• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gauss quadrature based finite temperature Lanczos method

    2022-05-16 07:07:34JianLi李健andHaiQingLin林海青
    Chinese Physics B 2022年5期
    關(guān)鍵詞:李健林海

    Jian Li(李健) and Hai-Qing Lin(林海青)

    Beijing Computational Science Research Center,Beijing 100193,China

    Keywords: exact diagonalization,Lanczos method,orthogonal polynomials

    1. Introduction

    In the study of quantum many-body systems, the exact diagonalization (ED) method is intensively used to calculate static and dynamic quantities.[1–4]Since the dimension of many-body Hilbert space increases exponentially with system size, ED is only appliable on systems of relatively small size.But ED is still an effective method since it can always get unbiased result compared with other variational methods like density matrix renormalization group,[5–7]and does not suffer from sign problem in quantum Monte Carlo simulations.[8–10]To solve the problem of large matrix dimension, ED is often based on algorithms from sparse matrix calculation,especially Lanczos method[11–14]and kernel polynomial method(KPM).[15–18]

    The Lanczos method is originally used in the calculation of ground state properties, since only extreme eigenvalues and eigenvectors converge well. With the introduction of finite temperature Lanczos method (FTLM) by Jakliˇc and Prelovˇsek,[19,20]finite temperature static and dynamic quantities can be calculated accurately. In FTLM, the true HamiltonianHis represented by an effective Hamiltonian ?Hin the Krylov subspace generated by Lanczos iteration. Then by expanding exp(-βH) into Taylor series, the calculation is reduced to evaluating quadratic forms of the type〈n|HkBHlA|n〉,which can be achieved using effective Hamiltonian ?H.

    KPM is another method used in the calculation of finite temperature properties. The main idea behind KPM is using Chebyshev polynomials to expand quantities like density of states, static and dynamic correlation functions. KPM converges very well at high temperature. But when temperature comes to zero,the low lying states,which KPM does not calculate very accurately,contribute an important part in thermodynamic quantities. To overcome this, the KPM should run several Lanczos iterations to get accurate low lying states,and projects these states out in later calculations. Despite the inaccuracy at low lying states, KPM is believed to be simpler and faster than Lanczos method,and does not suffer from the problem of losing orthogonality occurred in high order Lanczos iteration.[15]

    Recently there have been numerical experiments benchmarking the accuracy of FTLM and KPM,[21,22]but the relationship between these two classes of ED methods has not been well explored yet. In this paper, we develop and formulate FTLM in the framework of Gauss quadrature and orthogonal polynomials. In this framework, the Lanczos iteration in FTLM is regarded as a procedure to generate a series of orthogonal polynomials by which different functions of Hamiltonian is expanded. These orthogonal polynomials play the same role as that of Chebyshev polynomials in KPM.The combination of Gauss quadrature and Lanczos iteration has been used in the matrix computation community,[23,24]for example,to give error estimate of solution of linear equations,which is related to the quadratic formsu?A-iufori= 1,2.Here we generalized this method to the calculation of more general formu?f(H)Ag(H)v,which needs the notion of twodimensional Gauss quadrature and can be applied in the calculation of finite temperature dynamic correlation functions.This Gauss quadrature based framework fills the conceptual gap between FTLM and KPM, which makes it easy to apply orthogonal polynomial techniques commonly used by KPM in the FTLM calculation. The implementation of FTLM is reduced to one-or two-dimensional Gauss quadratures,which is similar to that of KPM, and is simpler than the procedure of Taylor series expansion.

    2. Fundamental theory

    In large scale exact diagonalization of quantum manybody systems, the HamiltonianHis given as a sparse Hermitian matrix of dimensionN. Usually the study of static and dynamic quantities involves calculating trace off(H), wherefis a smooth function. For example,f(H)=exp(-βH)for the calculation of partition function, andf(H)=exp(-iHt)for the calculation of real time evolution. As we will see in Section 3, we can get many static and dynamic quantities by a suitable choice off(H), and an effective way to calculate following quantities:

    1.u?f(H)u,

    2.u?f(H)vwhereu/=v,

    3.u?f(H)Ag(H)v.

    HereuandvareN-dimensional vectors representing quantum many-body states. As developed in following sections,the first quantity is related to one-dimensional Gauss quadrature,and the second and third quantities can be calculated by two-dimensional Gauss quadrature.

    2.1. Weighted summation and Gauss quadrature

    LetHbe a Hermitian matrix of dimensionNwith following eigenvalue decomposition:

    We can see thatu?f(H)ucan be seen as a weighted summation with weightswi=|(X?u)i|2and evaluation pointsλibeing the eigenvalue ofH. This form is exactly the same as that of Gauss quadrature,[25]which is extensively used in numerical calculation of integrals.

