• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions

    2022-05-16 07:10:38ShanxiuXie謝善秀YongChen陳勇JunchenYe葉俊辰
    Chinese Physics B 2022年5期
    關(guān)鍵詞:陳勇見(jiàn)式反應(yīng)釜

    Shanxiu Xie(謝善秀) Yong Chen(陳勇) Junchen Ye(葉俊辰)

    Yugu Chen(陳雨谷)1, Na Peng(彭娜)1, and Chengzhuo Xiao(肖成卓)1,3,?

    1Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education,School of Physics and Electronics,

    Hunan University,Changsha 410082,China

    2Institute of Applied Physics and Computational Mathematics,Beijing 100094,China

    3Collaborative Innovation Center of IFSA(CICIFSA),Shanghai Jiao Tong University,Shanghai 200240,China

    Keywords: stimulated Raman scattering,Landau damping,distribution functions

    1. Introduction

    Stimulated Raman scattering(SRS),in which an incident laser decays into a scattered light wave and a Langmuir wave,is one of the most significant instabilities in inertial confinement fusion (ICF). It can not only scatter the pump energy,but also produce hot electrons,[1–3]degrading the implosion of fuel capsule.Therefore,understanding the evolution of SRS in the whole stage of laser plasma interaction, during which the distribution of plasma changes,is crucial for controlling SRS to an acceptable level.

    It is well-known and well-understood that SRS is often triggered in an equilibrium plasma, or the so-called Maxwellian distributed plasma. Research in early years was mostly based on the Maxwellian distribution functions, such as the use of fluid equations.[4–6]However,researchers found that modification of the distribution function due to nonlinear evolution of SRS has non-negligible effects on SRS. Using kinetic simulations, Vuet al.revealed that when particles are trapped, it changes the Landau damping of Langmuir wave, which then leads to an inflation of SRS.[7,8]The trapped-particle distribution function always has an plateau near the phase velocity of Langmuir wave. This modified distribution function can trigger new wave modes other than the Langmuir wave in the Maxwellian distribution, such as the beam acoustic mode(BAM)[9–11]and the electron acoustic wave(EAW),[12–16]and it also evolves to new trapping induced nonlinearities, such as nonlinear frequency shift,[7,17]modulation instability,[18,19]sideband instability,[20–23]wavefront bowing,[24]etc.

    There remain fundamental questions on the evolution of SRS in such phases, e.g., how does SRS response to these modified plasma distribution functions and what is the essential role of Landau damping acting in these processes?For Maxwellian distribution, the SRS growth rate and Landau damping are well-known. For trapped-particle distribution, there are several individual models calculating the Landau damping and explaining its role in the SRS.[36–39]However, they all applied to fluid models and no kinetic simulations are discussed. While for the bi-Maxwellian distribution,its effect on SRS is seldom studied,except that Roseet al.[40]studied the Landau damping under such distribution functions.In addition, collisions are considered to be ignored in many cases for it is always considered small. Nevertheless,in 1958,Lenardet al.were among the first works to study the effect of collisions on Landau damping using a Fokker–Planck-type equations.[41]In 1992,Epperleinet al.have shown that collisions increase the damping.[42]In 2003,Penget al.proposed that the presence of collisions in the high electron density region greatly reduces the growth of SRS.[43]These prompted us to include the collision term in this paper to consider its impact on our research.

    Therefore, in this paper we study the relationship between Raman growth and Landau damping with different distribution functions which occur in three representative stages:Maxwellian distribution representing the very early stage of SRS, flattened distribution aimed at showing effects of particle trapping, and bi-Maxwellian distribution for the very late stage. The Landau damping and growth rate are obtained through analytic solutions and kinetic Vlasov simulations.Since in a fully kinetic laser-plasma simulation,one cannot distinguish the damping from the growth behavior,we numerically solve the Vlasov–Poisson equations to find the Landau damping under different distribution functions and compare with the growth rate of SRS obtained from the Vlasov–Maxwell simulations under the same conditions.

    Generally,the Landau damping prevents SRS from growing, and thus reverse trends of Landau damping and growth rate are observed all over the simulations regardless of which plasma distribution function it is, and in agreements with our theoretical predictions. For specific distribution functions,we obtain the properties of Landau damping or growth rate on their determining quantities. For example, Landau damping decreases when increasing the width of plateau, showing the enhancement of SRS as particle trapping becomes severe.The Landau damping in a bi-Maxwellian distribution function is more complicated, which depends on the choice of hotelectron temperature and hot-electron fraction.It shows a constantly increasing of Landau damping when the hot-electron fraction increases and a maximum damping existing at an optimal hot-electron temperature. In addition, we also study the effect of collisional damping on the whole damping and growth rate.

    This paper is organized as follows. In Section 2,we give the theoretical derivations of Landau dampings and growth rates under three different distribution functions and the basis of our Vlasov simulations. Then we illustrate how to obtain the simulated Landau damping and growth rates in Section 3. In Section 4,the analytic Landau damping is compared with the simulation results from electrostatic Vlasov simulation,and Section 5 shows the numerical studies of the relationship between Landau damping and Raman growth rate under different distribution functions. Effects of collisional damping on the whole damping and growth rate are discussed in Section 6. Lastly,conclusions are given in Section 7.

