翁澤宇,劉勝利,吳曉郁,余行行,王武江,朱甫宏
(1.浙江工業(yè)大學(xué) 機(jī)械工程學(xué)院,浙江 杭州 310023;2.31606部隊(duì),浙江 湖州 313005)
為確保車載移動(dòng)高端測(cè)控儀器設(shè)備的安全性和可靠性,對(duì)隔振裝置的隔振效果提出越來(lái)越高的要求。對(duì)于被動(dòng)隔振系統(tǒng),提高系統(tǒng)低頻隔振性能的有效方法是降低系統(tǒng)剛度以獲得較低固有頻率,但簡(jiǎn)單地降低系統(tǒng)剛度會(huì)減弱系統(tǒng)承載能力,影響系統(tǒng)穩(wěn)定性。通過(guò)負(fù)剛度機(jī)構(gòu)與承載質(zhì)量的正剛度機(jī)構(gòu)并聯(lián)得到的準(zhǔn)零剛度系統(tǒng),能很好地解決靜承載力和低剛度之間的矛盾,有效降低系統(tǒng)的固有頻率,獲得較低的隔振傳遞率。準(zhǔn)零剛度系統(tǒng)最早由Molyneux于20世紀(jì)50年代提出,目前基于已經(jīng)發(fā)展出的多種負(fù)剛度機(jī)構(gòu),針對(duì)不同應(yīng)用場(chǎng)景,可以得到多種不同類型的準(zhǔn)零剛度系統(tǒng)。近年來(lái),準(zhǔn)零剛度隔振技術(shù)已成為振動(dòng)控制領(lǐng)域研究的熱點(diǎn)[1-5]。
在工程實(shí)際中,對(duì)隔振裝置的要求往往是多方向的,基于并聯(lián)機(jī)構(gòu)設(shè)計(jì)多自由度隔振裝置,是一種針對(duì)多方向隔振的有效技術(shù)方案,已在航天、精密儀器等高端裝備上得到應(yīng)用[6-9]。進(jìn)一步,在此基礎(chǔ)上引入準(zhǔn)零剛度的概念,構(gòu)建并聯(lián)機(jī)構(gòu)準(zhǔn)零剛度隔振裝置,是解決多方向低頻隔振問(wèn)題的一種新思路。
目前在并聯(lián)機(jī)構(gòu)隔振平臺(tái)中引入準(zhǔn)零剛度系統(tǒng)的研究已有開(kāi)展。Zhou等[10]設(shè)計(jì)了由凸輪-滾珠-簧片梁負(fù)剛度機(jī)構(gòu)并聯(lián)正剛度軸向彈簧的準(zhǔn)零剛度壓桿,并用8條這種準(zhǔn)零剛度壓桿構(gòu)造成六自由度Stewart并聯(lián)機(jī)構(gòu)隔振裝置;Wu等[11]將6個(gè)具有準(zhǔn)零剛度特性的X形結(jié)構(gòu)作為Stewart平臺(tái)的支腿,實(shí)現(xiàn)了六自由度的低頻隔振;鄭良辰[12]將彈簧-滑塊-連桿負(fù)剛度機(jī)構(gòu)與正剛度彈簧并聯(lián)組成的準(zhǔn)零剛度系統(tǒng),作為三自由度并聯(lián)機(jī)構(gòu)的移動(dòng)副,實(shí)現(xiàn)了多維低頻隔振。這些技術(shù)方案都只是將準(zhǔn)零剛度系統(tǒng)作為彈性元件整體嵌入并聯(lián)機(jī)構(gòu)中,屬于準(zhǔn)零剛度系統(tǒng)與并聯(lián)機(jī)構(gòu)的簡(jiǎn)單集成,其特點(diǎn)是原理簡(jiǎn)單,但系統(tǒng)結(jié)構(gòu)較為復(fù)雜,往往構(gòu)件會(huì)有冗余,結(jié)構(gòu)不夠緊湊。
本文將負(fù)剛度機(jī)構(gòu)與并聯(lián)機(jī)構(gòu)聯(lián)合設(shè)計(jì),先給出一種平移副軸線與動(dòng)平臺(tái)平行的新型Delta并聯(lián)機(jī)構(gòu),利用該Delta機(jī)構(gòu)直接演繹成為具有負(fù)剛度特性的并聯(lián)機(jī)構(gòu)。然后并聯(lián)正剛度的豎直彈簧,得到一種新型三維平移自由度Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái),實(shí)現(xiàn)了并聯(lián)機(jī)構(gòu)與準(zhǔn)零剛度系統(tǒng)的有機(jī)融合。測(cè)試結(jié)果表明,該隔振平臺(tái)在主隔振(豎直)方向具有準(zhǔn)零剛度特性,在水平方向也具有較低的固有頻率,有利于大幅度提高車載測(cè)控設(shè)備的隔振效果。