    To be more specific, Gauss quadrature is an approximation method to calculate integrals numerically. It transforms the integral into a weighted summation

    To validate the algorithm of FTLM above, we need to dig into the mathematical principles behind Gauss quadrature,which leads us to the theory of orthogonal polynomials. Furthermore,theory of orthogonal polynomials can give error estimates of FTLM,which is essential in numerical simulation.

    2.2. Theory of orthogonal polynomials

    The theory of orthogonal polynomials[27]is fundamental in the implementation and analysis of Gauss quadrature.Given interval(a,b),define inner product of any two functionsfandgin(a,b)as

    Equation(17)is the fundamental result of Gauss quadrature, which states that we can choose a set ofnnodes and weights to construct a quadrature rule of order 2n-1. One can find detailed proof of Eqs.(14)and(17)in Appendix A.

    We can restate Gauss quadrature in the language of discrete inner product. Given the nodesxiand weightswidefined above, we can define a discrete inner product in [a,b] and its associated norm by

    2.3. Relationship with Lanczos iteration

    Lanczos iteration is a standard method to transform a Hermitian matrix into tridiagonal form by an unitary transformation. For a given matrixHand a starting normalized vectoru,the Lanczos iteration is given by

    The transformed tridiagonal matrix is exactly the same asTndefined in Eq.(13).

    We can see many similarities between Eqs.(11)and(21).Actually Lanczos iteration does its transformation according to a sequence of orthogonal polynomials.[24]To see this, let us defineqi=pi(H)q0,wherepiis a polynomial of degreei.According to Eq.(21),we have

    which is the same recurrence relation ofpnin Eq.(11).

    Here for simplicity we assume that for the Hermitian matrixHof dimensionN, we can transform it into a tridiagonal matrixTNof the same dimension by Lanczos iteration with a suitable normalized starting vectoru. Note that Lanczos tridiagonalization procedure is generally an unitary transformation,namely,

    which is the same weight as that of Gauss quadrature in Eq.(16).

    Now we can explain more explicitly the algorithm of FTLM in Subsection 2.1 using the language of discrete inner product. Supposefis a smooth function anduis a normalized vector,by definition,we have

    which means thatMLanczos iterations will give approximation up to order of 2M.

    2.4. Two-dimensional Gauss quadrature

    Here comes to the question of how to calculate the following quantities:

    1.u?f(H)vwhereu/=v,

    2.u?f(H)Ag(H)v.

    We can see that the second quantity is a general form of the first one givenA=g(H)=1. As for the first case, ifu,vare real vectors andHis a real symmetric matrix,we can use the following identity[23]to calculateuT f(H)v:

    Then we can use the method talked before to calculateuT f(H)v, the only difference is that we need to run Lanczos iteration twice.

    But for the general case, namely,u?f(H)Ag(H)v, we need a different method, which needs the notion of twodimensional Gauss quadrature,as will be discussed below.

    Two-dimensional Gauss quadrature, and also twodimensional orthogonal polynomials, can be easily constructed from a tensor product of two one-dimensional Gauss quadratures and orthogonal polynomials respectively. Formally,given two weighted Hilbert spaceL2w(a,b)andL2?w(a,b),we can construct a Hilbert space on(a,b)×(a,b)by defining the following inner product:

    in which we have introduced an auxiliary functionC(x,y). It is only defined at some discrete points as follows:which means that we only need to run one Lanczos iteration forM1steps. In general case,the numerical effort for the calculation ofμmnranges betweenN(M1+M2)andNM1M2operations,depending on whether memory is available for savingM1(orM2)vectors of dimensionN.

    3. Formulas for static and dynamic quantities

    Until now we have not discussed how to calculate static and dynamic quantities for a real quantum system. Actually the routines in FTLM share many similarities as in KPM,[15,17]thus can be expressed in a unified form.

    In this section and later Dirac bra–ket notations will be used to denote matrix vector multiplication, this notation is inconvenient in previous sections but more suitable when it comes to physical applications.

    3.1. Stochastic evaluation of traces

    Although we have the method to calculate〈u|f(H)|u〉,in many cases we need to evaluate the trace of a given operator.For example,the partition function is given by a trace

    where{|i〉}is a complete set of basis.

    At first glance it seems impossible to evaluate since the Lanczos iteration needs to be repeated for allNstates of a given basis, which makes the total computational effort proportional toN2. It turns out that extremely good approximation of the trace can be obtained with a much simpler approach: stochastic evaluation of trace, in which estimate of trace is based on the average over a small numberR ?Nof randomly chosen vectors[15,30]

    Typical chosen ofξrican be Gaussian distribution with average 0 and standard deviation 1.