    2. Theoretical and numerical basis

    2.1. Landau damping

    When a Langmuir wave propagates in the collisionless plasma, particles with velocity close to the phase velocity of Langmuir wave will be resonant with the wave. Those with velocities higher than the phase velocity give excess energy to the wave, while those with velocities lower than the phase velocity gain energy from the wave. Therefore, if more resonant particles have velocities lower than the phase velocity,the total energy of the wave will decrease, which is the so-called Landau damping. Landau damping can be analyzed using the linearized Vlasov–Poisson theory. According to the standard procedure,[44]the dispersion relation of a electrostatic wave in a Vlasov–Poisson plasma is

    whereDRandDIare the real and imaginary parts ofD(ω,k),andωRis the solution ofDR(ωR,k)=0. This shows that Landau damping is related to the derivative of the velocity distribution function. Therefore, we can substitute different distribution functions into the above formula to get their Landau dampings.

    The most common velocity distribution is the Maxwellian distribution, which is seen in the equilibrium plasma. Its distribution function is presented in Eq. (3). Substituting it into Eqs.(1)and(2), the Landau damping under Maxwellian distribution is given by

    2.2. Raman growth rate

    The process of SRS satisfies the three-wave coupling equations. As is well-known, the kinetic dispersion relation of SRS is obtained by solving the linearized three-wave coupling equations in the kinetic regime,[4,10]

    水合物的生成速率R(Rate)表示反應(yīng)釜內(nèi)甲烷水合物生成的快慢程度,可以用單位時(shí)間內(nèi)甲烷的消耗量表征,見(jiàn)式(2)。

    is the undamped growth rate under the Maxwellianian velocity distribution.

    Equation (10) shows that the Raman growth rate is anticorrelated with the magnitude of Landau damping. Moreover,we can substitute the Landau dampings of different distribution functions into the formula to obtain the approximate Raman growth rates.

    2.3. Vlasov solver

    The simulations are performed through a Vlasov code.Considering a one-dimensional case and assuming laser propagates along thexdirection, the following equations can be used to describe the kinetic interactions between laser and plasma. They are the Vlasov equation, Maxwell’s equation,Poisson equation and momentum equation,

    Equation(11)withBz=0 and Eq.(13)form our numerical basis of studying the Landau damping,and Eqs.(11),(12),and(14)constitute the basic equations of SRS.Also,note that although collisional damping is included in the solver (right hand side (RHS) of Eq. (11)), we neglect it during most of the time to study the non-collisional cases. In Section 6, we include this term to discuss the growth and damping with collisional effect under consideration.

    3. Data processing

    Note that in a fully kinetic laser-plasma simulation, one cannot distinguish the damping from the growth behavior.Therefore, two types of Vlasov simulations are implemented to study the relationship between the Landau damping of Langmuir wave and the Raman growth under various distributions. A Vlasov–Maxwell or electromagnetic Vlasov code is used to measure the growth rate of SRS extracted from the reflectivity,and a Vlasov–Poisson or electrostatic Vlasov code is used to obtain the Landau damping of Langmuir wave under the same condition of electromagnetic simulation. Here the same condition means that the Langmuir wave exited by SRS is the right wave in electrostatic Vlasov simulation, sokλDof the Langmuir waves in both simulations must keep the same. There are some fixed parameters in our electromagnetic Vlasov code. The number of total space grids isNx=6000,and L=95.5λpumpis the scale of plasma with the wave length of pump laserλpump=351 nm. The space grids of speed isNυ=256 and the maximum speed of electronυmax=0.8c,step size of time is dt=0.1ω0-1and the total length of time isNt=100000dt.

    Figure 1 shows typical data from our electrostatic and electromagnetic Vlasov simulations. The Landau damping is measured from the slope of the initially decreasing logarithm of the electrostatic field as shown in Fig. 1(a). Similarly, we take a logarithm of the SRS reflectivity and measure the slope of its linear part as shown in Fig. 1(b). Since the reflectivity represents field energy which is the square of the amplitude,the amplitude growth rate is half the slope of logarithm of the reflectivity. Both of the damping and growth rates are measured in the linear stage. In addition, we have also evaluated the average reflectivity through averaging the linear part of reflectivity in Fig.1(b).

    Fig. 1. (a) Plot of logarithmic electrostatic field with bi-Maxwellian distribution at υce =1, kλD =0.2911, Th/Tc =5 and f =0.06. (b)Plot of logarithmic SRS reflectivity with Ipump =2.5×1015 W/cm2,Tc =2.5 keV, ne =0.12nc, kλD =0.2911, Th/Tc =5, and f =0.06.The growth rate is measured from the slope of the red line.

    4. Verification of analytic Landau damping rate through Vlasov simulation

    The comparison of analytic Landau damping and simulated results are shown in Fig.2. Figure 2(a)shows the images of the Maxwellian distribution, flattened distribution, and bi-Maxwellian distribution evaluated from the Eqs.(3), (5), and(7).Compared with the Maxwellian distribution,the other two distributions have a large fraction of electrons with higher velocities.

    Figure 2(b) demonstrates the dependence of Landau damping onkλDunder the Maxwellian distribution. The subscript n, t, and s represent the Landau damping obtained from numerically solving the dispersion relation by using the Hilbert transform (HT) and fast Fourier transform (FFT),[56]analytic formula, and Vlasov simulations, respectively. As is seen, three curves match and show that the Landau damping increases withkλD. The numerical solution is close to the simulated solution, but the theoretical value is slightly higher since the analytic formula(Eq.(4))is not accurate forkλD?0.3.

