小板-單核細胞聚合均有抑制作用,更為關(guān)鍵的是氯吡格雷干預(yù)顯著減少了靜脈高壓所引起的管壁纖維化,抑制了管壁重塑,推測這很有可能是其通過抑制血小板活化減少PF4釋放所帶來的結(jié)果。
綜上所述,靜脈壓增高可以引起循環(huán)血小板以釋放PF4的形式異常活化,釋放入血的PF4可以通過促進血小板-單核細胞聚合的方式干預(yù)單核細胞分化、巨噬細胞遷移和極化,進而引起高壓靜脈段管壁中巨噬細胞浸潤及慢性炎癥的加劇,并最終引起纖維化加重。至于PF4具體是通過何種信號通路干預(yù)并改變了巨噬細胞的極化,管壁組織中巨噬細胞的極化亞型及比例具體如何,有待進一步探討。
[參考文獻]
[1]HOLMES M V, PEREL P, SHAH T, et al.? CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis[J].? ?JAMA, 2011,306(24):2704-2714.
[2]AN X B, JIANG G N, CHENG C, et al.? Inhibition of platelets by clopidogrel suppressed ang Ⅱ-induced vascular inflammation, oxidative stress, and remodeling[J].? ?Journal of the American Heart Association, 2018,7(21): e009600.
[3]SUETOMI T, WILLEFORD A, BRAND C S, et al.? Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca2+/calmodulin-dependent protein kinase Ⅱ δ signaling in cardiomyocytes are essential for adverse cardiac remodeling[J].? ?Circulation, 2018,138(22):2530-2544.
[4]DAS GRAAS C DE SOUZA M, CYRINO F Z, DE CARVALHO J J, et al.? Protective effects of micronized purified flavonoid fraction (MPFF) on a novel experimental model of chronic venous hypertension[J].? ?European Journal of Vascular and Endovascular Surgery: the Official Journal of the Euro-pean Society for Vascular Surgery, 2018,55(5):694-702.
[5]SCHMIDT R, BLTMANN A, FISCHEL S, et al.? Extracellular matrix metalloproteinase inducer (CD147) is a novel receptor on platelets, activates platelets, and augments nuclear factor kappaB-dependent inflammation in monocytes[J].? ?Circulation Research, 2008,102(3):302-309.
[6]JIA Y C, FU J Y, HUANG P, et al.? Characterization of endothelial cells associated with cerebral arteriovenous malformation[J].? ?Neuropsychiatric Disease and Treatment, 2020,16:1015-1022.
[7]Isth steering committee for world thrombosis day.? Thrombosis: a major contributor to the global disease burden[J].? ?Journal of Thrombosis and Haemostasis, 2014,12(10):1580-1590.
[8]No authors listed.? Venous thrombosis[J].? ?Nature Reviews Disease Primers, 2015,1:15050. doi:10.1038/nrdp.2015.50.
[9]KAHN S R, GALANAUD J P, VEDANTHAM S, et al.? Guidance for the prevention and treatment of the post-thrombotic syndrome[J].? ?Journal of Thrombosis and Thrombolysis, 2016,41(1):144-153.
[10]DE ATHAYDE SOARES R, MATIELO M F, BROCHADO NETO F C, et al.? Comparison of the recanalization rate and postthrombotic syndrome in patients with deep venous thrombosis treated with rivaroxaban or warfarin[J].? ?Surgery, 2019,166(6):1076-1083.
[11]BROHOLM R, SILLESEN H, DAMSGAARD M T, et al.? Postthrombotic syndrome and quality of life in patients with iliofemoral venous thrombosis treated with catheter-directed thrombolysis[J].? ?Journal of Vascular Surgery, 2011,54(6):18S-25S.
[12]COMEROTA A J, KEARON C, GU C S, et al.? Endovascular Thrombus removal for acute iliofemoral deep vein thrombosis[J].? ?Circulation, 2019,139(9):1162-1173.
[13]NAGLER M, CUKER A.? Profile of Instrumentation Laboratorys HemosIL AcuStar HIT-Ab (PF4-H) assay for diagnosis of heparin-induced thrombocytopenia[J].? ?Expert Review of Molecular Diagnostics, 2017,17(5):419-426.
[14]TARDY B, LECOMPTE T, MULLIER F, et al.? Detection of platelet-activating antibodies associated with heparin-induced thrombocytopenia[J].? ?Journal of Clinical Medicine, 2020,9(4): E1226.
[15]ROLLINS B J.? Chemokines[J].? ?Blood,1997,90(3):909-928.