    3.2. Thermal average and density of states

    Given partition functionZ=tr[e-βH], the thermal average of operatorAis

    We can use stochastic evaluation of traces to calculate these quantities. From Eq. (43) we can see that only one Gauss quadrature rule is need to calculate both〈r|e-βH|r〉and〈r|e-βHA|r〉for each given random vector|r〉, so only one Lanczos iteration is need for the given random vector. This can be generalized to many operators if we want to calculate thermal average of these operators at the same time.

    Here we consider two limiting cases to illustrate the accuracy of FTLM.

    1.β →0. This is the high temperature limit,where

    and according to Eq.(32),few Lanczos iteration will give accurate result.

    2.β →∞. This is the low temperature limit, e-βxwill be sharply dominated atx=Emin. From the theory of orthogonal polynomial expansion, many high order expansion will contribute to this nearly discontinuous function. Furthermore,Gibbs oscillation[17,31]will creep into the expanded function,which introduces numerical instability. In this case,low temperature Lanczos method[32]have been proposed to address this problem. One can also use ground state Lanczos method in this super low temperature regime,which is generally more accurate.

    As for density of states,it is defined as

    3.3. Real time evolution

    As a studying case,here we consider real time evolution.Specifically,we are interested in the quantity

    equation(59)is accurate for very few Lanczos iteration.

    2.t →∞. In this case both sin(tx) and cos(tx) will oscillate badly in the integration interval[Emin,Emax],and Gauss quadrature based integration rule will fail to converge.

    So the real time evaluation is different from imaginary time evaluation in the sense that real time evaluation will fail to converge in thet →∞limit, while imaginary time evaluation will admit accurate results in bothβ →0 andβ →∞limits.

    3.4. Dynamic correlation function

    Before we dig into the calculation of finite temperature correlation function, we may first give a glance for the zero temperature case. For zero temperature,the dynamic correlation function for two operatorAandBis

    in which the term〈r|e(-β+it)HAe-iHtA|r〉follows the general form〈u|f(H)Ag(H)|v〉withf(x;t)= e(-β+it)xandg(x;t)=e-itx, and needs a two-dimensional Gauss quadrature to calculate.

    As mentioned in real time evolution, Gauss quadrature based FTLM is not accurate for evolution timetbeing large,this is also true in Eq.(61). In this case it is better to calculate the Fourier transform ofC(t)

    4. Numerical results of 1D XY model

    In this section we give numerical results to illustrate the idea of Gauss quadrature based finite temperature Lanczos method. The numerical calculation is carried out on the onedimensionalXYmodel.

    TheXYmodel is introduced by Lieb,Schultz and Mattis in 1961,[33]they considered a chain ofN1/2-spins,governed by the Hamiltonian

    Fig.1.(a)specific heat and(b)magnetic susceptibility of 1D XY model.In both figures the Lanczos iteration steps is set to 100,and the number of random vectors(denoted by R)is set to 20 and 100 respectively.

    The second quantity we consider is magnetic susceptibility,which is defined as Both〈m2z〉and〈mz〉can be calculated by an unsymmetrical Gauss quadrature of the form〈u|f(H)|v〉. The numerical results are shown in Fig.1(b).

    The computational effort to calculateCVandχare approximately same,since only one Lanczos iteration is needed to calculate the symmetric Gauss quadrature〈u|f(H)|u〉and the unsymmetrical Gauss quadrature〈u|f(H)|v〉. In both case the Lanczos iteration steps is set to 100,and the number of random vectors(denoted byR)is set to 20 and 100 respectively.From Fig.1 we can see that FTLM is accurate at high temperature, while the accuracy at low temperature is influenced by statistical fluctuations from random vectors.

    The third quantity we calculate is the dynamic correlation function of the average magnetization inzdirection,[34]which is defined as

    This quantity can be calculated by a two-dimensional Gauss quadrature of the form〈u|f(H)Ag(H)|v〉. The numerical results are shown in Fig.2(a).

    We can see that numerical result agrees well with exact result whent <10. But for lagert, the numerical result is very inaccurate. As discussed in real time evolution(see Subsection 3.3), Gauss quadrature based integration will fail to converge for highly oscillate functions such as eitHfor larget.

    It is usually more convenient to study the Fourier transform ofχ(t)defined as follows:

    The numerical results are shown in Fig.2(b).