    Figure 2(d) presents the Landau damping under the bi-Maxwellian distribution varying with differentkλD. The trend that Landau damping increases zigzag is the same as the three curves, while with the increase ofkλD, the gap between the theoretical curve and the other two curves becomes larger since the parameter 12(kλD)2B2now exceeds the limit of being a small parameter.[40]

    Fig.2. (a)Velocity distributions. M means Maxwellian velocity distribution. F means flattened distribution with υp =3.3411υte, Δυ =υte,and Bi-M means bi-Maxwellian distribution with f =0.05,Th/Tc=10.(b)Landau damping under Maxwellian velocity distribution,where νn,νt, and νs represent the numerical solution, theoretical solution, and simulated solution, respectively. (c) Landau damping under flattened distribution with Δυ =υte. (d) Landau damping under bi-Maxwellian velocity distribution with f =0.05,Th/Tc=10.

    5. Relationship between Raman growth and Landau damping

    5.1. Maxwellian distribution

    Both Landau damping and Raman growth in a Maxwellian distribution have been well studied, and here we evaluate these quantities to compare with other distributions.Figure 3 is a plot of analytic and simulated Raman growth rate, obtained from Eq. (10) and the electromagnetic Vlasov code, respectively. Here, the laser intensity isIpump=2.5×1015W/cm2, wavelength is 351 nm, and plasma density isne=0.12nc. In order to show the dependence of growth rate onkλD, we change the electron temperatureTefrom 1.2 keV to 5.3 keV.It is observed that two curves match very well and the growth rate decreases withkλD. This is consistent with Eq. (10) such that the growth rate is reverse to the trend of Landau damping. It also verifies the mitigation effect of Landau damping on the Raman growth.

    Fig. 3. Growth rate: γt means theoretical growth rate, γs means simulated growth rate. The parameters are Ipump = 2.5×1015 W/cm2,ne=0.12nc,and Te,from 1.2 keV to 5.3 keV.

    5.2. Flattened distribution

    For the flattened distribution,we change the width of the plateau to see how the plateau width affects SRS and to reveal the effect of particle trapping. The Landau damping in Fig.4(a)is obtained using the electrostatic Vlasov code. Figures 4(b) and 4(c) show the dependences of Raman growth rate and average reflectivity, respectively, on the width of the plateau using the electromagnetic Vlasov code.

    Fig. 4. (a) The Landau damping, (b) Raman growth rate, and (c)average reflectivity. The electromagnetic parameters used here are Ipump=2.5×1015 W/cm2 and Te=2.5 keV.The densities of the electron are 0.1nc, 0.12nc, 0.14nc and 0.16nc to have kλD =0.33, 0.29,0.26,and 0.23,respectively.

    As the plateau width increases from 0.1υteto 1.4υte, the Landau damping decreases, leading to the increasing growth rate and average reflectivity. The increase of the plateau width essentially comes from the increase of the resonant particles whose velocities are greater than the phase velocity,therefore Landau damping decreases and,according to Eq.(10),the Raman growth increases.WhenkλD?0.26,the Landau damping is too small to measure and is therefore not given here. At the same time, it is observed that the average reflectivity and the growth rate at smallkλDdo not change much because Landau damping at smallkλDhas no significant influence. When we compare these curves with differentkλD, it is shown that in the largekλDregime, the Raman growth is more sensitive to the plateau width, and the trends ofkλDis consistent with Fig.2(c).

    In the cases ofkλD>0.29 and Δυ>0.8υtewith fixedIpumpandTe,we find a strange phenomenon: as the growth rate increases with the width of plateau, the average reflectivity decreases reversely. We present the evolutions of two reflectivities in Fig. 5, where (a)kλD=0.33, Δυ=0.8υte, and (b)kλD=0.33, Δυ=1.4υte. Although growth rate in (b) is indeed higher, it saturates quickly, while the growth in (a) suffers from two-stage growth and it finally has a higher average reflectivities. The behavior reminds us that distribution with larger plateau width would excite new eigenmodes in plasma,[9,12]and can detune the SRS,[9]which may attribute to this quick saturation. The discussion proves the fact that particle trapping can enhance the level SRS,while opposite effects tranquilizing the SRS could set in when the trapping width is large enough.

    Fig. 5. Plot of SRS reflectivity with (a) Δυ =0.8υte, and (b) Δυ =1.4υte. The parameters used here are Ipump =2.5×1015W/cm2, Tc =2.5 keV,ne=0.1nc and kλD=0.33.

    5.3. Bi-Maxwellian distribution

    Next,the effect of bi-Maxwellian distribution on the Raman growth is studied. In Fig. 6(a), the bi-Maxwellian distributions of different hot-to-cold electron temperature ratios are plotted with a fixed hot-electron fraction,f=0.06,and it is observed that the fraction of resonant particles with higher velocity increases with this ratio,but the cold bulk is not sensitive to the quantity. In Fig. 6(b), distributions of different hot-electron fractions are drawn with a fixed hot-to-cold electron temperature ratio,Th/Tc=10,and the fraction of resonant particles with higher velocity increases with hot-electron fraction.

    First, we show the Landau damping and Raman growth with different hot-to-cold electron temperature ratios. Figures 7(a), 7(c), and 7(e) show the dependences of Landau damping, Raman growth rate, and average reflectivity onTh/Tc.The three curves are plotted with differentkλDobtained by changingneat a fixedf=0.06.Figures 7(b),7(d),and 7(f)show the same contents and plot three curves with differentfat a fixedkλD=0.2911. In our Vlasov–Maxwell simulations,Ipump=2.5×1015W/cm2andTc=2.5 keV. Different electron densities are used to changekλDin Figs.7(c)and 7(e).

    Fig. 6. (a) Bi-Maxwellian distributions of different Th/Tc and a fixed f =0.06. (b) Bi-Maxwellian distributions of different f and a fixed Th/Tc=10.