Delta機(jī)構(gòu)結(jié)構(gòu)緊湊,末端可獲得高精度和高速度,是最典型的并聯(lián)機(jī)構(gòu)之一[13-15]。最常見(jiàn)的Delta機(jī)構(gòu)的主動(dòng)副多為轉(zhuǎn)動(dòng)副,將主動(dòng)副設(shè)計(jì)為平移副的直線型Delta機(jī)構(gòu)結(jié)構(gòu)簡(jiǎn)圖(見(jiàn)圖1),在動(dòng)平臺(tái)和靜平臺(tái)之間的3條支鏈均由相同的平行四邊形和平移副組成。直線型Delta機(jī)構(gòu)相對(duì)于主動(dòng)副為轉(zhuǎn)動(dòng)副的旋轉(zhuǎn)型Delta機(jī)構(gòu)具有更好的系統(tǒng)剛度,在直線型Delta機(jī)構(gòu)的平移副中設(shè)置彈性元件即彈簧,不僅易于調(diào)整機(jī)構(gòu)的剛度特性,而且調(diào)整的效果更加顯著。
圖1 直線型Delta機(jī)構(gòu)結(jié)構(gòu)簡(jiǎn)圖Fig.1 Schematic diagram of linear Delta mechanism
在普通直線型Delta機(jī)構(gòu)中,平行四邊形機(jī)構(gòu)的連桿兩端均為球鉸連接,存在一個(gè)繞連桿自身軸線轉(zhuǎn)動(dòng)的冗余自由度,該冗余自由度對(duì)并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)輸出沒(méi)有影響,但連桿可能會(huì)出現(xiàn)繞自身軸線轉(zhuǎn)動(dòng)的自由振動(dòng),其對(duì)隔振平臺(tái)動(dòng)態(tài)性能的影響具有不確定性。因此,基于構(gòu)型演變法,用轉(zhuǎn)動(dòng)副代替普通直線型Delta機(jī)構(gòu)中平行四邊形機(jī)構(gòu)的球鉸,并在滑塊、動(dòng)平臺(tái)與平行四邊形機(jī)構(gòu)連接處分別增加一個(gè)轉(zhuǎn)動(dòng)副,發(fā)展得到一種新型直線型Delta機(jī)構(gòu)構(gòu)型,可簡(jiǎn)稱為新型Delta機(jī)構(gòu),該機(jī)構(gòu)不存在冗余自由度,機(jī)構(gòu)原理如圖2所示。圖2中,A1A2A3為動(dòng)平臺(tái)、B1B2B3為靜平臺(tái),兩平臺(tái)間以靜平臺(tái)中心為軸心呈軸對(duì)稱布置3條完全相同的支鏈,每條支鏈由一個(gè)平行四邊形機(jī)構(gòu)AiEi(i表示第i條支鏈,i=1,2,3)和一個(gè)平移副Di組成,C1、C2和C3為靜平臺(tái)B1B2B3上的3個(gè)點(diǎn)。平行四邊形機(jī)構(gòu)由2根轉(zhuǎn)軸與2根連桿通過(guò)轉(zhuǎn)動(dòng)副相連接構(gòu)成,轉(zhuǎn)軸Ai與動(dòng)平臺(tái)相連,轉(zhuǎn)軸Ei安裝在滑塊Di中,且能繞自身軸線自由轉(zhuǎn)動(dòng)。連桿的兩端可視為2個(gè)虎克鉸,3個(gè)水平設(shè)置的滑塊Di作為平移副,可作為該機(jī)構(gòu)的主動(dòng)副。
圖2 新型Delta機(jī)構(gòu)結(jié)構(gòu)簡(jiǎn)圖Fig.2 Structural diagram of a novel Delta mechanism
3組平行四邊形機(jī)構(gòu)確保新型Delta機(jī)構(gòu)消除了動(dòng)平臺(tái)的3個(gè)轉(zhuǎn)動(dòng)自由度,保留了3個(gè)空間平動(dòng)自由度,使動(dòng)平臺(tái)在運(yùn)動(dòng)過(guò)程中始終與靜平臺(tái)保持平行。采用修正的Grubler-Kutzbach公式計(jì)算該機(jī)構(gòu)的空間自由度為3.