    The calculation ofχ(ω) also involves two-dimensional Gauss quadrature in which the Diracδfunctions are replaced by Lorentz functions(see Eq.(65)). Since the time scale that FTLM can accurately calculate can not be large, the resolution inωspace, which is represented by the parameterεin Lorentz function,is also limited due to the time-energy uncertainty principle. As shown in Fig.2(b),the parameterεis set to 0.01. Smallerεwill lead to negativeχ(ω) values, which indicates the failure of convergence.

    5. Conclusion

    This paper has shown the tight relationship between Lanczos algorithm and orthogonal polynomials, and developed finite temperature Lanczos method in the framework of Gauss quadrature. The Lanczos algorithm can be regarded as a procedure to generate a series of orthogonal polynomials by which different functions of HamiltonianHare expanded.These orthogonal polynomials also define Gauss quadrature rules.The nodes and weights of Gauss quadrature are given by the eigenvalues and eigenvectors of tridiagonal matrix which is generated by the Lanczos iteration.Given the Gauss quadrature rule,the calculation of quadratic formu?f(H)u,which is the main part of finite temperature Lanczos method, can be reduced to a one-dimensional Gauss quadrature. The calculation of more general formu?f(H)Ag(H)vcan be reduced to a two-dimensional Gauss quadrature. Then we showed that many finite temperature static and dynamic quantities can be calculated by one-or two-dimensional Gauss quadratures.

    Our development of FTLM is not to improve numerically the original FTLM introduced by Jakliˇc and Prelovˇsek, since both methods admit same numerical results. The advantage of this Gauss quadrature based framework is that it fills the conceptual gap between FTLM and KPM, and makes it easy to apply orthogonal polynomial techniques commonly used by KPM in the FTLM calculation. One unexplored extension of this framework is applying different kernels in FTLM to reduce Gibbs oscillation in the expansion of incontinuous functions. We believe that after this development,FTLM will find more applications in the calculations of quantum many-body systems.

    Appendix A: Two theorems on orthogonal polynomials

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 11734002 and U1930402).All numerical computations were carried out on the Tianhe-2JK at the Beijing Computational Science Research Center(CSRC).