    These curves have similar peak shapes where Landau damping increases rapidly and then decreases slowly with the hot-to-cold electron temperature ratio. Correspondingly, the Raman growth rate and average reflectivity are reverse to the trend of Landau damping.We can also observe that the turning point of the Landau damping and Raman growth rate slightly changes withkλDandfnearTh/Tc≈7. The critical point that makes growth rate or damping reach extreme value can be captured by the analytic formula of Landau damping. Figure 8 shows the derivative of Eq.(8)with different(a)kλDand(b)f. As is shown,the turning point(diff(|ν/ωpe|)=0)slightly decreases withkλD,and is a constant when changingf,which agree with our simulation results. The value of turning point is slightly smaller than the simulated result maybe due to the inaccuracy between theory and simulation. Since there is a negative correlation between the Landau damping and Raman growth rate,this shows that,when hot-electron temperature is about 7 times of the initial temperature, the growth of SRS is minimum. The hot-electron temperature detected by experiments is about 15 keV to 100 keV,[58]which is within the range our discussion, andThwith maximum damping is about 17.5 keV(Tc=2.5 keV),which could be a possible hotelectron temperature in the real experiments.

    Second, we discuss the relationship between Landau damping and growth rate with different hot-electron fractions. Figures 9(a), 9(c), and 9(f) show the dependences of Landau damping,Raman growth rate,and average reflectivity onf,with a fixedTh/Tc=10,while Figs.9(b),9(d),and 9(f)show the corresponding contents with a fixedkλD=0.2911.The electromagnetic parameters used here areIpump=2.5×1015W/cm2andne=0.12nc. We obtain differentkλDby changing the electron temperature in Figs.9(c)and 9(e).

    Fig.7. The Landau damping[(a),(b)],growth rate[(c),(d)],and average reflectivity[(e),(f)]as a function of Th/Tc. We use Ipump=2.5×1015 W/cm2 and Tc=2.5 keV in electromagnetic simulations. In(c)and(e), f =0.06 is a constant. In(d)and(f),we change f,but keep a fixed kλD=0.2911.

    For the general trend,the Landau damping increases with the hot-electron fraction. The growth rate and average reflectivity have the same trend, which decreases with the hotelectron fraction. It can be seen from Figs. 9(c)–9(f) that growth rates and average reflectivities gradually approach to small values with increasing the hot-electron fraction, which indicates that large fraction of the hot electrons is good for mitigation of SRS.

    Fig.8. Derivative of Eq.(10)for different(a)kλD and(b) f.

    Fig.9. The Landau damping[(a),(b)],growth rate[(c),(d)],average reflectivity[(e),(f)]as a function of f. We use Ipump=2.5×1015 W/cm2 and ne=0.12nc in electromagnetic simulations. Th/Tc=10 is a constant in(c)and(e). In(d)and(f),we change Th/Tc,but keep a fixed kλD=0.2911 with Tc=2.5 keV.

    6. Comparison between collisional and noncollisional cases

    So far the simulations above are non-collisional, since collisional damping under these parameters is relatively small.As is well known, the collision damping rate depends on the electron temperature, density, as well as the ion charge state,some studies have found that the effect of the collisional damping is important to SRS at particular parameters.[43,47,48]Therefore, here we turn on the collisional term on the righhand side of Eq.(11)to see if it is important. The results with and without collisional damping are compared in this section.Table 1 lists the dampings and growth rates under three different distribution functions whenTe=2.5 keV,Z=1 andne=0.12nc. Here,νLCandγLCrepresent the damping and growth rates with collisional damping and Landau damping,whileνandγare the non-collisional ones. From the data,we know that under such parameters, the electron-ion collisional damping is on the order of 10-4,which is so small compared with the non-collisional damping and growth rate.

    Table 1. Comparison of damping and growth rate under different distribution functions with or without collision. Ipump = 2.5×1015 W/cm2,Te =2.5 keV, Z =1, ne =0.12nc and lnΛ=9.88 in electromagnetic simulations, kλD=0.2911 in electrostatic simulations. Δυ =0.6υte in flattened distribution,and for bi-Maxwellian distribution Th/Tc=15 and f =0.0.

    Fig. 10. Growth rate of SRS with intensity of Ipump = 2.5×1015 W/cm2, Z = 1 and wavelength of 0.351 μm. (a) The change of growth rate with temperature under the flattened distribution of Δυ=0.6υte.(b)The change of the growth rate with the electron density under the bi-Maxwellian distribution of f =0.06,Th/Tc=30.

    To further illustrate the effects of collisional damping,we change the collision-related quantities, electron temperature and density, and keep the ion charge state beingZ=1. Here only the growth rates of SRS are plotted. Figure 10(a)shows the growth rate with and without collisional damping under the flattened distribution as a function of electron temperature.As temperature goes up, the growth rate decreases due to the increase ofkλDas presented in Fig.2(c). Since the collisional damping is large when electron temperature is small,large decline in the growth rate is observed. Figure 10(b) shows the dependence of growth rate on the electron density under the bi-Maxwellian distribution. The trend of growth rate is precisely reversed to the trend of Landau damping shown in Fig. 2(d)(largenemeans smallkλD). When increasing the electron density, we observe a slightly greater impact on the growth rate due to the increasing collisional damping. Overall, this analysis show that,under our parameters,collisional damping is only responsible for a slight modification on the results.

    7. Conclusions

    In summary, the Vlasov simulation results of Landau damping and Raman growth rate well match with the theory.It is revealed that the distribution function has a great influence on Landau damping,and thus on SRS.The growth rate is basically consistent with the trend of average reflectivity,while the Landau damping is roughly reverse to that trend. This means that we can reduce SRS by increasing the Landau damping.The detailed analyses show us the behavior of Landau dampings on different quantities such as the width of plateau and hot electrons. It gives us not only a deeper understanding of SRS in the whole stage of laser-plasma interaction,but also a possible way to mitigate SRS through manipulating these quantities to a high Landau damping regime.