圖3所示為新型Delta機(jī)構(gòu)的運(yùn)動(dòng)學(xué)分析俯視簡(jiǎn)圖。圖3中,Oxyz為平衡狀態(tài)時(shí)以A1A2A3平面的中心O為原點(diǎn)建立的直角坐標(biāo)系,z軸正向垂直于A1A2A3平面且遠(yuǎn)離靜平臺(tái)方向,O′為動(dòng)平臺(tái)的中心,η1為第1條支鏈的方向與x軸的夾角。為使結(jié)構(gòu)更加緊湊,圖2中平行四邊形機(jī)構(gòu)AiEi可用虛擬連桿Ai Di(i=1,2,3)代替。動(dòng)平臺(tái)位于平衡位置時(shí),平行四邊形機(jī)構(gòu)處于水平狀態(tài)。
圖3 新型Delta機(jī)構(gòu)運(yùn)動(dòng)簡(jiǎn)圖Fig.3 Motion diagram of a new Delta mechanism
該機(jī)構(gòu)只有3個(gè)平動(dòng)自由度,平行四邊形機(jī)構(gòu)始終保持在平面內(nèi)。設(shè)動(dòng)平臺(tái)外接圓半徑O′Ai為ra,滑塊到原點(diǎn)O的距離ODi為rdi,連桿長(zhǎng)度AiDi為L(zhǎng),OAi與靜坐標(biāo)系x軸的夾角為ηi。動(dòng)平臺(tái)偏離平衡位置后,O′點(diǎn)和原點(diǎn)O不再重合,當(dāng)O′位于(x,y,z)位置時(shí),滑塊Di產(chǎn)生位移hi,可得
由于連桿長(zhǎng)度L為定值,機(jī)構(gòu)運(yùn)動(dòng)學(xué)方程為
由(4)式可得
按1階泰勒公式展開(kāi),得
改寫(xiě)為矩陣形式為
以新型Delta機(jī)構(gòu)為基礎(chǔ),將3個(gè)平移副由3組水平彈簧來(lái)驅(qū)動(dòng),可得到具有負(fù)剛度特性的并聯(lián)機(jī)構(gòu)。將彈簧軸線平行于平行四邊形機(jī)構(gòu)所在平面和動(dòng)平臺(tái)所在平面時(shí)的位置設(shè)計(jì)為負(fù)剛度機(jī)構(gòu)的平衡位置,可使動(dòng)平臺(tái)在豎直方向的正向和負(fù)向均具有相同的剛度特性,同時(shí)在機(jī)構(gòu)的平衡位置附近,平移副的滑動(dòng)摩擦力最小,有利于降低負(fù)剛度機(jī)構(gòu)的摩擦阻尼。將該具有負(fù)剛度特性的并聯(lián)機(jī)構(gòu)與正剛度的豎直彈簧并聯(lián),可得到新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái),如圖4所示。
圖4 新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)Fig.4 Quasi-zero stiffness vibration isolation platform with Delta mechanism
由該準(zhǔn)零剛度系統(tǒng)的靜力學(xué)分析,可得系統(tǒng)具有準(zhǔn)零剛度特性的條件為
式中:kv為豎直彈簧剛度;kh為水平彈簧剛度;λ0為水平彈簧壓縮量。
選擇合適的kv與kh值,使平行四邊形機(jī)構(gòu)處于水平狀態(tài)的平衡位置時(shí),該新型Delta機(jī)構(gòu)隔振平臺(tái)在豎直方向上可獲得準(zhǔn)零剛度特性。新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)的結(jié)構(gòu)參數(shù)如表1所示。
表1 隔振平臺(tái)結(jié)構(gòu)參數(shù)Tab.1 Vibration isolation platform parameters
當(dāng)隔振平臺(tái)的動(dòng)平臺(tái)位移為(x,y,z)時(shí),對(duì)隔振平臺(tái)第i條支鏈進(jìn)行靜力學(xué)分析,如圖5所示。圖5中,ODi表示靜平衡位置時(shí)連桿的初始位置,AiDi表示偏離平衡位置時(shí)連桿所在位置,A′i為Ai在ODi所在豎直面的投影點(diǎn),A″i為A′i到直線ODi的垂足,β為ODi與AiDi的夾角,α為A′iDi與ODi的夾角,F0i為第i條支鏈上連桿所受的力,F1i為F0i在水平平面的分力,數(shù)值上等于該條支鏈上水平彈簧產(chǎn)生的彈力,F2i、F3i為F0i在豎直平面內(nèi)的分力,其夾角為γ,合力為F4i,即