    猜你喜歡
    李健林海
    李健 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:10
    李健 用平淡演繹傳奇
    海峽姐妹(2018年10期)2018-12-26 01:21:06
    李健作品
    李健美術(shù)作品六幅
    戲劇之家(2018年12期)2018-06-13 10:08:20
    歡 沁
    琴童(2017年10期)2017-10-31 06:43:07
    冬陽
    琴童(2017年9期)2017-10-16 16:47:03
    林海
    寶藏(2017年6期)2017-07-20 10:01:06
    郝林海的水彩畫與俳意
    中華奇石(2016年11期)2017-03-16 07:59:49
    李健 互聯(lián)網(wǎng)二手車更“有愛”
    中國汽車界(2016年1期)2016-07-18 11:13:32
    郝林海的水彩畫與俳意
    中華奇石(2016年6期)2016-06-21 08:11:04
    简卡轻食公司| 一级av片app| 成人亚洲精品av一区二区| 亚洲三级黄色毛片| 亚洲成人久久性| 国产精品久久久久久精品电影| 欧美日韩中文字幕国产精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 91麻豆av在线| 99久久九九国产精品国产免费| 亚洲av成人不卡在线观看播放网| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成电影免费在线| 看黄色毛片网站| 一区二区三区高清视频在线| 亚洲av.av天堂| а√天堂www在线а√下载| 老司机午夜十八禁免费视频| 亚洲,欧美,日韩| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美人成| 99热6这里只有精品| 脱女人内裤的视频| 欧美+亚洲+日韩+国产| 亚州av有码| 午夜老司机福利剧场| 亚洲美女搞黄在线观看 | 久久人妻av系列| 成年版毛片免费区| 免费av毛片视频| 亚洲欧美日韩卡通动漫| 日本三级黄在线观看| 亚洲最大成人中文| 久久婷婷人人爽人人干人人爱| 日日干狠狠操夜夜爽| 又爽又黄无遮挡网站| 国产伦一二天堂av在线观看| 国产三级在线视频| av视频在线观看入口| 国产精品久久久久久久久免 | 波多野结衣高清作品| 午夜免费激情av| 国产久久久一区二区三区| 久久久久国产精品人妻aⅴ院| 无遮挡黄片免费观看| 国产精品自产拍在线观看55亚洲| 国产视频内射| 黄色一级大片看看| 国产伦精品一区二区三区视频9| 日本a在线网址| 男人狂女人下面高潮的视频| 特级一级黄色大片| 国产精品av视频在线免费观看| 一区二区三区四区激情视频 | 久久中文看片网| 18禁裸乳无遮挡免费网站照片| 尤物成人国产欧美一区二区三区| 午夜福利在线观看免费完整高清在 | 老熟妇仑乱视频hdxx| 在线免费观看的www视频| 日韩高清综合在线| 最近最新中文字幕大全电影3| 99久久九九国产精品国产免费| 少妇被粗大猛烈的视频| 亚洲五月婷婷丁香| 赤兔流量卡办理| 欧美日韩瑟瑟在线播放| 精品久久久久久久久久久久久| 3wmmmm亚洲av在线观看| 在线免费观看的www视频| 亚洲最大成人av| 日韩欧美三级三区| 一二三四社区在线视频社区8| 亚洲成人中文字幕在线播放| 久久亚洲真实| 精品久久久久久久久久免费视频| 亚洲 欧美 日韩 在线 免费| 哪里可以看免费的av片| 又黄又爽又刺激的免费视频.| 精品久久久久久久人妻蜜臀av| 久久久久久九九精品二区国产| 国产成年人精品一区二区| 给我免费播放毛片高清在线观看| a级一级毛片免费在线观看| 成人av一区二区三区在线看| 免费看美女性在线毛片视频| 老司机福利观看| 亚洲经典国产精华液单 | 久久久国产成人精品二区| 特级一级黄色大片| 我的女老师完整版在线观看| 成人性生交大片免费视频hd| 国产精品不卡视频一区二区 | 高清在线国产一区| 999久久久精品免费观看国产| 一二三四社区在线视频社区8| 国产亚洲精品久久久com| 久久久久性生活片| 三级毛片av免费| 国产69精品久久久久777片| 91麻豆av在线| 夜夜躁狠狠躁天天躁| 成人欧美大片| 国产乱人伦免费视频| 日本成人三级电影网站| 三级国产精品欧美在线观看| 精品久久久久久久久亚洲 | 国产一区二区在线av高清观看| 免费看美女性在线毛片视频| 日本a在线网址| 嫁个100分男人电影在线观看| 老鸭窝网址在线观看| 成人av在线播放网站| xxxwww97欧美| 久久精品国产亚洲av天美| 九色国产91popny在线| 中文字幕av在线有码专区| 亚洲国产精品合色在线| 