• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-periodic Oscillation Analysis for the BL Lacertae Object 1823+568

    2022-05-24 06:34:20HuaiZhenLiQuanGuiGaoLongHuaQinTingFengYiandQiRuiChen

    Huai-Zhen Li ,Quan-Gui Gao ,Long-Hua Qin ,Ting-Feng Yi ,and Qi-Rui Chen

    1 Physics Department,Yuxi Normal University,Yuxi 653100,China;qggao@yxnu.edu.cn

    2 Department of Physics,Yunnan Normal University,Kunming 650092,China

    Abstract We studied the optical band periodic variability of 1823+568 using the Jurkevich method,the Lomb–Scargle periodogram and the REDFIT38 software,and found evidence of quasi-periodic oscillation.An unprecedented variability with perioddays was identified by three different analysis methods.This quasi-periodic variability most likely results from nonballistic helical jet motion driven by the orbital motion in a binary black hole system.Considering the light-travel time effect,the real physical period is Pd=67.1 yr.Moreover,we estimated that the primary black hole mass is M ?1.92×109 M⊙to 3.43×109 M⊙.

    Key words:blazars (1823+568)– relativistic jets– non-thermal sources

    1.Introduction

    Blazars are a special subclass of active galactic nuclei(AGNs) with rapid and violent variability in almost all bands.Blazars are usually categorized into two subclasses:BL Lacertae objects (BL Lacs) and flat spectrum radio quasars(FSRQs).In general,BL Lacs show weak or even no emission lines with equivalent width EW <5 ?,but FSRQs have strong ones(B?ttcher 2019).Variability is a common characteristic of blazars,and variability analysis is the most powerful tool to probe the radiation mechanism and constrain the parameters of the physical model (Sillanp?? et al.1988;Lainela et al.1999;Chandra et al.2014).The detection of periodicity in blazars would help us to locate relevant physical parameters,and would strongly limit physical models of blazars (Lainela et al.1999).The variability timescales of blazars cover a wide range from minutes to years (Fan 2005;Otero-Santos et al.2020).Based on the variability timescales,the variability can be roughly divided into three classes:intra-day variability (IDV),short timescale variability(STV)and long timescale variability(LTV).The timescales of IDV,STV and LTV refer to changes of the order of minutes or hours,days to weeks,and over months to years,respectively(Liu et al.1997;Fan 2005;Gupta et al.2008;Gaur et al.2012;Li et al.2015,2016;Otero-Santos et al.2020).The variabilities of many objects have been studied extensively,such as Mrk 421(Chen et al.2014;Li et al.2016),S5 0716+714 (Raiteri et al.2003;Zhang et al.2008;Poon et al.2009;Fan et al.2011;Dai et al.2015;Liu et al.2021),OJ 287(Sillanp?? et al.1988;Fan et al.2010),3C 454.3(Li et al.2006,2015;Qian et al.2007;Fan et al.2019,2021),3C 66A (Fan et al.2018),3C 273 (Liu et al.2021),3C 279(Xie et al.2002;Li et al.2009),PKS 1510-089 (Xie et al.2002,2008),etc.

    The emission variability of blazars can be explained within scenarios such as a binary black hole system(BBHS,Sillanp?? et al.1988;Lehto &Valtonen 1996;Romero et al.2000;Xie et al.2005,2008;Valtonen et al.2008;Caproni et al.2013;Graham et al.2015),accretion flow instabilities (Honma et al.1992;Kawaguchi et al.1998;Fan et al.2001;Liu et al.2006;Kharb et al.2008;Fan et al.2010;Karouzos et al.2012;McKinney et al.2012;Piner &Edwards 2014),a helical jet structure (Villata &Raiteri 1999;Ostorero et al.2004;Mohan&Mangalam 2015),rotation (Vlahakis &Tsinganos 1998;Hardee &Rosen 1999),precession (Romero et al.2000;Caproni et al.2013),etc.In the framework of a BBHS,the periodic change of radiation in a blazar is due to the Keplerian orbital motion of the BBHS,which would lead to periodic accretion perturbations,or jet nutation.The instabilities in an accretion disk may be related to disk perturbations,which could be caused by penetration of the accretion disk,as well as tidal action in the BBHS.The effect of instabilities in a slim accretion disk atmosphere around a supermassive black hole can cause the optical variability of AGNs (Kawaguchi et al.1998).The mechanism for variability caused by the jet’s helical structure,rotation or precession is referred to as geometric effects which are related to changes in the viewing angle or the observation of different emitting regions at different times.The variation produced by the geometric effects in different bands is usually correlated and exhibits quasi-periodicity.