    Acknowledgements

    This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDA25050700),the National Natural Science Foundation of China(Grant Nos.11805062,11875091 and 11975059),the Science Challenge Project (Grant No. TZ2016005), and the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ5029).

    猜你喜歡
    陳勇見(jiàn)式反應(yīng)釜
    高速公路下穿既有鐵路橋橋墩基底承載力驗(yàn)算*
    低溫下船用鋼材彈塑性曲線研究
    河南科技(2023年1期)2023-02-11 12:17:04
    貴溪冶煉廠臥式反應(yīng)釜自動(dòng)控制方法的研究
    橋(門)式起重機(jī)起升機(jī)構(gòu)高速浮動(dòng)軸設(shè)計(jì)
    二氟乙酰氯在含氟醫(yī)藥中的應(yīng)用進(jìn)展
    改進(jìn)PID在反應(yīng)釜溫度控制系統(tǒng)中的應(yīng)用研究
    對(duì)于反應(yīng)釜機(jī)械密封失效與改造的分析
    Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations?
    In fluence of Cell-Cell Interactions on the Population Growth Rate in a Tumor?
    某反應(yīng)釜進(jìn)料加熱器管板的應(yīng)力和疲勞分析
    精品卡一卡二卡四卡免费| 特大巨黑吊av在线直播| 高清毛片免费看| kizo精华| 男人舔奶头视频| 国产男人的电影天堂91| 久久久久网色| 午夜免费观看性视频| 夫妻性生交免费视频一级片| 色婷婷av一区二区三区视频| 国产精品久久久久久av不卡| 国产一级毛片在线| 少妇的逼水好多| 三级国产精品欧美在线观看| 菩萨蛮人人尽说江南好唐韦庄| 天堂8中文在线网| 麻豆乱淫一区二区| 亚洲国产精品999| 欧美精品一区二区大全| 97在线视频观看| 美女cb高潮喷水在线观看| 亚洲精品一区蜜桃| 成人亚洲欧美一区二区av| 99热国产这里只有精品6| 黄色怎么调成土黄色| 久久精品国产亚洲网站| 国产伦理片在线播放av一区| 深夜a级毛片| 成人18禁高潮啪啪吃奶动态图 | 午夜老司机福利剧场| 女的被弄到高潮叫床怎么办| 久久久久久久久久久免费av| 国产成人91sexporn| 激情五月婷婷亚洲| 国产免费视频播放在线视频| 国产精品熟女久久久久浪| 国语对白做爰xxxⅹ性视频网站| 国模一区二区三区四区视频| 日本欧美国产在线视频| 午夜福利影视在线免费观看| 少妇熟女欧美另类| 99久久人妻综合| h视频一区二区三区| 国产成人freesex在线| 性高湖久久久久久久久免费观看| 成人毛片60女人毛片免费| 国产精品偷伦视频观看了| 日韩制服骚丝袜av| 国产男女内射视频| 丰满迷人的少妇在线观看| 一区二区三区免费毛片| 女性被躁到高潮视频| 欧美3d第一页| 欧美97在线视频| 免费大片黄手机在线观看| 成人黄色视频免费在线看| 综合色丁香网| 黑人巨大精品欧美一区二区蜜桃 | 秋霞伦理黄片| 久久99精品国语久久久| 啦啦啦中文免费视频观看日本| 嘟嘟电影网在线观看| 精品少妇黑人巨大在线播放| 精品国产一区二区久久| 国产亚洲精品久久久com| 国产精品麻豆人妻色哟哟久久| 九九在线视频观看精品| 2018国产大陆天天弄谢| 一级黄片播放器| 国产精品国产av在线观看| 日韩一本色道免费dvd| 黑人猛操日本美女一级片| 少妇 在线观看| 免费看不卡的av| 男人舔奶头视频| 噜噜噜噜噜久久久久久91| 99热6这里只有精品| 国产精品不卡视频一区二区| 日本av免费视频播放| 天堂8中文在线网| 免费看日本二区| 岛国毛片在线播放| 一本—道久久a久久精品蜜桃钙片| 春色校园在线视频观看| 久久国产精品男人的天堂亚洲 | 国产精品一区二区三区四区免费观看| 久久精品国产自在天天线| 五月伊人婷婷丁香| av国产久精品久网站免费入址| 国产在线一区二区三区精| 黄色一级大片看看| 人人妻人人澡人人看| 王馨瑶露胸无遮挡在线观看| 乱码一卡2卡4卡精品| 亚洲第一区二区三区不卡| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲网站| 色94色欧美一区二区| 99热网站在线观看| 日本欧美国产在线视频| av专区在线播放| 午夜日本视频在线| 久久综合国产亚洲精品| 老熟女久久久| 永久网站在线| 