国产精品久久久久久久电影| 又粗又爽又猛毛片免费看| 亚洲精品日韩av片在线观看| 免费电影在线观看免费观看| 国产高清有码在线观看视频| 久久九九热精品免费| 日本一本二区三区精品| 久久人人精品亚洲av| 69人妻影院| 直男gayav资源| 动漫黄色视频在线观看| 国内毛片毛片毛片毛片毛片| 高清在线国产一区| 国产精品久久久久久亚洲av鲁大| 亚洲七黄色美女视频| 尤物成人国产欧美一区二区三区| 久久久久亚洲av毛片大全| 日本a在线网址| 精品人妻一区二区三区麻豆 | 怎么达到女性高潮| 精品久久久久久久久亚洲 | 日韩欧美国产在线观看| av在线观看视频网站免费| 亚洲aⅴ乱码一区二区在线播放| 99久久成人亚洲精品观看| 精品一区二区三区人妻视频| 国产精品女同一区二区软件 | 国产精品98久久久久久宅男小说| 久久久久久久午夜电影| 99久久成人亚洲精品观看| 日韩欧美 国产精品| 我要看日韩黄色一级片| 日韩欧美国产在线观看| 国产精品综合久久久久久久免费| 免费大片18禁| 天堂网av新在线| 欧美又色又爽又黄视频| 男人的好看免费观看在线视频| 可以在线观看毛片的网站| 国产野战对白在线观看| 亚洲av免费高清在线观看| 中文字幕av在线有码专区| 亚洲精品成人久久久久久| 亚洲精品久久国产高清桃花| 99久久精品一区二区三区| 日本与韩国留学比较| 嫩草影院入口| 免费av观看视频| 欧美bdsm另类| 非洲黑人性xxxx精品又粗又长| 又黄又爽又免费观看的视频| 九色成人免费人妻av| 久久精品国产99精品国产亚洲性色| 免费av不卡在线播放| 亚洲熟妇熟女久久| 色尼玛亚洲综合影院| 欧美一区二区精品小视频在线| 欧美性感艳星| 天堂网av新在线| 午夜福利18| 亚洲精品影视一区二区三区av| 免费观看精品视频网站| 男女做爰动态图高潮gif福利片| 麻豆国产av国片精品| 91狼人影院| 免费av毛片视频| 无人区码免费观看不卡| 全区人妻精品视频| 99国产精品一区二区蜜桃av| 国产探花在线观看一区二区| 日韩欧美一区二区三区在线观看| 成人性生交大片免费视频hd| 亚洲人成网站在线播放欧美日韩| 观看美女的网站| 真实男女啪啪啪动态图| 2021天堂中文幕一二区在线观| 老鸭窝网址在线观看| 日日夜夜操网爽| 午夜免费成人在线视频| 在线观看午夜福利视频| 亚洲成av人片在线播放无| 美女大奶头视频| 久久久久国内视频| 搡老熟女国产l中国老女人| 男女下面进入的视频免费午夜| 99riav亚洲国产免费| 精品国内亚洲2022精品成人| 美女免费视频网站| 久久九九热精品免费| 人人妻人人看人人澡| 少妇被粗大猛烈的视频| 别揉我奶头~嗯~啊~动态视频| 91在线观看av| 国产不卡一卡二| 亚洲最大成人手机在线| 国产麻豆成人av免费视频| 在线观看舔阴道视频| av欧美777| a在线观看视频网站| 看黄色毛片网站| 男女下面进入的视频免费午夜| 禁无遮挡网站| 国产精品99久久久久久久久| 波多野结衣高清作品| 久久99热6这里只有精品| 亚洲av二区三区四区| 亚洲国产欧美人成| 亚洲国产精品久久男人天堂| 国产免费一级a男人的天堂| 99国产综合亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区视频了| 99国产综合亚洲精品| av黄色大香蕉| 少妇被粗大猛烈的视频| 一本一本综合久久| 婷婷精品国产亚洲av| 波多野结衣高清作品| 色视频www国产| 小说图片视频综合网站| a级毛片a级免费在线| 免费看日本二区| 夜夜看夜夜爽夜夜摸| 亚洲狠狠婷婷综合久久图片| 最近最新中文字幕大全电影3| 波多野结衣高清无吗| 老鸭窝网址在线观看| 日日摸夜夜添夜夜添小说| av国产免费在线观看| 日韩亚洲欧美综合| 国产乱人伦免费视频| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 国产免费一级a男人的天堂| 男女之事视频高清在线观看| 可以在线观看毛片的网站| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 国产亚洲精品久久久久久毛片| 久久久久久久午夜电影| 国产又黄又爽又无遮挡在线| 亚洲欧美日韩无卡精品| 日韩有码中文字幕| 小说图片视频综合网站| 69人妻影院| 中文字幕久久专区| 国产蜜桃级精品一区二区三区| 国产欧美日韩一区二区精品| 成年版毛片免费区| 国产精品女同一区二区软件 | 麻豆成人av在线观看| av在线天堂中文字幕| 久久久精品大字幕| 国产精品一及| 日本三级黄在线观看| 亚洲自拍偷在线| 欧美色视频一区免费| 黄色日韩在线| 老鸭窝网址在线观看| 欧美日韩国产亚洲二区| 黄色视频,在线免费观看| 看免费av毛片| 88av欧美| 国产在线精品亚洲第一网站| 国产精品,欧美在线| 中出人妻视频一区二区| 