    1823+568 was classified as a BL Lac with a redshift z=0.664±0.001 (Lawrence et al.1986;Roland et al.2013).Observation found that the host galaxy of 1823+568 is elliptical (Falomo et al.1997),and the jet morphology on kpc scales is complex(O’Dea et al.1988).Appreciable polarization structure (Gabuzda et al.1989),superluminal motions,and high and variable polarization (Perley 1982;Aller et al.1985)in 1823+568 were identified(Gabuzda et al.1989).Very Large Array(VLA)observations found there are wiggles of the jets in 1823+568 which can be caused by helical instabilities in the magnetic field structure,as well as by the precession of the central engine with ballistic motion of the ejecta (O’Dea et al.1988).The variability of 1823+568 was first investigated by Schramm et al.(1994) who identified some rapid variabilities>0.5 mag occurring within a few days.Based on the multiepoch Very Long Baseline Array (VLBA) MOJAVE 15 GHz data,a quasi-periodic flux variation with timescale about 7 yr,and a relation between the peak flux density and the position angle of the inner-jet were reported by Liu et al.(2012) who tried to explain the periodicity and correlation using ballistic jets with a precession nozzle model (B+P model).They found the B+P model can adequately interpret the correlation between the peak flux density and the position angle,but the origin of the periodic precession is not clear.On the other hand,the periodic variability of blazars may be related to the nonballistic helical motion driven by the orbital motion in a BBHS,jet precession or an internally rotating jet flow(Rieger 2004).For 1823+568,a BBHS existing in the center of the source was reported by Roland et al.(2013),and nonballistic motion was found by the MOJAVE program(Lister et al.2009).Therefore,the variability behavior and the driving mechanisms of variability need to be investigated.

    In this paper,based on optical band observation data of the Katzman Automatic Imaging Telescope (KAIT),we will analyze the variability timescale of 1823+568,and investigate the emission mechanisms.In the following,the observation data are described in Section 2.The periodicity analysis is shown in Section 3.Discussion and conclusion are given in Section 4.

    2.Observation Data and Variability Analysis of the Light Curves

    Observations of 1823+568 at optical band are performed with the 0.76 m KAIT at Lick Observatory which is a robotic telescope.Since August 2009,KAIT has been used to monitor γ-ray bright blazars (Cohen et al.2014).Now,a sample containing 163 blazars has been monitored.Unfiltered optical observations of KAIT were carried out,and the observed unfiltered photometry was transformed roughly to R-band (Li et al.2003;Wang &Jiang 2021).The strict transformation procedure considers the instrument magnitudes and the color terms of both the standard star and the target (Li et al.2003;Wang &Jiang 2021).However,the color term of the target is not considered in the pipeline of the transformation (Wang &Jiang 2021).The data“mag2”and“mag2err1”of KAIT are the best photometry obtained by Weidong Li3http://herculesii.astro.berkeley.edu/kait/agn/READMEand have considered the Galactic extinction of A=0.26 mag (Li et al.2003).

    In this work,the data “mag2” and “mag2err1” of KAIT are used,and the light curve is depicted in Figure 1,spanning 8.2 yr from July 2010 to September 2018 with 382 data points.During the monitoring,the variation of magnitude is ΔR=2.87 mag between 14.98 and 17.85 mag.Moreover,the variability index can indicate the activity level of the object,and it is defined by the following equation (Fan et al.2002)

    Figure 1.The optical band light curves of 1823+568.

    where Fmaxand Fminare the maximal and minimal flux,respectively.The flux density F can be converted from magnitude m by the following formula,

    where F0is the zero-point.Then,the variability index,as a function of magnitude m,is given by

    where mmaxand mminare the maximal and minimal magnitudes,respectively.During the monitoring,the maximum and minimum magnitudes aremag andmag,respectively.Therefore,the variability index V=0.87 which suggests that the object 1823+568 is an active object at optical band.

    3.Periodicity Analysis

    In order to reveal the properties of the emission variability of 1823+568,we will analyze the variability period of optical band light curves using three specialized techniques:the Jurkevich method(Jurkevich 1971),the Lomb–Scargle periodogram (LSP,Lomb 1976;Scargle 1982) and the REDFIT38 software (Schulz &Mudelsee 2002),respectively.These methods have different approaches,and can apply to uneven data samples to explore the variability property,which ensures the reliability of the results.

    The Jurkevich method is based on the expected mean square deviation,and tests a series of trial periods using the phase folding technique (Jurkevich 1971).This method can effectively analyze unequally spaced and non-sinusoidally modulated astronomy observation data.Based on the phases,all data are divided into a certain number of groups.Then,the varianceof the lth group and the sumsfor all groups are obtained by the following formulas,

    where xiand mlare an individual observation and the number of observations in the lth group,respectively.If the data sample contains a periodic signal,the sumswould reach their minimum value when a trial period is equal to an actual one.In order to test the reliability of the period,a quantitative criterion,f-test,was provided by Kidger et al.(1992).The parameter f can be estimated by the following formula,

    The parameter f ≥0.5 indicates that the period in the sample is strong,while f <0.25 implies that the obtained period is weak or even spurious.

