• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance Evaluation of Baseline-dependent Averaging Based on Full-scale SKA1-LOW Simulation

    2022-05-24 08:10:34QingWenDengFengWangHuiDengYingMeiJingLiOlegSmirnovandShaoGuangGuo

    Qing-Wen Deng ,Feng Wang ,Hui Deng ,Ying Mei ,Jing Li ,Oleg Smirnov ,and Shao-Guang Guo

    1 Center for Astrophysics,School of Physics and Materials Science,Guangzhou University,Guangzhou 51006,China;fengwang@gzhu.edu.cn

    2 Great Bay Center,National Astronomical Data Center,Guangzhou,510006,China

    3 Department of Physics and Electronics,Rhodes University,PO Box 94,Makhanda,6140,South Africa

    4 Shanghai Astronomical Observatory,Chinese Academy of Sciences,Shanghai,200030,China

    Abstract The Square Kilometre Array(SKA)is the largest radio interferometer under construction in the world.Its immense amount of visibility data poses a considerable challenge to the subsequent processing by the science data processor(SDP).Baseline dependent averaging (BDA),which reduces the amount of visibility data based on the baseline distribution of the radio interferometer,has become a focus of SKA SDP development.This paper developed and implemented a full-featured BDA module based on Radio Astronomy Simulation,Calibration and Imaging Library(RASCIL).Simulated observations were then performed with RASCIL based on a full-scale SKA1-LOW configuration.The performance of the BDA was systematically investigated and evaluated based on the simulated data.The experimental results confirmed that the amount of visibility data is reduced by about 50% to 85% for different time intervals (Δtmax).In addition,differentΔtmax have a significant effect on the imaging quality.The smallerΔtmax is,the smaller the degradation of imaging quality.

    Key words: instrumentation:radio interferometers–methods:analytical mathematics–techniques:astronomical simulations

    1.Introduction

    The Square Kilometre Array (SKA) (Braun1996) is an ongoing international project to build the world’s largest radio interferometric telescope with more than one square kilometer potential collection area.With detailed design and preparation well underway,the SKA represents a giant leap forward in engineering to deliver a unique instrument.

    Theuvdistribution of a radio interferometer generally has a dense center and a sparse edge.With the rotation of the Earth,each sampling point of the radio interferometer draws an arcshaped trajectory around the phase center on theuvplane.Short baselines have denser data than long baselines for the same track length,and the difference can be even greater for a larger array.Decorrelation can be avoided on the longer baselines when more samples are averaged at the center than at the outer edges.At the same time,data compression can be carried out on shorter baselines.

    Baseline dependent averaging (BDA) was proposed by Cotton (1986,1999) to reduce the visibility data volumes,which has been used by the Murchison Widefield Array(MWA,Mitchell et al.2008)and is also used to shape the field of interest (Atemkeng et al.2018).However,averaging visibilities over time and frequency will cause image distortion,also called the smearing effect.Bandwidth smearing is manifested as a position-dependent and radial convolution effect in the image field.Time smearing is similar to bandwidth smearing but more complicated,described as a loss in amplitude (Cotton1986,1999).Bridle &Schwab (1999)conducted a mathematical analysis of these two smearing effects and found that they cannot be effectively corrected by calibration or self-calibration methods.It is recommended to design a comprehensive observation strategy to reduce the impact to an acceptable level.Therefore,the short integration time and small channel width are necessary for the long baselines utilized in a radio interferometer to suppress the smearing effect.In contrast,the resolution requirement for time and frequency is relatively low on short baselines.

    The BDA does not change the channel bandwidth and integration time for long baseline visibility data,but averaging of short baseline visibility data corresponds to an increase in integration time and channel bandwidth.Wijnholds et al.(2018)obtained the Cramer–Rao bound of averaged visibilities by estimating the number of raw visibilities and comparing it with the covariance obtained by the error transfer formula.It is proven that BDA will not cause other effects except for the approximately obtainable decorrelation loss.Salvini &Wijnholds (2017) proposed the Compress-Expand-Compress method to expand the visibilities to the required time resolution for calibration after the first compression,and then perform the second compression,and finally achieve a high compression ratio (CR) of the visibilities in time.However,few previous literature works presented the quantitative analysis of BDA on the final image quality and storage costs.

    As the SKA enters its construction phase and the SKA Regional Centers (SRCs) construction white paper has been released,it becomes imperative to research the BDA technique further and analyze its usability for the SKA1 scale.We wish to analyze and discuss this study systematically:1.How much space would be saved by using BDA technology for SKA1-LOW observations? 2.Is there a significant degradation of the final dirty image with the BDA?

    In the rest of this study,we first introduce the BDA algorithm and its implementation.We then simulate full-scale SKA1-LOW observations and investigate the BDA performance in Section3.The discussions are described in Section4.The conclusions and future work are presented in the last section.