色在线成人网| 日本黄色片子视频| 亚洲 国产 在线| 日本一二三区视频观看| 99视频精品全部免费 在线| 日本a在线网址| 在线播放无遮挡| 国产高清视频在线观看网站| 亚洲在线自拍视频| 精品乱码久久久久久99久播| 天堂影院成人在线观看| 在线观看一区二区三区| 色综合欧美亚洲国产小说| 97碰自拍视频| 国产成人aa在线观看| 999久久久精品免费观看国产| 欧美成人a在线观看| 99国产精品一区二区三区| 欧美性猛交黑人性爽| 高潮久久久久久久久久久不卡| 最新中文字幕久久久久| 国产精品久久电影中文字幕| avwww免费| 又爽又黄无遮挡网站| 国产三级中文精品| bbb黄色大片| 不卡一级毛片| 好男人在线观看高清免费视频| 国产老妇女一区| 91久久精品国产一区二区成人| 国产伦在线观看视频一区| 亚洲无线在线观看| 赤兔流量卡办理| 九色成人免费人妻av| 国产高清三级在线| 亚洲av美国av| 高潮久久久久久久久久久不卡| 色综合亚洲欧美另类图片| 欧美极品一区二区三区四区| 欧美在线黄色| 久久99热6这里只有精品| 一进一出抽搐gif免费好疼| 嫩草影院入口| 国产伦精品一区二区三区四那| 深夜a级毛片| 最近最新免费中文字幕在线| 怎么达到女性高潮| 色在线成人网| 国产精华一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲国产精品成人综合色| 亚洲最大成人中文| 亚洲黑人精品在线| 波野结衣二区三区在线| 久久午夜福利片| 老司机深夜福利视频在线观看| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清在线视频| 亚洲国产欧洲综合997久久,| 免费在线观看日本一区| 色哟哟·www| 成人欧美大片| 综合色av麻豆| 91狼人影院| 99国产综合亚洲精品| 亚洲国产日韩欧美精品在线观看| 有码 亚洲区| 日日夜夜操网爽| 天堂√8在线中文| 国内精品久久久久精免费| 亚洲av免费在线观看| 真实男女啪啪啪动态图| 十八禁网站免费在线| 观看免费一级毛片| 免费高清视频大片| 免费人成在线观看视频色| АⅤ资源中文在线天堂| 国产av麻豆久久久久久久| 深夜精品福利| 窝窝影院91人妻| 一二三四社区在线视频社区8| 亚洲av成人精品一区久久| 88av欧美| 日日摸夜夜添夜夜添小说| 床上黄色一级片| 欧美潮喷喷水| 亚洲狠狠婷婷综合久久图片| 欧美激情国产日韩精品一区| 欧美激情在线99| 亚洲av五月六月丁香网| 18美女黄网站色大片免费观看| 老熟妇乱子伦视频在线观看| 午夜老司机福利剧场| 国产亚洲精品久久久久久毛片| 18禁裸乳无遮挡免费网站照片| 欧美日韩综合久久久久久 | 熟女人妻精品中文字幕| av天堂在线播放| 99热这里只有是精品在线观看 | 亚洲国产精品久久男人天堂| 国产精品一及| 免费在线观看日本一区| 亚洲最大成人av| 91狼人影院| 亚洲av第一区精品v没综合| 日韩欧美国产一区二区入口| 99热6这里只有精品| 91午夜精品亚洲一区二区三区 | 亚洲午夜理论影院| 国内毛片毛片毛片毛片毛片| 国产精品国产高清国产av| 岛国在线免费视频观看| 麻豆成人av在线观看| 久久久久九九精品影院| 一进一出抽搐gif免费好疼| 亚洲人与动物交配视频| 国产午夜精品久久久久久一区二区三区 | 黄色日韩在线| 一本久久中文字幕| ponron亚洲| 久久久国产成人免费| 成年女人看的毛片在线观看| 熟女人妻精品中文字幕| 亚洲自拍偷在线| 精品日产1卡2卡| 少妇丰满av| 中文字幕免费在线视频6| 国产精品av视频在线免费观看| 久久久久精品国产欧美久久久| www.色视频.com| 男女那种视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 好看av亚洲va欧美ⅴa在| 亚洲av第一区精品v没综合| 激情在线观看视频在线高清| 精品久久久久久久末码| 黄色配什么色好看| 欧美性猛交╳xxx乱大交人| 亚洲av中文字字幕乱码综合| 黄片小视频在线播放| 美女高潮的动态| 精品一区二区三区视频在线观看免费| 我要搜黄色片| 少妇的逼水好多| 久久精品影院6| 色尼玛亚洲综合影院| 久久国产乱子免费精品| 热99re8久久精品国产| 成年女人看的毛片在线观看| 男女视频在线观看网站免费| 久久久久久久久久成人| 色综合站精品国产| 天堂网av新在线| 亚洲av.av天堂| 亚洲男人的天堂狠狠| 日本五十路高清| 成人性生交大片免费视频hd| 亚洲国产高清在线一区二区三| 少妇裸体淫交视频免费看高清| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品电影| 成年女人毛片免费观看观看9| 不卡一级毛片| 欧美成人a在线观看| 天天一区二区日本电影三级| 舔av片在线| 国产欧美日韩精品一区二区| 丰满人妻一区二区三区视频av| 校园春色视频在线观看| 国产午夜精品久久久久久一区二区三区 | 99久久精品国产亚洲精品| 国产午夜福利久久久久久| 内地一区二区视频在线| 一进一出好大好爽视频| 国产激情偷乱视频一区二区| 免费大片18禁| 女同久久另类99精品国产91| 日韩 亚洲 欧美在线| 日韩欧美精品v在线| www.