    We employed the Jurkevich method to analyze the light curve of 1823+568 at optical band,and the results are displayed in Figure 2.Figure 2 shows that there is an obvious minimum ofat the timescaledays with f=0.62 (>0.5) which indicates it is a strong period.The uncertainties of the results are estimated with the half width at half maximum(HWHM)of the minimum(Jurkevich 1971).In addition,there are three other significant minimums at the timescalesdays with f=0.75,0.70 and 1.52,respectively.This suggests that P2,P3and P4are also strong periods.Moreover,one can find that there is a simple multiple relationship among the periods P1,P2,P3and P4,namely,P2≈2P1,P3≈3P1and P4≈4P1.This implies that the periods P2,P3and P4are most likely astronomical multiple frequencies of the period P1.This suggests that there exists a quasi-periodic signal in the optical band light curve of 1823+568 with the timescaledays.

    In order to test the reliability of the results of the Jurkevich method,we also analyzed the light curve of 1823+568 utilizing the LSP method.The LSP method is a widely used traditional technique in timescale analysis.The algorithm of the LSP method was described by Lomb (1976) and Scargle(1982).For a time series x(tk) (k=0,1,2,3...,N0),the periodogram is given by the following equation,

    Figure 2.The Jurkevich method results of 1823+568.

    Figure 3.The Lomb–Scargle periodogram results of 1823+568.

    In order to test the significance level of the results,we assessed the confidence level by simulating the multiwavelength variability as red noise with a simple power-law power spectral density model(PSD ∝f?β),and the confidence level is calculated by a Monte Carlo simulation (Yang et al.2020;Wang &Jiang 2021).Based on the algorithm recommended by Timmer &Koenig (1995),we simulated 10,000 artificial light curves with the slopes of power spectral density β=1.18 which was obtained by fitting the spectrum of the Lomb–Scargle periodogram using the linear least squares method (Yang et al.2020) (see Figure 4).Then,we resampled the artificial light curves considering the uneven sampling effect of the observation sample (Li et al.2015;Wang &Jiang 2021).Finally,we calculated the red noise confidence level by analyzing the 10,000 resampled light curves using the Lomb–Scargle periodogram.The 95%,99% and 99.7% confidence level curves are depicted in Figure 3 which reveals a higher significance level than 99.7% at the timescaledays.This suggests that the variability with the perioddays is significant.

    Figure 4.The fit results of PSD.

    To verify the significance level and the reliability of the Jurkevich and LSP results,we also calculated the red noise significance level using the REDFIT38 software.The REDFIT38 software was developed based on the first-order autoregressive(AR1)model,which is included in the generally used and more robust ARIMA(p,d,q)test with AR(p),MA(q)and d=0,1,...It is often performed to estimate the red noise spectrum from the data time series by fitting a first order autoregressive process.Moreover,the REDFIT38 software can calculate the significance of the result,and provide the FAP levels of the result with maximum 2.5σ (99%).The results of the REDFIT38 software are plotted in Figure 5 suggesting that there are three peaks at the timescale 166.1 (f=0.00602),284.7 (f=0.003512) and 1494.9 (f=0.0006689) days with a higher confidence level than 99%,respectively.The timescale 284.7 days is in good agreement with the results obtained by the Jurkevich and LSP methods,which suggests that the timescale is most likely the real variability period in the optical light curve of 1823+568.The timescale 1494.9 days may be a harmonic timescale of the 284.7 day one since it is about 5 times 284.7 days.The timescale of 166.1 days must be ruled out,and more observations are needed to confirm it,because it is only obtained by the REDFIT38 software (see Table 1).A summary of the results of the periodicity analysis is given in Table 1 which implies that the period of about 283 days is uniformly obtained by three different analysis methods.

    Table 1 Summary of the Results of the Periodicity Analysis

    4.Discussion and Conclusions

    Based on the optical band observation data of KAIT,we have studied the optical band variability period of 1823+568 using the Jurkevich method,LSP method and REDFIT38 software.An unprecedented variability period ofdays was confirmed by three different analysis methods.The periodic variability may be caused by some physical timescales such as the approximate length of large outbursts,a sum of intervals of smaller outbursts close in time or the observation gaps (Kartaltepe &Balonek 2007;Li et al.2015).From Figure 1,one can find that there is no obvious activity lasting for about 283 days.In addition,there are no regular observation intervals with a timescale of about 283 days in the light curve.This implies that theday periodic variability is not caused by those physical timescales.Thus,it can result from the nature of the intrinsic variability.Moreover,it is of interest to note that the variability period of T=7.0 yr obtained by Liu et al.(2012) is nine times our period P=283 days (T=9P).Therefore,a variability period with the timescale ofdays indeed exists in the R-band light curve of 1823+568.