国产精品欧美亚洲77777| 午夜激情福利司机影院| 尾随美女入室| 国产 一区精品| 亚洲,一卡二卡三卡| 国产欧美日韩一区二区三区在线 | 久久精品国产自在天天线| 亚洲婷婷狠狠爱综合网| 日韩一区二区视频免费看| 久久久午夜欧美精品| 天堂8中文在线网| 99热这里只有精品一区| 纵有疾风起免费观看全集完整版| 黑人猛操日本美女一级片| 韩国高清视频一区二区三区| 国产黄片美女视频| 国产精品欧美亚洲77777| 韩国高清视频一区二区三区| 熟女电影av网| 亚洲欧洲精品一区二区精品久久久 | 国产成人免费观看mmmm| 精品人妻熟女av久视频| 国产成人精品福利久久| 国产亚洲91精品色在线| 亚洲国产欧美日韩在线播放 | 亚洲国产精品成人久久小说| 不卡视频在线观看欧美| 日韩三级伦理在线观看| 免费看av在线观看网站| 免费观看在线日韩| 人人澡人人妻人| 熟妇人妻不卡中文字幕| 国产永久视频网站| 日日摸夜夜添夜夜爱| 极品少妇高潮喷水抽搐| 伊人亚洲综合成人网| 一级二级三级毛片免费看| 中文字幕制服av| 日本免费在线观看一区| 一级毛片久久久久久久久女| 国产高清三级在线| 日产精品乱码卡一卡2卡三| 国产高清有码在线观看视频| 一个人免费看片子| 男女边摸边吃奶| 午夜免费鲁丝| 欧美97在线视频| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区成人| 久久久a久久爽久久v久久| 一级,二级,三级黄色视频| 久久99热这里只频精品6学生| 亚洲精品一区蜜桃| 在线观看免费日韩欧美大片 | 亚洲精品国产av蜜桃| 精品国产一区二区三区久久久樱花| 少妇的逼好多水| 青春草国产在线视频| 女人久久www免费人成看片| 黑人高潮一二区| 一级黄片播放器| 日韩熟女老妇一区二区性免费视频| 国产精品国产三级国产av玫瑰| 少妇人妻精品综合一区二区| 精品国产一区二区三区久久久樱花| √禁漫天堂资源中文www| 另类精品久久| 两个人的视频大全免费| 国精品久久久久久国模美| av在线老鸭窝| 国产熟女午夜一区二区三区 | 午夜影院在线不卡| av福利片在线| 一级黄片播放器| 亚洲av二区三区四区| 一边亲一边摸免费视频| 久久久久久人妻| 国产免费一级a男人的天堂| 一级毛片久久久久久久久女| 成年女人在线观看亚洲视频| 99久久精品热视频| a级毛色黄片| 夫妻性生交免费视频一级片| 午夜免费鲁丝| av视频免费观看在线观看| av免费观看日本| 国产精品久久久久成人av| 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| 十八禁高潮呻吟视频 | 欧美日韩亚洲高清精品| 亚洲激情五月婷婷啪啪| 日韩免费高清中文字幕av| 国产成人午夜福利电影在线观看| 黑人高潮一二区| 妹子高潮喷水视频| 国内少妇人妻偷人精品xxx网站| 久久青草综合色| 亚洲第一av免费看| 精品一区二区免费观看| 国产精品久久久久久久久免| 91午夜精品亚洲一区二区三区| 久久国产亚洲av麻豆专区| 精品一区二区三卡| 亚洲av.av天堂| 亚洲精品成人av观看孕妇| 日韩熟女老妇一区二区性免费视频| 日本猛色少妇xxxxx猛交久久| 亚洲av不卡在线观看| 永久免费av网站大全| 日日摸夜夜添夜夜爱| 日韩一区二区视频免费看| 亚洲av成人精品一二三区| 日韩 亚洲 欧美在线| 国产白丝娇喘喷水9色精品| 免费久久久久久久精品成人欧美视频 | 国产一区二区在线观看日韩| 少妇熟女欧美另类| 亚洲精品aⅴ在线观看| 国产高清有码在线观看视频| 日韩在线高清观看一区二区三区| 一级片'在线观看视频| 极品教师在线视频| 国产亚洲5aaaaa淫片| 最后的刺客免费高清国语| 色5月婷婷丁香| 97超视频在线观看视频| 九九爱精品视频在线观看| 亚洲综合色惰| 晚上一个人看的免费电影| 国产成人精品无人区| 国精品久久久久久国模美| 国产伦精品一区二区三区四那| 国产伦精品一区二区三区视频9| 亚洲欧美日韩另类电影网站| 国产免费一级a男人的天堂| 校园人妻丝袜中文字幕| 少妇被粗大的猛进出69影院 | 国产欧美亚洲国产| 久久ye,这里只有精品| 精品亚洲成a人片在线观看| 久久99蜜桃精品久久| 一本久久精品| 亚洲成色77777| 一级二级三级毛片免费看| 免费少妇av软件| 婷婷色综合大香蕉| a级毛色黄片| 制服丝袜香蕉在线| 性色avwww在线观看| 十八禁网站网址无遮挡 | 十八禁网站网址无遮挡 | 看免费成人av毛片| 成人影院久久| 中文字幕久久专区| 各种免费的搞黄视频| 晚上一个人看的免费电影| 久久久亚洲精品成人影院| 亚洲高清免费不卡视频| 亚洲国产日韩一区二区| 欧美性感艳星| 成人美女网站在线观看视频| 日韩制服骚丝袜av| 高清毛片免费看| 国产精品偷伦视频观看了| 亚洲av免费高清在线观看| 精品人妻熟女毛片av久久网站| 精品久久久久久久久av| 国产亚洲av片在线观看秒播厂| 