圖5 第i條支鏈?zhǔn)芰Ψ治龊?jiǎn)圖Fig.5 Schematic diagram of force analysis of the i th branch chain
由圖5可得
新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)的動(dòng)平臺(tái)在外載荷為(Fx,Fy,Fz)時(shí),三平移自由度上產(chǎn)生位移(x,y,z),其靜平衡方程為
式中:F1i=kh(λ0-hi);F2i=F1itanα;F3i=F1itanα/tanγ。
(10)式、(11)式代入(12)式,得到隔振平臺(tái)的動(dòng)平臺(tái)在x、y、z3個(gè)自由度不同位置處所承受的力為(13)式~(15)式:
表1中有關(guān)參數(shù)代入(13)式~(15)式,可得到新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)各自由度方向上靜力學(xué)特性。
隔振平臺(tái)的動(dòng)平臺(tái)在x、y、z3個(gè)自由度上不同空間位置處x軸方向所承受的力Fx如圖6所示,圖中顏色表示力的大小。由圖6可見(jiàn):在平衡位置(x=0 mm)處為綠色,沿x軸正向逐漸變紅,沿x軸負(fù)向逐漸變藍(lán);沿y軸方向顏色基本保持不變;沿z軸方向顏色不發(fā)生變化。說(shuō)明在平衡位置處Fx為0 N,且動(dòng)平臺(tái)沿x軸正向運(yùn)動(dòng)時(shí)Fx朝正向逐漸增大,沿x軸負(fù)向運(yùn)動(dòng)時(shí)Fx朝負(fù)向逐漸增大。同時(shí),力Fx的變化主要受x軸方向位移的影響,y軸方向位移對(duì)Fx幾乎不產(chǎn)生影響,z軸方向位移對(duì)其無(wú)影響。動(dòng)平臺(tái)在x軸方向不同位置處的Fx如圖7所示,直線通過(guò)原點(diǎn)(0 mm,0 mm)點(diǎn)且關(guān)于原點(diǎn)對(duì)稱,表明Fx與x軸方向位移呈線性關(guān)系,且在x=0 mm位置處Fx為0 N。
圖6 不同空間位置處的FxFig.6 Fx at different spatial locations
圖7 x軸方向不同位置處的FxFig.7 Fx at different points along x axis
動(dòng)平臺(tái)在x、y、z3個(gè)自由度上不同空間位置處z軸方向所能承受的外力Fz如圖8所示。由圖8可見(jiàn),顏色在Oxz面和Oyz面上分布相同,且在平衡位置(z=0 mm)附近均為綠色,沿z軸正向逐漸變藍(lán),沿z軸負(fù)向逐漸變紅。說(shuō)明x軸方向和y軸方向位移對(duì)隔振平臺(tái)z軸方向靜力學(xué)特性具有相同的影響,在平衡位置附近Fz基本保持不變,且沿z軸正向逐漸負(fù)向變大,沿z軸負(fù)向逐漸正向變大。y軸方向靜力學(xué)性能與x軸方向類似,不再贅述。
圖8 不同空間位置處的FzFig.8 Fz at different spatial locations
由隔振平臺(tái)在各自由度上的靜力學(xué)特性(13)式~ (15)式可得到該隔振平臺(tái)的剛度特性,即(16)式~(18)式:
表1中有關(guān)參數(shù)代入(16)式~(18)式,可得到新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)在x、y、z3個(gè)自由度上不同位置處的剛度特性。
隔振平臺(tái)的動(dòng)平臺(tái)在x、y、z3個(gè)自由度上不同位置處x軸方向的剛度kx如圖9所示,圖中顏色表示力的大小。由圖9可見(jiàn):在xy面上顏色分為4種區(qū)域,在各區(qū)域內(nèi)顏色小幅度地漸變或基本保持不變;沿z軸方向顏色無(wú)變化。說(shuō)明隔振平臺(tái)的動(dòng)平臺(tái)在各區(qū)域內(nèi)不同位置上的剛度kx基本保持不變,而在區(qū)域交界處存在突變;kx的變化僅與x軸方向和y軸方向位移有關(guān),與z軸方向位移無(wú)關(guān)。
圖9 不同空間位置處的kxFig.9 kx at different spatial locations