    Figure 5.The results of 1823+568 calculated by the REDFIT38 software.

    For 1823+568,it was classified as a BL Lac object whose emission is usually correlated with the non-thermal emission of the relativistic jet.Moreover,the wiggles of the jet were observed by VLA (O’Dea et al.1988).Therefore,the optical variability of 1823+568 with timescaledays can be explained well under the framework of a geometrical model which includes jet precession,rotation,helical structure,etc.(Rieger 2004;Li et al.2009,2015,2016,2018;Ackermann et al.2015;Mohan et al.2016a,2016b).In the scenario of a geometrical model,the quasi-periodic variability is caused by a quasi-periodic change in the Doppler boosting factor δ(t).The change in δ(t) is related to the variability of viewing angle θ(t)which is the angle between the jet and the direction of the observer.The relation between δ(t),θ(t) and the velocity of radiation particles v is given by the following formula,

    For periodic variability caused by the nonballistic helical motion of the jet,the real physical period Pdis much larger than the observed period P due to the light-travel time effect(Rieger 2004;Li et al.2009,2015).The relation between Pdand P is Pd?Γ2P/(1+z),where Γ and z are the Lorentz factor and the redshift,respectively.For 1823+568,the observed period,the Lorentz factor Γ and the redshift z are P=283 days,Γ=12.0 (Jorstad et al.2005) and z=0.664 (Lawrence et al.1986),respectively.So,the physical period is Pd?67.1 yr.For a BBHS with a given value of the mass ratio M/m between the primary M and secondary black holes m,the mass of the primary black hole is(Begelman et al.1980;Ostorero et al.2004;Li et al.2015).Roland et al.(2013) suggested that the mass ratio M/m is 4 to 10.5.Then,the mass of the primary black hole is M ?1.92×109M⊙to M ?3.43×109M⊙which is consistent with the black hole masses MBH?1.26×109M⊙a(bǔ)nd 1.05×109M⊙reported by Wu et al.(2009) and Roland et al.(2013),respectively.Moreover,Liodakis et al.(2018) proposed that the Lorentz factor of 1823+568 is 8.7 to 54.13.The corresponding mass of the black hole is 6.87×108M⊙to 2.38×1011M⊙when the mass ratio M/m=4.However,the mass of the central black hole 2.38×1011M⊙is too large.The black hole mass based on Lorentz factor Γ=12.0 is in good agreement with the result reported by other authors(Wu et al.2009;Roland et al.2013).In addition,Lorentz factor Γ=12.0 is in the range of 8.7–54.13 reported by Liodakis et al.(2018).Therefore,it is reasonable to adopt Γ=12.0 to estimate the black hole mass.

    Acknowledgments

    We gratefully thank the anonymous referee for the very helpful comments which helped us to greatly improve this paper.This research has made use of data provided by the optical observations of KAIT.This work is supported by the National Natural Science Foundation of China (NSFC,Grant Nos.12063005,12063006,11863007 and 12063007),the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province (IRTSTYN)and Yunnan Local Colleges Applied Basic Research Projects(2019FH001-12,2019FH001-76,202001BA070001-031).