    2.The Algorithm and Implementation of BDA

    2.1.The BDA Algorithm

    For a radio interferometer,a visibility function is obtained by correlating the signal collected by two antennas of each baseline with the same time interval δtand frequency sampling interval δf.According to the mathematical definition of BDA(Wijnholds et al.2018),we can average the raw visibilities and thus obtain the averaged visibilities.In data processing,fromPreceiving antennasP2correlations are assumed to be collected inKshort-term integrations,either over time,frequency,or both.The raw visibility data vector can be defined as

    whereC denotes the complex matrix.The averaging process can be described as

    Suppose we ignore the correlation effects and assume that the values of the visibility data averaged together are the same.In that case,the raw visibilities can be obtained approximately from the averaged visibilities by

    The selection matrix Isis related to the averaging intervals of time and frequency in the BDA.For a selected baselineD,the averaging intervals can be calculated by the rounding ratio of that baseline to the longest baselineBmaxas

    We used the rounding ratio ofBmaxtoDto determine whether BDA processing is needed.On partial long baselines,when,the data will not be averaged.While on the short baselines,,indicating that more sampling data can be averaged.In addition,tis limited by the calibration timescale determined by the environment and instrument for the interferometer.A larger averaging scale will also make the smearing effects more serious.Therefore,it is necessary to set reasonable upper limits fortandfin the implementation.

    2.2.Implementation

    We implemented a full-featured BDA module based on the Radio Astronomy Simulation,Calibration and Imaging Library(RASCIL).5https://gitlab.com/ska-telescope/external/rascilRASCIL is a pure Python software package suite for radio interferometer calibration and imaging algorithms,especially for SKA data processing.Since the public release of RASCIL,it has been widely used in data processing for some radio interferometers (e.g.,Wei et al.2021and so on).We developed a BDA module based on RASCIL,which has been released online.6https://github.com/astronomical-data-processing/ska-bda

    The flowchart of the implementation is displayed in Figure1.Figure2shows an example of the averaging process on a baseline,where the data will be reduced from the original 21×14 to 5×3,by assuming that bothtandfare 5 according to Equation(4).In the case of the shortest baselines,tandfare also equal to the upper limits of the time-frequency interval used in the BDA,defined asΔtmaxandΔfmax.In the averaging process,we first calculate the position of the raw visibilities corresponding to the flattened averaged visibilities.We then average the visibilities based on the positions and number of visibilities.

    Figure 1.The flow chart of the BDA implementation.

    Figure 2.The averaging of visibility data at a baseline when applying BDA.

    Figure 3.The uv distribution of the SKA1-LOW observed in a single channel at 100 MHz for 12 minutes.

    We used the BlockVisibility class defined in RASCIL.The visibility data were stored using a multi-dimensional array,with dimensions including baseline,polarization,time and frequency.To meet the requirements of BDA performance profiling,we implemented BDA by using three underlying packages,i.e.,pure Python,Pandas and Numba,respectively.

    In the pure Python implementation,we grouped the data for averaging based on Numpy.To optimize the performance,we tried to use Pandas,put all the parameter data into a table when preprocessing and then performed group-by operations to complete all the calculations.

    We also used Numba(Lam et al.2015) to speed up the function and further improved the processing performance.Numba is an on-the-fly compiler that translates a subset of the Python and Numpy code used in the function into efficient machine code,which can effectively improve the speed of the program.

    3.Performance Assessments For BDA

    3.1.Observational Configuration

    To more accurately evaluate the performance of the BDA,we used RASCIL to simulate single-channel and one polarization visibility data observed by the full scale SKA1-LOW telescope.During simulation,we use all SKA1-LOW 512 stations and set up 12 minutes of observations,of which 6 minutes were on each side of the zenith.The integration time is set to 0.9 s as required by the array structure.The observing frequency is 100 MHz with the channel bandwidth of 1 MHz,and the phase center in the observation points to R.A.15° and decl.-45°.We finally obtained 800 temporal sampling points on each baseline.Theuvdistribution of the simulated observation is shown in Figure3.

    3.2.Observation Simulation

    With the observational configuration described above,we simulated observations of point and extended sources separately.We selected the corresponding sources from the GaLactic and Extragalactic All-sky Murchison Widefield Array(GLEAM) survey catalog (Hurley-Walker et al.2017) with an imaging size of 32,768 × 32,768 pixels.The other is the M31 image that is observed by the Very Large Array.The image has a pixel size of 512×512 and a resolution of 1 arcsecond.We used the transform.resize() function in skimage (van der Walt et al.2014) to scale the M31 image to the same pixel scale as the image generated by the GLEAM model for this study.It should be clear here that such a magnification of the original image is only necessary for the simulation of the observation.Two dirty images for the cases are shown in Figure4.

    Figure 4.Dirty images of the raw visibilities observed from the GLEAM model and the M31 model images.

    Figure 5.The distribution of visibilities with baseline length,and the effect curves of the CR.