熟女人妻精品国产| 国产成人福利小说| 日本熟妇午夜| 毛片女人毛片| 国产三级中文精品| 99热这里只有精品一区| 国产国拍精品亚洲av在线观看| 亚洲成av人片在线播放无| 亚洲av熟女| 一区二区三区激情视频| 日本撒尿小便嘘嘘汇集6| 午夜福利欧美成人| 天堂网av新在线| 亚洲性夜色夜夜综合| 亚洲色图av天堂| 国产精品嫩草影院av在线观看 | 精品久久久久久久久亚洲 | 欧美三级亚洲精品| 非洲黑人性xxxx精品又粗又长| 精华霜和精华液先用哪个| 又爽又黄a免费视频| 成年女人永久免费观看视频| 欧美激情久久久久久爽电影| 午夜免费激情av| 亚洲av成人不卡在线观看播放网| 人妻久久中文字幕网| 欧美黑人欧美精品刺激| 搡老熟女国产l中国老女人| 亚洲精华国产精华精| 1000部很黄的大片| 亚洲第一欧美日韩一区二区三区| 在线免费观看的www视频| 日韩欧美在线乱码| 色精品久久人妻99蜜桃| 久久久久久九九精品二区国产| 久久久国产成人精品二区| 高清日韩中文字幕在线| 在线播放无遮挡| 亚洲精品影视一区二区三区av| 12—13女人毛片做爰片一| 久久精品国产99精品国产亚洲性色| 一进一出好大好爽视频| 免费av观看视频| 中亚洲国语对白在线视频| 日韩免费av在线播放| 亚洲av不卡在线观看| 久久久久久久久久黄片| 一本综合久久免费| 高清毛片免费观看视频网站| 国产男靠女视频免费网站| 亚洲av不卡在线观看| 波多野结衣高清作品| 特级一级黄色大片| 成年人黄色毛片网站| 久久国产乱子伦精品免费另类| 午夜久久久久精精品| 噜噜噜噜噜久久久久久91| 黄色日韩在线| 亚洲人成伊人成综合网2020| 婷婷六月久久综合丁香| 色综合婷婷激情| 国产精品久久视频播放| 国产精品久久久久久亚洲av鲁大| 欧美国产日韩亚洲一区| 一个人免费在线观看的高清视频| 亚洲色图av天堂| 国产成人aa在线观看| 亚洲片人在线观看| 亚洲av中文字字幕乱码综合| 亚洲精华国产精华精| 日韩精品青青久久久久久| 国产精品久久电影中文字幕| 成人特级av手机在线观看| 婷婷精品国产亚洲av| 午夜激情福利司机影院| 香蕉av资源在线| 免费av观看视频| 18禁裸乳无遮挡免费网站照片| 神马国产精品三级电影在线观看| 黄色丝袜av网址大全| 国产一区二区三区在线臀色熟女| 日本成人三级电影网站| 夜夜夜夜夜久久久久| 91麻豆精品激情在线观看国产| 在线播放无遮挡| 男人的好看免费观看在线视频| 2021天堂中文幕一二区在线观| 国产大屁股一区二区在线视频| 露出奶头的视频| 小说图片视频综合网站| 最新在线观看一区二区三区| 天堂动漫精品| 激情在线观看视频在线高清| 51国产日韩欧美| 精品一区二区免费观看| 国产熟女xx| 国产亚洲精品久久久com| 97人妻精品一区二区三区麻豆| 国产在线精品亚洲第一网站| 一区二区三区四区激情视频 | 久久九九热精品免费| 中文亚洲av片在线观看爽| 国产精品嫩草影院av在线观看 | 精品久久久久久久久久免费视频| 美女黄网站色视频| 脱女人内裤的视频| 男女视频在线观看网站免费| 99国产极品粉嫩在线观看| 国产色爽女视频免费观看| 最近中文字幕高清免费大全6 | 精品久久久久久,| 亚洲三级黄色毛片| 欧美成人a在线观看| 亚洲精品一区av在线观看| 成人美女网站在线观看视频| 丝袜美腿在线中文| 欧美又色又爽又黄视频| 又黄又爽又刺激的免费视频.| 69人妻影院| 好男人电影高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 噜噜噜噜噜久久久久久91| 亚洲电影在线观看av| 成年免费大片在线观看| АⅤ资源中文在线天堂| 免费av不卡在线播放| 欧美+日韩+精品| 色精品久久人妻99蜜桃| 麻豆久久精品国产亚洲av| 久久久久性生活片| 中文字幕人成人乱码亚洲影| 亚洲第一电影网av| 国产精品精品国产色婷婷| 亚洲第一区二区三区不卡| 校园春色视频在线观看| 国产精品自产拍在线观看55亚洲| 成年女人看的毛片在线观看| 亚洲男人的天堂狠狠| 国产精品自产拍在线观看55亚洲| 999久久久精品免费观看国产| 亚洲av电影不卡..在线观看| 噜噜噜噜噜久久久久久91| 日本黄大片高清| 国产久久久一区二区三区| 超碰av人人做人人爽久久| 久久热精品热| 国产 一区 欧美 日韩| 嫩草影院新地址| 国产精品影院久久| 亚洲三级黄色毛片| www.www免费av| 久久精品国产自在天天线|