    ORCID iDs

    嘟嘟电影网在线观看| 尾随美女入室| 欧美人与善性xxx| 国产探花极品一区二区| 欧美+日韩+精品| 日韩,欧美,国产一区二区三区| 一个人看视频在线观看www免费| 国产精品一区二区三区四区免费观看| 日韩,欧美,国产一区二区三区| 白带黄色成豆腐渣| 在线a可以看的网站| 91久久精品电影网| 国产精品福利在线免费观看| 亚洲成人中文字幕在线播放| 成人国产麻豆网| 黑人高潮一二区| 日韩av免费高清视频| 欧美性感艳星| 亚洲va在线va天堂va国产| 久久久久久久国产电影| 色综合色国产| 日韩不卡一区二区三区视频在线| 天美传媒精品一区二区| 国产精品久久久久久久久免| 成人高潮视频无遮挡免费网站| 国产av在哪里看| 亚洲国产欧美人成| 亚洲欧美日韩卡通动漫| 精品人妻熟女av久视频| 看黄色毛片网站| 国产免费一级a男人的天堂| 色综合亚洲欧美另类图片| or卡值多少钱| 免费观看无遮挡的男女| 亚洲一区高清亚洲精品| 日韩欧美国产在线观看| 免费少妇av软件| 免费av观看视频| 国产精品1区2区在线观看.| av在线观看视频网站免费| 久久精品国产自在天天线| 日本免费a在线| 少妇熟女欧美另类| 国产午夜精品论理片| 纵有疾风起免费观看全集完整版 | 午夜亚洲福利在线播放| 亚洲国产色片| 亚洲久久久久久中文字幕| 91狼人影院| av在线观看视频网站免费| 亚洲av成人av| 亚洲欧美日韩卡通动漫| 国产v大片淫在线免费观看| 91精品一卡2卡3卡4卡| 在线观看av片永久免费下载| 噜噜噜噜噜久久久久久91| 熟女人妻精品中文字幕| 少妇的逼水好多| 边亲边吃奶的免费视频| 丰满乱子伦码专区| 一级黄片播放器| 又黄又爽又刺激的免费视频.| 精品酒店卫生间| 看非洲黑人一级黄片| 校园人妻丝袜中文字幕| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看| 99热网站在线观看| 日本爱情动作片www.在线观看| 韩国av在线不卡| 成人欧美大片| 亚洲av中文av极速乱| 有码 亚洲区| 男人和女人高潮做爰伦理| 中文字幕人妻熟人妻熟丝袜美| 亚洲色图av天堂| 男人舔女人下体高潮全视频| 国精品久久久久久国模美| 国产一级毛片在线| 人人妻人人澡人人爽人人夜夜 | 人妻系列 视频| 欧美变态另类bdsm刘玥| 深夜a级毛片| 日本猛色少妇xxxxx猛交久久| 午夜福利视频精品| 国产色爽女视频免费观看| 91狼人影院| 日韩欧美精品v在线| 国产精品女同一区二区软件| 亚洲欧美清纯卡通| 久久精品国产亚洲av天美| 不卡视频在线观看欧美| 婷婷色综合大香蕉| 成人无遮挡网站| 精品亚洲乱码少妇综合久久| 永久免费av网站大全| 国产av不卡久久| 国产老妇伦熟女老妇高清| 日本三级黄在线观看| 免费看光身美女| 国产 一区精品| 嫩草影院新地址| 一级av片app| 搞女人的毛片| 在线观看一区二区三区| 国产av国产精品国产| 成人亚洲精品av一区二区| 人妻制服诱惑在线中文字幕| 蜜臀久久99精品久久宅男| 日韩av在线大香蕉| 啦啦啦啦在线视频资源| 精品久久久久久久人妻蜜臀av| 精品国产露脸久久av麻豆 | av在线播放精品| 日本黄色片子视频| 久久久久国产网址| 免费观看a级毛片全部| 亚洲国产欧美人成| 18禁在线无遮挡免费观看视频| 亚洲精品456在线播放app| 伊人久久精品亚洲午夜| 国产成人免费观看mmmm| 免费播放大片免费观看视频在线观看| 一个人免费在线观看电影| 婷婷色av中文字幕| 大陆偷拍与自拍| 我的女老师完整版在线观看| 国产成人aa在线观看| 亚洲精华国产精华液的使用体验| 亚洲怡红院男人天堂| 婷婷色综合www| 大又大粗又爽又黄少妇毛片口| 午夜日本视频在线| 卡戴珊不雅视频在线播放| 亚洲精品第二区| 日韩在线高清观看一区二区三区| 国内揄拍国产精品人妻在线| 老司机影院成人| 少妇的逼水好多| 国产一区二区三区av在线| 免费观看性生交大片5| 欧美成人午夜免费资源| 亚洲精品aⅴ在线观看| 亚洲精品色激情综合| 69人妻影院| 国产精品美女特级片免费视频播放器| 大又大粗又爽又黄少妇毛片口| 久久久亚洲精品成人影院| 国产男人的电影天堂91| 一二三四中文在线观看免费高清| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av天美| 亚洲在久久综合| 久久久亚洲精品成人影院| 99久久中文字幕三级久久日本| 成人午夜高清在线视频| 