    Figure 6.The trend chart of the CR with the maximum number of samples in averaging Δtmax.

    3.3.Evaluation Results

    We invoke the BDA module to perform visibility compression,decompression and imaging processing.Since BDA processing at frequency series yields similar results as time series,we only simulate and analyze temporal BDA in this study.Also,the effects on visibility data and dirty images are investigated by setting different upper limits on time integration in the BDA.

    3.3.1.The Compression Ratio

    The CR is calculated by comparing the data volumes between the averaged and raw visibilities,as×100%.

    We set different upper limits(Δtmax),i.e.,1,2,4,8,12,16,32,48,64,128 and 256,to evaluate the CR of the BDA.Δtmaxalso means the maximum number of samples being averaged together on the shortest baselines.These different upper limits lead to different CRs over the baseline length range,and some of these variation curves are shown in Figure5.Since the shorter baselines have larger data volumes,we want to average the amount of data over the shorter baselines as much as possible.We can also find that the increase ofΔtmaxonly further compresses the data on the shorter baselines,while the volume proportion of these data is decreasing in the total.

    The final result of the CR with differentΔtmaxis displayed in Figure6.With the increasing value ofΔtmax,the CR reduces quickly and then becomes slow.Finally,a largerΔtmaxdoes not significantly improve the final CR.It changes very little after the CR reaches 15%,whereΔtmax=48.To avoid the more severe errors that may arise from a biggerΔtmax,it is worth considering using aΔtmaxless than 48 in subsequent studies.

    Figure 7.The distribution of the absolute value of the residual with brightness,corresponding to the dirty image results of GLEAM(left)and M31(right)as observed model images,and Δtmax =48.

    Figure 8.Distribution of the absolute value of the residual with brightness for the pure noise model results,and Δtmax =48.

    3.3.2.Imaging Quality Evaluation

    In addition to the CR,the impact on the image quality after applying BDA is a significant issue.We defined the visibility data of the simulated observations as raw visibilities,the visibility data processed by the BDA as the averaged visibilities and the final decompressed visibility data as recovered visibilities.We first decompressed the averaged visibilities by using a method similar to linear interpolation and then used the recovered visibilities for the subsequent image processing.

    To exclude the possible effects of different deconvolution methods on the imaging results,we used dirty images to analyze the imaging quality.Due to the difference between the recovered visibilities and the raw visibilities,the brightnesses in the dirty images are not the same.The deviations may be positive or negative relative to the dirty image of the raw visibilities.For convenience,the absolute value of the deviation is used here,and its distribution with the brightness is displayed in Figure7,whereΔtmaxof the recovered visibilities is equal to 48.

    The brightness distribution of the dirty images is mainly concentrated around 0,and the lower limit of deviation increases with brightness,but the upper limit does not change excessively.At the same time,the maximum value of the residuals is small.

    We used a pure noise image as a sky model for simulated observations and performed the same BDA processing.In generating this noisy model image,the same image size as the previous model was used,filled only with Gaussian noise with a mean of 0 and a standard deviation of 0.1.Figure8shows the result of the dirty image whenΔtmaxis equal to 48,where the maximum error is 0.0698.Moreover,whenΔtmaxis equal to 2,the maximum error is 0.0162.During this experiment,we tried to reduce the overall amplitude of the noisy model image by a certain ratio.The corresponding change in the dirty image was that both deviation and brightness values were reduced by the same ratio,while the contours of Figure8did not change much.

    The statistical distribution of the residuals exhibits a Gaussian-like distribution in the dirty image results when displayed in logarithmic form.The mean and standard deviation of the residuals in this form are expressed in Table1,where Case 1 refers to the results of dirty images for GLEAM,and Case 2 refers to the ones for M31.

    The standard deviations of these two cases are approximately the same and do not change significantly withΔtmax.This indicates that the change in residual is more like an overall shift,while the mean is the distance of the shift.

    Figure9plots the relationship between the means andΔtmaxfor these two cases,fitted with a logarithmic function for each.The same is that a smallΔtmaxcorresponds to a small imagingerror,while case 2 has a larger variation range of the means than case 1.This difference is probably due to the different characteristics of the amplitude intensity distribution of visibilities on theuvplane in these two cases.Case 1 is relatively uniform,while case 2 is more concentrated in the low-frequency part.

    Figure 9.The trend of the different mean values with Δtmax in two groups.

    Considering both the CR and dirty image quality,a small Δtmax(e.g.,Δtmax=12) could meet the requirements for common use.We also found that further compression over short baselines is the cause of the relative error in dirty images.A largeΔtmaximplies large deviations in the recovered visibilities on short baselines.In practice,it is difficult to invert a suitableΔtmaxfrom the imaging results,while choosing a small one is feasible and safe.