国产熟女午夜一区二区三区 | 久久久国产欧美日韩av| 国产一区二区在线观看av| 国产一级毛片在线| 街头女战士在线观看网站| av女优亚洲男人天堂| 黄色日韩在线| 最近中文字幕高清免费大全6| 国产伦精品一区二区三区四那| 亚洲一级一片aⅴ在线观看| 纯流量卡能插随身wifi吗| 午夜日本视频在线| 最近的中文字幕免费完整| 制服丝袜香蕉在线| 欧美 亚洲 国产 日韩一| 伦理电影大哥的女人| 日韩强制内射视频| 80岁老熟妇乱子伦牲交| 午夜激情久久久久久久| 亚洲国产毛片av蜜桃av| 亚洲av.av天堂| 三上悠亚av全集在线观看 | 亚洲欧美清纯卡通| 欧美日韩综合久久久久久| 欧美性感艳星| 乱码一卡2卡4卡精品| 亚洲激情五月婷婷啪啪| 91精品国产国语对白视频| 成年女人在线观看亚洲视频| 久久精品国产自在天天线| 亚洲国产精品成人久久小说| 大香蕉久久网| 国产精品免费大片| 国产91av在线免费观看| 两个人的视频大全免费| 少妇猛男粗大的猛烈进出视频| 久热这里只有精品99| 看非洲黑人一级黄片| 天堂8中文在线网| 黄色欧美视频在线观看| 深夜a级毛片| 热99国产精品久久久久久7| 亚洲欧美日韩东京热| 一级片'在线观看视频| 亚洲精品国产av蜜桃| 91久久精品电影网| 日日摸夜夜添夜夜爱| 久久久a久久爽久久v久久| freevideosex欧美| 久久6这里有精品| 久久久国产欧美日韩av| 成人漫画全彩无遮挡| 久久精品国产亚洲av天美| 男女免费视频国产| 国产综合精华液| 老女人水多毛片| 亚洲av国产av综合av卡| 天美传媒精品一区二区| 国产色爽女视频免费观看| 久久久午夜欧美精品| 视频中文字幕在线观看| 免费黄频网站在线观看国产| 亚洲精品亚洲一区二区| 少妇猛男粗大的猛烈进出视频| 黄色欧美视频在线观看| 日韩中字成人| 少妇人妻精品综合一区二区| 午夜日本视频在线| 国产乱来视频区| 男人舔奶头视频| 国产精品99久久99久久久不卡 | 免费av不卡在线播放| 亚洲欧洲日产国产| 成年av动漫网址| 亚洲av中文av极速乱| 亚洲四区av| 人妻制服诱惑在线中文字幕| 精品久久国产蜜桃| 伊人久久国产一区二区| 久久99蜜桃精品久久| 大香蕉97超碰在线| 看十八女毛片水多多多| 亚洲av.av天堂| 国产精品一二三区在线看| 日本免费在线观看一区| 中文字幕av电影在线播放| 尾随美女入室| 多毛熟女@视频| 欧美丝袜亚洲另类| 黄色一级大片看看| 国产国拍精品亚洲av在线观看| 麻豆乱淫一区二区| 日本黄大片高清| 日日摸夜夜添夜夜爱| 人妻 亚洲 视频| 欧美bdsm另类| 少妇熟女欧美另类| 欧美精品一区二区大全| av国产精品久久久久影院| 国产日韩欧美在线精品| 欧美亚洲 丝袜 人妻 在线| 丰满少妇做爰视频| 亚洲精品一二三| 女人精品久久久久毛片| 在线观看www视频免费| 天堂中文最新版在线下载| 久久影院123| 亚洲国产毛片av蜜桃av| 少妇人妻一区二区三区视频| av女优亚洲男人天堂| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 人妻人人澡人人爽人人| 亚洲国产精品999| 久久久久视频综合| 久久精品久久久久久久性| 制服丝袜香蕉在线| 91久久精品国产一区二区成人| 青春草视频在线免费观看| 国产欧美日韩综合在线一区二区 | 国产色婷婷99| 少妇丰满av| 一级黄片播放器| 成年美女黄网站色视频大全免费 | tube8黄色片| av又黄又爽大尺度在线免费看| 99久久人妻综合| 美女国产视频在线观看| 午夜影院在线不卡| 欧美少妇被猛烈插入视频| 亚洲欧美成人精品一区二区| 91在线精品国自产拍蜜月| 成人免费观看视频高清| 亚洲综合精品二区| 纵有疾风起免费观看全集完整版| 国产日韩欧美视频二区| 久久国产乱子免费精品| 国产在线一区二区三区精| 十分钟在线观看高清视频www | 亚洲欧美成人综合另类久久久| 久久久久久久国产电影| 最近最新中文字幕免费大全7| 欧美精品高潮呻吟av久久| 国产成人精品婷婷| 在线播放无遮挡| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 一本久久精品| 精品人妻偷拍中文字幕| 亚洲精品成人av观看孕妇| 91aial.com中文字幕在线观看| 18禁动态无遮挡网站| 国产一区二区在线观看av| 丝袜喷水一区| a级毛片免费高清观看在线播放| 日韩成人伦理影院| 91精品伊人久久大香线蕉| www.av在线官网国产| 大片免费播放器 马上看| 九九在线视频观看精品| 精品一区二区三区视频在线| 一区二区三区精品91| 久久久久久久大尺度免费视频| 人人妻人人澡人人看| 国产日韩欧美亚洲二区| √禁漫天堂资源中文www| 日日摸夜夜添夜夜添av毛片| 少妇猛男粗大的猛烈进出视频| 插逼视频在线观看| 成年人午夜在线观看视频| 2022亚洲国产成人精品| 九九在线视频观看精品| 日日爽夜夜爽网站| 免费观看在线日韩| 最近的中文字幕免费完整| 如日韩欧美国产精品一区二区三区 | 亚洲欧美清纯卡通| 一级,二级,三级黄色视频| 欧美3d第一页| 色婷婷av一区二区三区视频| 精品一品国产午夜福利视频| 青青草视频在线视频观看| 亚洲中文av在线| 我要看黄色一级片免费的| 久久久久久久久久久久大奶| 欧美丝袜亚洲另类| 亚洲综合色惰| 成人午夜精彩视频在线观看| 国产黄片视频在线免费观看| 国产有黄有色有爽视频| 亚洲人与动物交配视频| 69精品国产乱码久久久| 丁香六月天网| 国产高清国产精品国产三级| 国产精品.