国产片特级美女逼逼视频| 久久精品国产自在天天线| 精品久久久久久久久亚洲| 精品久久国产蜜桃| 天天躁日日操中文字幕| 免费黄色在线免费观看| 少妇的逼水好多| 亚洲欧美一区二区三区黑人 | 亚洲真实伦在线观看| 国产黄a三级三级三级人| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 三级国产精品欧美在线观看| 一级毛片 在线播放| 久久国内精品自在自线图片| 午夜精品一区二区三区免费看| 免费观看在线日韩| 99热网站在线观看| 亚洲精品影视一区二区三区av| 亚洲精品乱码久久久v下载方式| 白带黄色成豆腐渣| 人人妻人人澡欧美一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人毛片a级毛片在线播放| 国产精品福利在线免费观看| 国产精品爽爽va在线观看网站| 久99久视频精品免费| 国产激情偷乱视频一区二区| 国产有黄有色有爽视频| 国产精品国产三级专区第一集| 久久久久久久久大av| 亚洲精品久久午夜乱码| 青春草国产在线视频| 成人综合一区亚洲| 国产熟女欧美一区二区| 精品一区二区免费观看| 欧美激情在线99| 国产精品蜜桃在线观看| 亚洲在久久综合| 欧美日韩在线观看h| 噜噜噜噜噜久久久久久91| 水蜜桃什么品种好| av专区在线播放| 日韩人妻高清精品专区| 午夜激情久久久久久久| 国产精品嫩草影院av在线观看| 免费黄频网站在线观看国产| 欧美日韩一区二区视频在线观看视频在线 | 99视频精品全部免费 在线| 床上黄色一级片| 91精品国产九色| 一个人看的www免费观看视频| 亚洲国产av新网站| 三级国产精品片| 欧美日本视频| 久久99精品国语久久久| 一级毛片久久久久久久久女| 超碰97精品在线观看| 十八禁网站网址无遮挡 | 乱码一卡2卡4卡精品| 精品一区二区三区人妻视频| 毛片一级片免费看久久久久| 特级一级黄色大片| 国产精品三级大全| 午夜久久久久精精品| 久久精品人妻少妇| 99久久精品国产国产毛片| 亚洲无线观看免费| 国产成人免费观看mmmm| 亚洲精品影视一区二区三区av| 亚洲精品国产av蜜桃| 天天一区二区日本电影三级| 国产 亚洲一区二区三区 | 免费观看a级毛片全部| 免费看美女性在线毛片视频| 日韩一区二区三区影片| 国产激情偷乱视频一区二区| 亚洲av国产av综合av卡| 美女xxoo啪啪120秒动态图| 免费看av在线观看网站| 伊人久久精品亚洲午夜| 寂寞人妻少妇视频99o| 国产真实伦视频高清在线观看| 国产免费视频播放在线视频 | 亚洲精品,欧美精品| 国产精品精品国产色婷婷| 日本黄色片子视频| 亚洲精华国产精华液的使用体验| 亚洲成人中文字幕在线播放| 国产精品久久视频播放| 久久久a久久爽久久v久久| 亚洲av日韩在线播放| 精品久久国产蜜桃| 韩国av在线不卡| 久久久欧美国产精品| 免费看a级黄色片| 日本av手机在线免费观看| 日日啪夜夜爽| 精品熟女少妇av免费看| 丝袜美腿在线中文| 午夜免费男女啪啪视频观看| 在线免费观看的www视频| 久久久久性生活片| 岛国毛片在线播放| 色综合站精品国产| 国产乱人偷精品视频| av网站免费在线观看视频 | 亚洲av成人精品一区久久| 一区二区三区高清视频在线| 午夜福利在线观看吧| 97超碰精品成人国产| 日韩大片免费观看网站| 欧美高清性xxxxhd video| 午夜福利在线在线| 简卡轻食公司| 99久久九九国产精品国产免费| 草草在线视频免费看| 国语对白做爰xxxⅹ性视频网站| 亚洲国产日韩欧美精品在线观看| 精品久久国产蜜桃| 精品久久久噜噜| 日韩伦理黄色片| 最近的中文字幕免费完整| 在线天堂最新版资源| 久久6这里有精品| 免费人成在线观看视频色| 亚洲av国产av综合av卡| 男女视频在线观看网站免费| 欧美人与善性xxx| 精品久久国产蜜桃| 国产免费又黄又爽又色| 日韩欧美三级三区| av黄色大香蕉| 亚洲国产精品sss在线观看| 色播亚洲综合网| 亚洲人成网站高清观看| 中文字幕av成人在线电影| 国产av国产精品国产| 午夜免费男女啪啪视频观看| 麻豆国产97在线/欧美| 精品亚洲乱码少妇综合久久| 久久精品夜夜夜夜夜久久蜜豆| 美女cb高潮喷水在线观看| 精品一区二区三卡| 精品人妻视频免费看| 国产淫片久久久久久久久| 色网站视频免费| 18禁在线播放成人免费| 免费观看精品视频网站| 哪个播放器可以免费观看大片| 免费观看的影片在线观看| h日本视频在线播放| 欧美日韩视频高清一区二区三区二| 