    3.4.The Processing Performance

    The processing performance of BDA is a fundamental metric.A series of tests was performed on a Centos 7 server equipped with 32 processors (Intel Xeon Gold 6226R),2.9 GHz core frequency and 1024 GB of RAM.The version of RASCIL utilized to obtain the simulation data in the testswas v.0.1.11.Using 12 minute single-channel simulation data of SKA1-LOW with a data volume of 12.5 GB,we profile the BDA module optimized by Numba,pure Python code and Pandas.The performance results are presented in Table2.The BDA module implemented using Numba has the best performance.

    Table 2 The Performance of the BDA Implementation with Different Data Volumes

    Therefore,we further tested the processing performance of the Numba optimized code with a series of simulated data of different observation times and four channels.The maximum observation time was 48 minutes and the data volume obtained was 143.75 GB.During the process of BDA,Δtmaxwas set to 6,12 and 24,andΔfmaxwas 1.The performance result is depicted in Figure10,fitted with an exponential function.

    From the results shown in Figure10,the time consumption of BDA processing is essentially linear with the amount of data to be processed.The processing speed of BDA in the case of a single process is about 13 GB per minute.Further improvements are expected under parallel computing conditions.This speed is acceptable for data pre-processing at SRCs.In addition,the processing speed has little to do with the amount ofΔtmax.

    Figure 10.The performance of the BDA implementation optimized with Numba at different data volumes.

    4.Discussions

    Experimental results indicated a significant decrease in the capacity of the visibility data with differentΔtmax,which indicates that BDA is very valuable for SKA data processing,especially for the construction of subsequent SRCs.The annual storage capacity of SRCs will be at least 5 petabytes (PB) per year in the beginning,which will increase to at least 1.7 exabytes by 2028,with at least 700 PB online (Bolton2019).BDA can compress at least 50%of the short baseline visibility data,which is valuable for reducing the cost of SRC construction.

    This study also examined the variation of the imaging quality at differentΔtmax.The experimental results provided an essential reference for SKA1-LOW to carry out Epoch of Reionization and cosmic dawn research.The MWA data were averaged (Mitchell et al.2008),but no specific details were given.

    5.Conclusions

    We implemented a new BDA module based on RASCIL,and this implementation was created by designing functions using Numba.It has not introduced excessive memory usage in the tests and completes the computation tasks faster than the other modules.The speed of a single process is around 13 GB per minute.It also performed well during the BDA processing of the simulation data.

    Through the simulation of observing the GLEAM and M31 model images with SKA1-LOW,we evaluate the performance of BDA.According to the subsequent analysis,the error due to BDA increases with the maximum upper limit of the averaging interval on short baselines.In contrast,the CR does not improve all the time,and the reduction in data volume remains at a maximum ratio of approximately 85%.The smaller upper limit is sufficient for the CR,and the imaging error is reasonable.Overall,the BDA technology will have applications in the face of massive SKA observation data processing.The BDA can effectively reduce the storage space of visibility data,as it is also valuable for the future construction and application of SRCs.

    Acknowledgments

    This work is supported by the National SKA Program of China (2020SKA0110300),the Joint Research Fund in Astronomy (U1831204,U1931141) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and the Chinese Academy of Sciences (CAS),the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (11961141001)and the National Science Foundation for Young Scholars(11903009).This work is also supported by the Astronomical Big Data Joint Research Center,co-founded by National Astronomical Observatories,Chinese Academy of Sciences and Alibaba Cloud.

    We sincerely appreciate the anonymous referee for valuable and helpful comments and suggestions.