久久久| 18禁在线无遮挡免费观看视频| 午夜福利在线观看免费完整高清在| 狂野欧美白嫩少妇大欣赏| 欧美日韩视频精品一区| av黄色大香蕉| 欧美国产精品一级二级三级 | 免费观看的影片在线观看| 亚洲欧美一区二区三区黑人 | 人人妻人人澡人人看| 少妇精品久久久久久久| 国产亚洲最大av| 人妻制服诱惑在线中文字幕| 2021少妇久久久久久久久久久| 婷婷色麻豆天堂久久| 欧美日韩亚洲高清精品| xxx大片免费视频| 日韩成人伦理影院| 国模一区二区三区四区视频| 男女边摸边吃奶| 在线亚洲精品国产二区图片欧美 | 老司机亚洲免费影院| 国产黄色免费在线视频| av线在线观看网站| 色哟哟·www| 一个人看视频在线观看www免费| 精品久久久精品久久久| 亚洲精品日韩在线中文字幕| 内地一区二区视频在线| 一边亲一边摸免费视频| 久久鲁丝午夜福利片| 一区二区三区乱码不卡18| 日韩一本色道免费dvd| 久久久久久久大尺度免费视频| 亚洲精品色激情综合| 日韩在线高清观看一区二区三区| 好男人视频免费观看在线| 22中文网久久字幕| 99热这里只有精品一区| 免费久久久久久久精品成人欧美视频 | 免费观看无遮挡的男女| 我的老师免费观看完整版| 在线观看www视频免费| 日日撸夜夜添| 日韩成人伦理影院| 国语对白做爰xxxⅹ性视频网站| 亚洲精品自拍成人| 亚洲精品一区蜜桃| 亚洲欧洲精品一区二区精品久久久 | 黄色欧美视频在线观看| 日本av手机在线免费观看| 熟女电影av网| 久久99热6这里只有精品| 亚洲av男天堂| 91精品一卡2卡3卡4卡| 热re99久久国产66热| 亚洲精品aⅴ在线观看| 嘟嘟电影网在线观看| 国产精品人妻久久久影院| 国产伦在线观看视频一区| 午夜福利影视在线免费观看| 国产黄频视频在线观看| 在线观看人妻少妇| 美女xxoo啪啪120秒动态图| 夫妻性生交免费视频一级片| 秋霞在线观看毛片| 国产成人免费观看mmmm| 人妻一区二区av| 夜夜骑夜夜射夜夜干| av播播在线观看一区| 日本91视频免费播放| 9色porny在线观看| 亚洲第一区二区三区不卡| 亚洲成人一二三区av| 亚洲精品乱久久久久久| 国产精品99久久久久久久久| 亚洲av免费高清在线观看| 日本与韩国留学比较| 国产亚洲av片在线观看秒播厂| 久久影院123| 全区人妻精品视频| 亚洲精品中文字幕在线视频 | 内地一区二区视频在线| 丰满乱子伦码专区| 欧美最新免费一区二区三区| 国产日韩欧美视频二区| 18禁裸乳无遮挡动漫免费视频| 伦精品一区二区三区| 国产精品熟女久久久久浪| 婷婷色综合大香蕉| 99久久精品一区二区三区| 美女福利国产在线| 日韩av不卡免费在线播放| 久久久久久久久久久丰满| 国产日韩一区二区三区精品不卡 | 天天躁夜夜躁狠狠久久av| 蜜桃久久精品国产亚洲av| 亚洲精品国产成人久久av| 最近中文字幕2019免费版| 久久精品久久久久久久性| 大码成人一级视频| av有码第一页| 秋霞在线观看毛片| 爱豆传媒免费全集在线观看| 看免费成人av毛片| 久久久久国产精品人妻一区二区| 日本vs欧美在线观看视频 | 欧美日韩国产mv在线观看视频| 免费人妻精品一区二区三区视频| 99热这里只有是精品50| 亚洲色图综合在线观看| 日韩一本色道免费dvd| 97在线人人人人妻| 一级毛片久久久久久久久女| 国产免费一级a男人的天堂| 蜜桃久久精品国产亚洲av| 亚洲精品国产色婷婷电影| 你懂的网址亚洲精品在线观看| 丝袜在线中文字幕| 色哟哟·www| 精品国产一区二区三区久久久樱花| 另类精品久久| 有码 亚洲区| 国产男女超爽视频在线观看| 丰满饥渴人妻一区二区三| 大码成人一级视频| 国产黄片美女视频| 国产精品国产三级国产专区5o| 亚洲自偷自拍三级| 性高湖久久久久久久久免费观看| 国产日韩欧美视频二区| xxx大片免费视频| 久久久国产精品麻豆| 国产日韩欧美视频二区| 亚洲av福利一区| 免费av不卡在线播放| 热re99久久精品国产66热6| 免费久久久久久久精品成人欧美视频 | 亚洲欧美清纯卡通| 精品久久久久久久久亚洲| 国产又色又爽无遮挡免| 国产精品熟女久久久久浪| 亚洲欧美成人综合另类久久久| 国产伦理片在线播放av一区| 中文乱码字字幕精品一区二区三区| 亚洲美女视频黄频| 亚洲久久久国产精品|