秋霞伦理黄片| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 少妇人妻一区二区三区视频| 啦啦啦啦在线视频资源| 国产精品福利在线免费观看| 青春草国产在线视频| 男的添女的下面高潮视频| 亚洲国产最新在线播放| 在线播放无遮挡| 国产精品av视频在线免费观看| 亚洲人与动物交配视频| 欧美人与善性xxx| 国产男人的电影天堂91| 国产成人精品一,二区| 日本wwww免费看| 嘟嘟电影网在线观看| 久久久久久九九精品二区国产| 午夜福利视频精品| 成人高潮视频无遮挡免费网站| 午夜激情久久久久久久| 特大巨黑吊av在线直播| 人妻夜夜爽99麻豆av| 欧美xxxx黑人xx丫x性爽| 少妇熟女aⅴ在线视频| 亚洲最大成人av| 秋霞伦理黄片| 男女边吃奶边做爰视频| 国产伦精品一区二区三区四那| 久久人人爽人人爽人人片va| 日韩电影二区| 久久久久久久午夜电影| kizo精华| 久久综合国产亚洲精品| 免费看光身美女| 日本免费a在线| 国产伦精品一区二区三区四那| 久久99热这里只有精品18| 国产精品蜜桃在线观看| 免费播放大片免费观看视频在线观看| 日本三级黄在线观看| 亚洲国产精品sss在线观看| 国产片特级美女逼逼视频| 人妻制服诱惑在线中文字幕| 有码 亚洲区| 99热这里只有精品一区| 2022亚洲国产成人精品| a级毛色黄片| 亚洲精品自拍成人| 久久国内精品自在自线图片| 成人高潮视频无遮挡免费网站| 日本猛色少妇xxxxx猛交久久| 高清毛片免费看| 免费看a级黄色片| 日韩一区二区三区影片| 精品一区二区三区人妻视频| 日日摸夜夜添夜夜爱| 久久这里有精品视频免费| 精品一区二区免费观看| 免费看日本二区| 国产午夜精品久久久久久一区二区三区| 99热6这里只有精品| 永久免费av网站大全| 97热精品久久久久久| 欧美人与善性xxx| 欧美另类一区| a级一级毛片免费在线观看| 夫妻午夜视频| 18+在线观看网站| 男女国产视频网站| 男女那种视频在线观看| 黄片wwwwww| 午夜精品国产一区二区电影 | xxx大片免费视频| 国产免费又黄又爽又色| 久久久久久国产a免费观看| 精品久久久久久久人妻蜜臀av| 色综合站精品国产| 伦精品一区二区三区| 午夜亚洲福利在线播放| 不卡视频在线观看欧美| 嫩草影院入口| 午夜福利在线观看免费完整高清在| 日韩亚洲欧美综合| 肉色欧美久久久久久久蜜桃 | 日本一本二区三区精品| 国产精品av视频在线免费观看| 极品教师在线视频| 天天躁夜夜躁狠狠久久av| 嫩草影院入口| 亚洲精华国产精华液的使用体验| 99久久中文字幕三级久久日本| 听说在线观看完整版免费高清| 伊人久久国产一区二区| 国产日韩欧美在线精品| av免费在线看不卡| 成人一区二区视频在线观看| 777米奇影视久久| 国产色爽女视频免费观看| 亚洲乱码一区二区免费版| 国产人妻一区二区三区在| 网址你懂的国产日韩在线| 97超视频在线观看视频| 99久久精品一区二区三区| 国产精品一及| 国产成人精品一,二区| 欧美日韩在线观看h| 亚洲人与动物交配视频| 夜夜看夜夜爽夜夜摸| 日日干狠狠操夜夜爽| 中文字幕制服av| 街头女战士在线观看网站| 国产单亲对白刺激| 哪个播放器可以免费观看大片| 亚洲人成网站在线播| 中文欧美无线码| 国产老妇伦熟女老妇高清| 男女啪啪激烈高潮av片| 国产精品久久久久久精品电影小说 | 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 亚洲欧美清纯卡通| 日韩欧美 国产精品| videossex国产| 黄色配什么色好看| 黑人高潮一二区| 国产精品一二三区在线看| 免费看光身美女| 久久久成人免费电影| 老司机影院成人| 人妻一区二区av| av一本久久久久| 伊人久久国产一区二区| 久久久久久九九精品二区国产| 亚洲欧美中文字幕日韩二区| 国内少妇人妻偷人精品xxx网站| 69av精品久久久久久| 国产精品99久久久久久久久| 日本wwww免费看| 三级国产精品片| 2022亚洲国产成人精品| 天堂俺去俺来也www色官网 | 一区二区三区免费毛片| 一级毛片aaaaaa免费看小| www.