    最近2019中文字幕mv第一页| 搡老妇女老女人老熟妇| 成人国产麻豆网| 久久精品国产鲁丝片午夜精品| 亚洲精品国产成人久久av| 91久久精品国产一区二区三区| 国产精品精品国产色婷婷| 亚洲国产精品成人综合色| 午夜老司机福利剧场| 亚洲av电影不卡..在线观看| 欧美激情国产日韩精品一区| 亚洲国产高清在线一区二区三| 久久久亚洲精品成人影院| 九草在线视频观看| 亚洲精品中文字幕在线视频 | 国产极品天堂在线| 国产综合懂色| 亚洲在线观看片| 国产免费又黄又爽又色| 日韩亚洲欧美综合| 两个人视频免费观看高清| 精品久久久久久久末码| 国产精品嫩草影院av在线观看| 日韩一区二区三区影片| 天堂影院成人在线观看| 夜夜看夜夜爽夜夜摸| 九九久久精品国产亚洲av麻豆| 日本爱情动作片www.在线观看| 麻豆乱淫一区二区| 久久久久久久久中文| 国产爱豆传媒在线观看| 国产精品爽爽va在线观看网站| 午夜爱爱视频在线播放| 国产精品人妻久久久久久| 午夜福利高清视频| 国产男人的电影天堂91| 一本久久精品| 国产精品一二三区在线看| 国产精品一二三区在线看| 激情 狠狠 欧美| 国产精品久久久久久久电影| 99热这里只有是精品50| 嘟嘟电影网在线观看| 精品久久久久久久末码| 色播亚洲综合网| 日韩av免费高清视频| 久久久精品94久久精品| 99九九线精品视频在线观看视频| 男女视频在线观看网站免费| 一级毛片我不卡| 九色成人免费人妻av| 国产一级毛片七仙女欲春2| 又爽又黄无遮挡网站| 91在线精品国自产拍蜜月| 亚洲18禁久久av| 五月伊人婷婷丁香| 国产午夜精品久久久久久一区二区三区| 99久久九九国产精品国产免费| 国产一区二区三区综合在线观看 | 欧美bdsm另类| 久久国产乱子免费精品| 日韩欧美精品v在线| 久久久a久久爽久久v久久| 久久久久久久国产电影| 九九爱精品视频在线观看| 最近最新中文字幕大全电影3| 看黄色毛片网站| 免费少妇av软件| 久久久久网色| 啦啦啦啦在线视频资源| 欧美性猛交╳xxx乱大交人| 国产精品女同一区二区软件| 亚洲熟妇中文字幕五十中出| 国产免费福利视频在线观看| 波多野结衣巨乳人妻| 亚洲aⅴ乱码一区二区在线播放| 精品久久国产蜜桃| 亚洲内射少妇av| 国产亚洲91精品色在线| 国产黄片视频在线免费观看| 在现免费观看毛片| 国产69精品久久久久777片| 亚洲av成人精品一区久久| 国产探花极品一区二区| 寂寞人妻少妇视频99o| 亚洲电影在线观看av| 国产日韩欧美在线精品| 亚洲不卡免费看| 国产成人a∨麻豆精品| 麻豆成人午夜福利视频| 久久草成人影院| 成人美女网站在线观看视频| 日本熟妇午夜| 寂寞人妻少妇视频99o| 国产av不卡久久| 午夜激情欧美在线| 天天一区二区日本电影三级| 亚洲av男天堂| 国产成人aa在线观看| 国产亚洲精品av在线| av播播在线观看一区| 日日干狠狠操夜夜爽| 亚洲国产成人一精品久久久| 在线a可以看的网站| 黑人高潮一二区| 国产老妇伦熟女老妇高清| 久久精品熟女亚洲av麻豆精品 | 日本爱情动作片www.在线观看| 中文字幕免费在线视频6| 免费无遮挡裸体视频| 亚洲av成人精品一二三区| 欧美成人一区二区免费高清观看| 欧美97在线视频| 亚洲精品aⅴ在线观看| 色综合站精品国产| 特大巨黑吊av在线直播| 波野结衣二区三区在线| xxx大片免费视频| 国产黄色视频一区二区在线观看| 伊人久久精品亚洲午夜| 草草在线视频免费看| 亚洲va在线va天堂va国产| 国产精品麻豆人妻色哟哟久久 | 美女高潮的动态| 精品少妇黑人巨大在线播放| 久久久久久久久大av| 2021少妇久久久久久久久久久| 午夜精品一区二区三区免费看| 久久精品人妻少妇| 欧美一区二区亚洲| av在线老鸭窝| 午夜日本视频在线| 天天躁日日操中文字幕| 亚洲丝袜综合中文字幕| 最新中文字幕久久久久| 国产片特级美女逼逼视频| 欧美高清成人免费视频www| av国产免费在线观看| 大片免费播放器 马上看| 天堂影院成人在线观看| 日本与韩国留学比较| 成人午夜高清在线视频| 可以在线观看毛片的网站| 神马国产精品三级电影在线观看| 午夜福利视频精品| 久久精品熟女亚洲av麻豆精品 | 乱系列少妇在线播放| 欧美高清成人免费视频www| 精品久久久久久久久亚洲| 少妇猛男粗大的猛烈进出视频 | 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| 欧美成人午夜免费资源| 亚洲精品自拍成人| 