隔振平臺(tái)的動(dòng)平臺(tái)在x、y、z3個(gè)自由度上不同空間位置處z軸方向的剛度kz如圖10所示。由圖10可見(jiàn),顏色沿x軸和y軸方向不發(fā)生變化,沿z軸漸變,在平衡位置(z=0 mm)處為藍(lán)色,并沿z軸正向和負(fù)向逐漸變紅。說(shuō)明z軸方向剛度kz僅與z軸方向位移有關(guān),與x軸方向和y軸方向的位移無(wú)關(guān);kz在平衡位置處趨近于0,表明新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)在豎直方向上具有明顯的準(zhǔn)零剛度特性。在z軸方向不同位置處的kz如圖11所示,可見(jiàn)kz在平衡位置附近剛度變化較小,并在平衡位置處取得最小值為0.317 N/mm,當(dāng)動(dòng)平臺(tái)偏離平衡位置較遠(yuǎn)時(shí),零剛度的特性不再明顯。
圖10 不同空間位置處的kzFig.10 kz at different spatial locations
圖11 z軸方向不同位置處的kzFig.11 kz at different points along z axis
2.2.1 水平方向固有頻率
采用拉格朗日法建立該隔振平臺(tái)水平方向的動(dòng)力學(xué)模型為
式中:T為系統(tǒng)動(dòng)能,s為動(dòng)平臺(tái)位置坐標(biāo),
M為系統(tǒng)的質(zhì)量矩陣;U為系統(tǒng)勢(shì)能,
K為系統(tǒng)剛度矩陣,K=J-T·diag(kh,kh,kh)·J-1;D為阻尼耗散能;Γ為動(dòng)平臺(tái)所受外力。
令耗散能D及Γ的值為0,可得系統(tǒng)的無(wú)阻尼自由振動(dòng)方程為
系統(tǒng)的特征方程為
由(23)式即可求出系統(tǒng)的固有頻率ωn。
由表1及(23)式,可得該并聯(lián)機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)在Oxy平面內(nèi)x軸方向及y軸方向的固有頻率變化曲面分別如圖12、圖13所示。
圖12 x軸方向固有頻率曲面Fig.12 Natural frequency surface along x axis
圖13 y軸方向固有頻率曲面Fig.13 Natural frequency surface along y axis
圖12所示為隔振平臺(tái)在水平面內(nèi)x軸方向固有頻率fx曲面,圖13所示為隔振平臺(tái)在水平面內(nèi)y軸方向固有頻率fy曲面。由圖12、圖13可見(jiàn),隔振平臺(tái)x軸方向固有頻率曲面為倒置圓錐面,距平衡位置越遠(yuǎn),隔振平臺(tái)x軸方向固有頻率值越大;隔振平臺(tái)y軸方向固有頻率曲面為正置圓錐面,距平衡位置越遠(yuǎn),隔振平臺(tái)y軸方向固有頻率值越小。同時(shí),隔振平臺(tái)在平衡位置時(shí),x軸方向、y軸方向固有頻率值相等,約為5.45 Hz。
2.2.2 豎直方向固有頻率
根據(jù)靜力學(xué)特性分析,令(18)式中x=y=0 m,可得該隔振平臺(tái)豎直方向的剛度為
則隔振系統(tǒng)豎直方向的固有頻率為
由表1參數(shù)及(25)式,得到新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)豎直方向固有頻率曲線如圖14所示。由于隔振平臺(tái)在初始平衡位置時(shí)剛度接近于0 N/mm,系統(tǒng)可獲得較低的固有頻率,該隔振平臺(tái)在平衡位置時(shí)豎直方向固有頻率為0.63 Hz。
圖14 豎直方向固有頻率曲線Fig.14 Natural frequency curve in thevertical direction
若拆除隔振平臺(tái)中所有水平彈簧(即拆除負(fù)剛度機(jī)構(gòu)),此時(shí)隔振平臺(tái)在豎直方向上不再具有準(zhǔn)零剛度特性,豎直方向總剛度kz為7.995 N/mm。此時(shí)不具有準(zhǔn)零剛度特性的隔振平臺(tái)豎直方向固有頻率為3.17 Hz。表明了含有負(fù)剛度機(jī)構(gòu)的準(zhǔn)零剛度隔振平臺(tái)可以很好地降低系統(tǒng)z軸方向固有頻率。