色视频.com| 日本三级黄在线观看| 91午夜精品亚洲一区二区三区| 久久久久精品性色| 日本与韩国留学比较| 男人爽女人下面视频在线观看| 亚洲国产高清在线一区二区三| 国产成人aa在线观看| 日韩人妻高清精品专区| 欧美成人精品欧美一级黄| 亚洲成人精品中文字幕电影| 日日啪夜夜爽| 高清日韩中文字幕在线| 成人午夜精彩视频在线观看| 中文精品一卡2卡3卡4更新| 免费看av在线观看网站| 婷婷色麻豆天堂久久| 久久精品国产亚洲网站| 成人国产麻豆网| 亚洲av不卡在线观看| 国产精品国产三级国产av玫瑰| 欧美高清性xxxxhd video| 婷婷色麻豆天堂久久| 欧美xxxx性猛交bbbb| 老司机影院毛片| 免费观看性生交大片5| 日日摸夜夜添夜夜添av毛片| 日本猛色少妇xxxxx猛交久久| videos熟女内射| 亚洲国产av新网站| 建设人人有责人人尽责人人享有的 | 男女啪啪激烈高潮av片| 欧美xxxx性猛交bbbb| 美女主播在线视频| 欧美极品一区二区三区四区| 777米奇影视久久| 国产高清三级在线| 亚州av有码| 伊人久久国产一区二区| 色综合站精品国产| 午夜免费男女啪啪视频观看| 一个人观看的视频www高清免费观看| 欧美三级亚洲精品| 2021少妇久久久久久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 麻豆成人av视频| 精品久久久久久电影网| 国产单亲对白刺激| 边亲边吃奶的免费视频| 一个人观看的视频www高清免费观看| www.av在线官网国产| a级毛片免费高清观看在线播放| 一级毛片aaaaaa免费看小| 亚洲国产精品专区欧美| 嘟嘟电影网在线观看| 精华霜和精华液先用哪个| 麻豆乱淫一区二区| 久久久午夜欧美精品| 最近手机中文字幕大全| 免费无遮挡裸体视频| 69av精品久久久久久| 亚洲精品一二三| 伦理电影大哥的女人| 深爱激情五月婷婷| 精品一区二区三卡| 亚洲av男天堂| 国产高清三级在线| 日韩不卡一区二区三区视频在线| 少妇人妻精品综合一区二区| 边亲边吃奶的免费视频| 午夜老司机福利剧场| 国产成人精品福利久久| 一二三四中文在线观看免费高清| 亚洲人成网站在线观看播放| 丰满人妻一区二区三区视频av| 99久国产av精品| 精华霜和精华液先用哪个| 99热全是精品| 91久久精品电影网| 国产精品一区www在线观看| 精品国产一区二区三区久久久樱花 | 国产 一区精品| 亚洲精品456在线播放app| 男女啪啪激烈高潮av片| 一级毛片我不卡| 亚洲国产日韩欧美精品在线观看| 国产精品女同一区二区软件| 久久久精品免费免费高清| 九色成人免费人妻av| 天堂av国产一区二区熟女人妻| 国产黄a三级三级三级人| 少妇高潮的动态图| 一夜夜www| 在线播放无遮挡| 欧美xxxx黑人xx丫x性爽| 国产高潮美女av| 精品人妻熟女av久视频| 亚洲av男天堂| 韩国高清视频一区二区三区| eeuss影院久久| 美女被艹到高潮喷水动态| 一边亲一边摸免费视频| 久久久久久久久久成人| 国产高清国产精品国产三级 | 2022亚洲国产成人精品| 内地一区二区视频在线| 在线免费观看的www视频| 午夜免费男女啪啪视频观看| 国产精品三级大全| 精品国内亚洲2022精品成人| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 欧美丝袜亚洲另类| 汤姆久久久久久久影院中文字幕 | 99久国产av精品国产电影| 91aial.com中文字幕在线观看| 别揉我奶头 嗯啊视频| 我要看日韩黄色一级片| 国产毛片a区久久久久| 免费观看在线日韩| 狂野欧美激情性xxxx在线观看| 日韩一区二区视频免费看| 97超视频在线观看视频| 日本熟妇午夜| 97热精品久久久久久| 国产午夜精品久久久久久一区二区三区| 51国产日韩欧美| 久久久久久九九精品二区国产| 免费黄网站久久成人精品| 国产精品人妻久久久影院| 大香蕉久久网| 亚洲av免费高清在线观看| 少妇丰满av| 成人美女网站在线观看视频| 欧美zozozo另类| 插逼视频在线观看| 亚洲成人久久爱视频| av网站免费在线观看视频 | 内射极品少妇av片p| 午夜福利视频1000在线观看| 欧美3d第一页| 久久这里有精品视频免费| 欧美日韩视频高清一区二区三区二| av在线亚洲专区| 大香蕉97超碰在线| 亚洲精品视频女| av在线老鸭窝| av在线天堂中文字幕| 国产成人精品久久久久久| 久久精品久久久久久久性| 亚洲内射少妇av| 少妇熟女aⅴ在线视频| 在线免费观看不下载黄p国产| 久久精品国产自在天天线| 97超碰精品成人国产| 性插视频无遮挡在线免费观看| 2021天堂中文幕一二区在线观| 亚洲精品成人av观看孕妇| 国产亚洲5aaaaa淫片| 国产免费又黄又爽又色| 国产精品女同一区二区软件| 亚洲电影在线观看av|