日韩欧美精品免费久久| 亚洲精品一二三| 精品久久久久久久久亚洲| 男插女下体视频免费在线播放| 男女那种视频在线观看| 91av网一区二区| 一级毛片我不卡| 精品国产露脸久久av麻豆 | 午夜日本视频在线| 身体一侧抽搐| 淫秽高清视频在线观看| 色播亚洲综合网| 国产69精品久久久久777片| 亚洲人成网站在线观看播放| 一区二区三区高清视频在线| 五月玫瑰六月丁香| 成年人午夜在线观看视频 | 日日摸夜夜添夜夜添av毛片| 成人高潮视频无遮挡免费网站| 1000部很黄的大片| 中文欧美无线码| 激情五月婷婷亚洲| 午夜精品在线福利| 久久久a久久爽久久v久久| 夫妻性生交免费视频一级片| 高清午夜精品一区二区三区| 中国国产av一级| 成人亚洲精品av一区二区| 国产精品一区二区在线观看99 | 国产色爽女视频免费观看| 国内精品宾馆在线| 亚洲国产av新网站| 国内少妇人妻偷人精品xxx网站| 亚洲经典国产精华液单| 国产永久视频网站| 亚洲国产精品专区欧美| 久久综合国产亚洲精品| 亚洲精品日本国产第一区| 日本三级黄在线观看| 免费无遮挡裸体视频| 九色成人免费人妻av| 中文字幕制服av| 国内精品美女久久久久久| 日本免费a在线| 亚洲人成网站高清观看| 神马国产精品三级电影在线观看| 2021少妇久久久久久久久久久| 国产伦一二天堂av在线观看| 一级毛片 在线播放| 国产精品一二三区在线看| 大陆偷拍与自拍| 国产成年人精品一区二区| 国产精品伦人一区二区| 在线天堂最新版资源| 国产高清国产精品国产三级 | 丰满少妇做爰视频| 熟妇人妻久久中文字幕3abv| 久久久国产一区二区| 女人被狂操c到高潮| 91精品一卡2卡3卡4卡| 高清在线视频一区二区三区| 亚洲精品久久午夜乱码| 在线免费观看不下载黄p国产| 亚洲不卡免费看| 欧美激情国产日韩精品一区| 日本熟妇午夜| 黄色一级大片看看| 免费大片黄手机在线观看| 亚洲熟妇中文字幕五十中出| 国产成人91sexporn| 久久97久久精品| 精品一区二区三区视频在线| 中文字幕久久专区| 国产伦理片在线播放av一区| 精品久久久久久电影网| 91久久精品国产一区二区三区| 99热6这里只有精品| 久久久久久久久中文| 欧美精品一区二区大全| 日韩欧美三级三区| 性色avwww在线观看| 亚洲国产精品国产精品| 精品国产一区二区三区久久久樱花 | 精品少妇黑人巨大在线播放| 91av网一区二区| 久久99热这里只频精品6学生| 久久久久久久大尺度免费视频| 色网站视频免费| 精品一区二区免费观看| 国产成人精品婷婷| 18禁在线播放成人免费| 国产精品久久久久久精品电影小说 | 哪个播放器可以免费观看大片| 日本av手机在线免费观看| 97精品久久久久久久久久精品| h日本视频在线播放| 国国产精品蜜臀av免费| 麻豆av噜噜一区二区三区| 国产精品不卡视频一区二区| 亚洲精品久久久久久婷婷小说| av一本久久久久| 嘟嘟电影网在线观看| 三级男女做爰猛烈吃奶摸视频| 国产午夜精品久久久久久一区二区三区| 亚洲最大成人手机在线| 色网站视频免费| 视频中文字幕在线观看| 久久久欧美国产精品| 国产精品一及| 国产在线一区二区三区精| 91aial.com中文字幕在线观看| 亚洲婷婷狠狠爱综合网| 少妇人妻精品综合一区二区| 九九久久精品国产亚洲av麻豆| 97超视频在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 日本免费a在线| 啦啦啦啦在线视频资源| 成年女人在线观看亚洲视频 | 亚洲在线自拍视频| 国产成人精品久久久久久| 久久人人爽人人爽人人片va| 精品久久久久久久久久久久久| 在线观看av片永久免费下载| 99久久精品国产国产毛片| 久久久久免费精品人妻一区二区| 久久久精品欧美日韩精品| 国产精品麻豆人妻色哟哟久久 | 国产淫语在线视频| 国产成人91sexporn| 欧美日韩亚洲高清精品| 男女边摸边吃奶| 毛片女人毛片| 成年版毛片免费区| 免费观看性生交大片5| 久久久精品免费免费高清| 日韩欧美三级三区| 国产高清三级在线| 久久久久久久久大av| 午夜精品国产一区二区电影 | 一级毛片 在线播放| 欧美日韩亚洲高清精品| 日本午夜av视频| 人妻系列 视频| 我的老师免费观看完整版| 成人欧美大片| 草草在线视频免费看| 最近中文字幕高清免费大全6| 秋霞伦理黄片| 亚洲av成人av| 丝袜喷水一区| 国产精品av视频在线免费观看| 嘟嘟电影网在线观看| 汤姆久久久久久久影院中文字幕 | 秋霞伦理黄片| 五月玫瑰六月丁香| 国产成人精品一,二区| 色综合亚洲欧美另类图片| 成人亚洲精品av一区二区| 国产亚洲5aaaaa淫片| av女优亚洲男人天堂| 久久久久久久久久久免费av| 天天躁日日操中文字幕| 亚洲经典国产精华液单| 午夜福利在线观看吧| 国产精品一区二区三区四区免费观看| 日本av手机在线免费观看| 在线播放无遮挡| 97在线视频观看| 日本一本二区三区精品| 国产成人91sexporn| 欧美高清性xxxxhd video| 亚洲精品成人久久久久久| 亚洲一区高清亚洲精品| 日本色播在线视频| 女人被狂操c到高潮| 久久99精品国语久久久| 国产乱来视频区| 久久久久久九九精品二区国产| 久久久色成人| 成人毛片a级毛片在线播放| 大片免费播放器 马上看| 少妇高潮的动态图| 日韩av在线大香蕉| av福利片在线观看| 亚洲精品影视一区二区三区av| 伦理电影大哥的女人| 搡老妇女老女人老熟妇| 黄色配什么色好看| 69av精品久久久久久| 麻豆成人av视频| 久久久精品94久久精品| 欧美日本视频| 偷拍熟女少妇极品色| 久久亚洲国产成人精品v| 久久久久久久午夜电影| 91精品一卡2卡3卡4卡| 夫妻午夜视频| 午夜视频国产福利| 淫秽高清视频在线观看| 91狼人影院| 激情 狠狠 欧美| 成人午夜精彩视频在线观看| 最近视频中文字幕2019在线8| 免费看不卡的av| 国产男人的电影天堂91| 国产一区有黄有色的免费视频 | 又爽又黄无遮挡网站| 黄片无遮挡物在线观看| 亚洲av不卡在线观看| eeuss影院久久| 亚洲一区高清亚洲精品| 国产一区二区在线观看日韩| 丝瓜视频免费看黄片| 草草在线视频免费看| 亚洲图色成人| 97超视频在线观看视频| 久久精品熟女亚洲av麻豆精品 | 国产色爽女视频免费观看| 丰满人妻一区二区三区视频av| 老女人水多毛片| 97超视频在线观看视频| 成年女人在线观看亚洲视频 | 午夜激情欧美在线| 亚洲欧美精品专区久久| 亚洲国产成人一精品久久久| 精品一区二区免费观看| 国产日韩欧美在线精品| 有码 亚洲区| 国产激情偷乱视频一区二区| 亚洲精品国产成人久久av| 亚洲精华国产精华液的使用体验| 欧美一区二区亚洲| 国产毛片a区久久久久| 91久久精品国产一区二区成人| 久久久久久久久久久免费av| 18禁裸乳无遮挡免费网站照片| 亚洲电影在线观看av| 在现免费观看毛片| 成人毛片a级毛片在线播放| 亚洲欧美一区二区三区国产| 亚洲精品亚洲一区二区| 色视频www国产| 91av网一区二区| 欧美极品一区二区三区四区| 国产成人免费观看mmmm| 中文字幕久久专区| 激情 狠狠 欧美| 高清视频免费观看一区二区 | 寂寞人妻少妇视频99o| av女优亚洲男人天堂| 久久久亚洲精品成人影院| 国产麻豆成人av免费视频| 男人舔奶头视频| 日本黄色片子视频| 亚洲欧美成人综合另类久久久| 欧美成人午夜免费资源| 国产一区亚洲一区在线观看| 日韩一区二区视频免费看| 久久精品综合一区二区三区| 欧美激情国产日韩精品一区| 国产精品久久久久久av不卡| 日本-黄色视频高清免费观看| 一本一本综合久久| 91午夜精品亚洲一区二区三区| 99热全是精品| 久久精品国产自在天天线| 亚洲人成网站在线播| 久久这里只有精品中国| 久久久a久久爽久久v久久| 久久这里只有精品中国| 久热久热在线精品观看| 三级男女做爰猛烈吃奶摸视频| 亚洲成人av在线免费| 最近最新中文字幕免费大全7| 国产精品一二三区在线看| 国产av码专区亚洲av| 一级二级三级毛片免费看| 大又大粗又爽又黄少妇毛片口| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产三级国产专区5o| 欧美三级亚洲精品| 天天躁日日操中文字幕| 97超碰精品成人国产| 久久久久久久久久黄片| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 18禁在线播放成人免费| 亚洲成色77777| 一区二区三区乱码不卡18| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 婷婷色综合大香蕉| 极品少妇高潮喷水抽搐| 天堂√8在线中文| 91精品一卡2卡3卡4卡| 亚洲欧美日韩卡通动漫| 成年女人看的毛片在线观看| 久久精品国产亚洲网站| 亚洲av成人精品一二三区| 国产色爽女视频免费观看| 久久久久久国产a免费观看| 亚洲,欧美,日韩| 大片免费播放器 