[16]SCHEUERER B, ERNST M, DRRBAUM-LANDMANN I, et al.? The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages[J].? ?Blood, 2000,95(4):1158-1166.
[17]GLEISSNER C A, LEY K.? CXCL4 in atherosclerosis: possible roles in monocyte arrest and macrophage foam cell formation[J].? ?Thrombosis and Haemostasis, 2007,98(5):917-918.
[18]GKALIAGKOUSI E, CORRIGALL V, BECKER S, et al.? Decreased platelet nitric oxide contributes to increased circula-ting monocyte-platelet aggregates in hypertension[J].? ?Euro-pean Heart Journal, 2009,30(24):3048-3054.
[19]ZALDIVIA M T K, RIVERA J, HERING D, et al.? Renal denervation reduces monocyte activation and monocyte-platelet aggregate formation: an anti-inflammatory effect relevant for cardiovascular risk[J].? ?Hypertension (Dallas, Tex:1979), 2017,69(2):323-331.
[20]OTTERDAL K, SMITH C, IE E, et al.? Platelet-derived LIGHT induces inflammatory responses in endothelial cells and monocytes[J].? ?Blood, 2006,108(3):928-935.
[21]GLEISSNER C A.? Platelet-derived chemokines in atherogenesis: whats new[J]?[KG*3]Current[KG*3]Vascular[KG*3]Pharmacology, 2012,10(5):563-569.
[22]SCOTT R A, PANITCH A.? Decorin mimic regulates platelet-derived growth factor and interferon-γ stimulation of vascular smooth muscle cells[J].? ?Biomacromolecules, 2014,15(6):2090-2103.
[23]VAJEN T, BENEDIKTER B J, HEINZMANN A C A, et al.? Platelet extracellular vesicles induce a pro-inflammatory smooth muscle cell phenotype[J].? ?Journal of Extracellular Vesicles, 2017,6(1):1322454.
[24]ZARBOCK A, SINGBARTL K, LEY K.? Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation[J].? ?The Journal of Clinical Investigation, 2006,116(12):3211-3219.
[25]LIU Y, GAO X M, FANG L, et al.? Novel role of platelets in mediating inflammatory responses and ventricular rupture or remodeling following myocardial infarction[J].? ?Arteriosclerosis, Thrombosis, and Vascular Biology, 2011,31(4):834-841.
[26]WU L J, ZHAO F J, DAI M Y, et al.? P2y12 receptor promotes pressure overload-induced cardiac remodeling via platelet-driven inflammation in mice[J].? ?Hypertension (Dallas, Tex:1979), 2017,70(4):759-769.
[27]MA X L, LIN W Y, CHEN Y M, et al.? Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R[J].? ?Structure (London, England:1993), 2012,20(4):676-687.
[28]LENZO J C, TURNER A L, COOK A D, et al.? Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation[J].? ?Immunology and Cell Biology, 2012,90(4):429-440.
[29]ZEE R Y L, MICHAUD S E, DIEHL K A, et al.? Purinergic receptor P2Y, G-protein coupled,12 gene variants and risk of incident ischemic stroke, myocardial infarction, and venous thromboembolism[J].? ?Atherosclerosis, 2008,197(2):694-699.
[30]GURBEL P A, BLIDEN K P, TANTRY U S.? Effect of clopidogrel with and without eptifibatide on tumor necrosis factor-alpha and C-reactive protein release after elective stenting: results from the clear platelets 1b study[J].? ?Journal of the American College of Cardiology, 2006,48(11):2186-2191.
[31]ANTONINO M J, MAHLA E, BLIDEN K P, et al.? Effect of long-term clopidogrel treatment on platelet function and inflammation in patients undergoing coronary arterial stenting[J].? ?The American Journal of Cardiology, 2009,103(11):1546-1550.
[32]JIA L X, QI G M, LIU O, et al.? Inhibition of platelet activation by clopidogrel prevents hypertension-induced cardiac inflammation and fibrosis[J].? ?Cardiovascular Drugs and Therapy, 2013,27(6):521-530.
[33]LUSTER A D, GREENBERG S M, LEDER P.? The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proli-feration[J].? ?The Journal of Experimental Medicine,1995,182(1):219-231.
[34]GLEISSNER C A, SHAKED I, ERBEL C, et al.? CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages[J].? ?Circulation Research, 2010,106(1):203-211.
[35]GLEISSNER C A, SHAKED I, LITTLE K M, et al.? CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages[J].? ?Journal of Immunology (Baltimore, Md:1950), 2010,184(9):4810-4818.
(本文編輯黃建鄉(xiāng))v
青島大學(xué)學(xué)報(醫(yī)學(xué)版)2022年4期