采用錘擊法對(duì)新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)豎直方向固有頻率進(jìn)行測(cè)試,模態(tài)力錘為美國(guó)PCB公司生產(chǎn)的086D05型,加速度傳感器為美國(guó)PCB公司生產(chǎn)的333B30型,信號(hào)分析儀為美國(guó)Spectral Dynamic公司生產(chǎn)的Siglab20-42型。測(cè)試裝置如圖15所示,模態(tài)力錘的敲擊和加速度傳感器的測(cè)量均在隔振平臺(tái)的動(dòng)平臺(tái)中心豎直方向(z軸方向)。
圖15 測(cè)試裝置Fig.15 Test device
分別對(duì)隔振平臺(tái)的兩種狀態(tài)進(jìn)行測(cè)試:一是對(duì)新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)直接進(jìn)行測(cè)試;二是對(duì)拆除負(fù)剛度機(jī)構(gòu)后的隔振平臺(tái)進(jìn)行測(cè)試。隔振平臺(tái)在兩種狀態(tài)下z軸方向頻率響應(yīng)的幅值曲線分別如圖16和圖17所示,頻率響應(yīng)幅值的峰值對(duì)應(yīng)的頻率為隔振平臺(tái)固有頻率。
圖16 準(zhǔn)零剛度并聯(lián)機(jī)構(gòu)隔振平臺(tái)試驗(yàn)結(jié)果Fig.16 Test results of vibration isolation platform with quasi-zero stiffness parallel mechanism
圖17 拆除負(fù)剛度并聯(lián)機(jī)構(gòu)的隔振平臺(tái)試驗(yàn)結(jié)果Fig.17 Test results of vibration isolation platform with parallel mechanism without negative stiffness
由圖16、圖17可得兩種狀態(tài)下的測(cè)試結(jié)果如表2所示。由表2可見(jiàn):新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)z軸方向固有頻率測(cè)試結(jié)果為0.75 Hz(理論分析結(jié)果為0.63 Hz);去除負(fù)剛度機(jī)構(gòu)得到的隔振平臺(tái)z軸方向固有頻率測(cè)試結(jié)果為3.45 Hz(理論分析結(jié)果為3.17 Hz)。理論分析結(jié)果和試驗(yàn)結(jié)果接近,均表明新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)能很好地降低系統(tǒng)的固有頻率,可用于低頻隔振。
表2 不同狀態(tài)下z軸方向固有頻率結(jié)果Tab.2 Results of natural frequencies aloing z axis in different states Hz
本文將新設(shè)計(jì)的消除冗余自由度的新型Delta機(jī)構(gòu)直接演繹成為負(fù)剛度機(jī)構(gòu),然后并聯(lián)一正剛度的豎直彈簧,得到一種新型三自由度并聯(lián)機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái),實(shí)現(xiàn)了并聯(lián)機(jī)構(gòu)與準(zhǔn)零剛度系統(tǒng)的有機(jī)融合。所得主要結(jié)論如下:
1)新型三自由度并聯(lián)機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái)在水平方向上靜力學(xué)特性呈線性關(guān)系,且僅與水平方向位移有關(guān);在豎直方向具有準(zhǔn)零剛度特性且僅與豎直方向位移有關(guān),當(dāng)動(dòng)平臺(tái)偏離平衡位置時(shí),零剛度特性不再明顯。
2)試驗(yàn)結(jié)果驗(yàn)證了具有準(zhǔn)零剛度特性的隔振平臺(tái)較普通隔振平臺(tái)明顯地降低了系統(tǒng)的固有頻率。
3)對(duì)于本文設(shè)計(jì)的新型Delta機(jī)構(gòu)準(zhǔn)零剛度隔振平臺(tái),理論分析水平方向上固有頻率約為5.45 Hz,豎直方向上固有頻率為0.63 Hz,可應(yīng)用于低頻、多方向的隔振。