马上看| 精品一区二区三区人妻视频| 最近的中文字幕免费完整| 又大又黄又爽视频免费| 日本午夜av视频| 久久人人爽人人片av| 大话2 男鬼变身卡| 丝袜美腿在线中文| 亚洲,欧美,日韩| 狂野欧美激情性xxxx在线观看| 十八禁国产超污无遮挡网站| 日本色播在线视频| 嘟嘟电影网在线观看| 深夜a级毛片| 成人二区视频| av免费观看日本| 国产在视频线在精品| 99热网站在线观看| 一级毛片aaaaaa免费看小| 亚洲av一区综合| 人妻一区二区av| 亚洲婷婷狠狠爱综合网| 在线观看av片永久免费下载| 午夜福利成人在线免费观看| 亚洲av福利一区| 亚洲欧美成人精品一区二区| 亚洲婷婷狠狠爱综合网| 日韩人妻高清精品专区| 嘟嘟电影网在线观看| 最近最新中文字幕免费大全7| 欧美变态另类bdsm刘玥| 一夜夜www| 亚洲国产高清在线一区二区三| 精品一区二区三区视频在线| 91av网一区二区| 观看免费一级毛片| 日本猛色少妇xxxxx猛交久久| 国产伦理片在线播放av一区| 精品久久久精品久久久| 汤姆久久久久久久影院中文字幕 | 精品国产一区二区三区久久久樱花 | 亚洲精品视频女| 久热久热在线精品观看| 亚洲国产欧美在线一区| 91精品一卡2卡3卡4卡| 嫩草影院入口| 三级国产精品欧美在线观看| 久久草成人影院| 亚洲av免费在线观看| 国产午夜精品一二区理论片| 六月丁香七月| 成人毛片a级毛片在线播放| 晚上一个人看的免费电影| 亚洲一级一片aⅴ在线观看| 国产伦精品一区二区三区四那| 久久97久久精品| 国产精品一区二区性色av| 免费看日本二区| 国产精品人妻久久久影院| 日韩在线高清观看一区二区三区| 欧美日韩国产mv在线观看视频 | 三级国产精品欧美在线观看| 嘟嘟电影网在线观看| 国产一区亚洲一区在线观看| 精品少妇黑人巨大在线播放| 一本一本综合久久| 日本午夜av视频| 精品一区二区三卡| 国精品久久久久久国模美| 1000部很黄的大片| 欧美极品一区二区三区四区| 国产精品三级大全| 女人久久www免费人成看片| 成人性生交大片免费视频hd| 少妇人妻一区二区三区视频| 丝瓜视频免费看黄片| 久久精品综合一区二区三区| 国产精品一区二区在线观看99 | 成人毛片60女人毛片免费| 精品人妻熟女av久视频| 婷婷六月久久综合丁香| 成人欧美大片| 亚洲精品影视一区二区三区av| 日韩av在线免费看完整版不卡| 免费黄网站久久成人精品| 亚洲欧洲日产国产| .国产精品久久| 国产乱来视频区| 国产精品国产三级国产av玫瑰| 97超碰精品成人国产| 能在线免费看毛片的网站| 日产精品乱码卡一卡2卡三| 在线观看人妻少妇| 男女国产视频网站| 熟女电影av网| 免费看日本二区| 国产国拍精品亚洲av在线观看| 黄色一级大片看看| 97精品久久久久久久久久精品| 亚洲伊人久久精品综合| av在线亚洲专区| 一本一本综合久久| 在线观看一区二区三区| 亚洲三级黄色毛片| 在线观看免费高清a一片| 22中文网久久字幕| 国产乱人偷精品视频| 国产精品爽爽va在线观看网站| 人体艺术视频欧美日本| 国产单亲对白刺激| 日本猛色少妇xxxxx猛交久久| 一个人看的www免费观看视频| 99热全是精品| 黑人高潮一二区| www.av在线官网国产| 最近的中文字幕免费完整| 一级毛片 在线播放| 精品少妇黑人巨大在线播放| 在线免费十八禁| 国内揄拍国产精品人妻在线| 97超碰精品成人国产| 国产亚洲av嫩草精品影院| 国产 一区精品| 亚洲三级黄色毛片| 美女内射精品一级片tv| 中文欧美无线码| 成年女人在线观看亚洲视频 | 欧美丝袜亚洲另类| 久久99蜜桃精品久久| 亚洲av在线观看美女高潮| 噜噜噜噜噜久久久久久91| 天天一区二区日本电影三级| 一区二区三区乱码不卡18| 久久热精品热| 亚洲国产精品国产精品| 日韩成人av中文字幕在线观看| 我的老师免费观看完整版| 日本三级黄在线观看| 免费看美女性在线毛片视频| 亚洲欧美一区二区三区黑人 | 亚洲精品国产成人久久av| 亚洲电影在线观看av| 午夜精品国产一区二区电影 | 亚洲国产最新在线播放| 亚洲国产精品sss在线观看| 国产伦精品一区二区三区四那| 精品久久久精品久久久| av国产免费在线观看| 国产又色又爽无遮挡免| 国语对白做爰xxxⅹ性视频网站| av免费观看日本| 人人妻人人看人人澡| 国产精品熟女久久久久浪| 久久精品久久久久久噜噜老黄| 91精品一卡2卡3卡4卡| 男人爽女人下面视频在线观看| 99热网站在线观看| 久久久久国产网址|