• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nano-friction phenomenon of Frenkel–Kontorova model under Gaussian colored noise

    2022-05-16 07:08:56YiWeiLi李毅偉PengFeiXu許鵬飛andYongGeYang楊勇歌
    Chinese Physics B 2022年5期
    關(guān)鍵詞:鵬飛

    Yi-Wei Li(李毅偉) Peng-Fei Xu(許鵬飛) and Yong-Ge Yang(楊勇歌)

    1Department of Mathematics,Shanxi Agricultural University,Jinzhong 030801,China

    2School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510520,China

    Keywords: Frenkel–Kontorova model,Gaussian colored noise,hysteresis,super-lubricity

    1. Introduction

    Nano-friction is becoming more and more often a central issue in the emerging field of nanoscale science and technology, which is related to the atom processes occurring at the interface of two interacting systems in relative motion.[1–3]Recently, remarkable achievements have been made in nanofriction testing technology (atomic and friction force microscope,surface-force,and quartz-crystal microbalance)and the computing power(realistic molecular dynamics simulations).And these advances have largely encouraged to search for simple mathematical models capable of describing the essential physics in friction processes.[3]In particular, the driven Frenkel–Kontorova (FK)[4]models have recently received an increasing amount of attention and have been extensively investigated both theoretically and experimentally in the nanofriction areas.[5,6]The standard FK[3,4]model describes the dissipative motion of a chain of harmonically interacting particles that slides over a rigid substrate potential due to the application of an external driving force. Moreover, the classic FK model has been used to study the dynamic phenomena in nano-tribology, and an increasing interest as a possible interpretative key has been found to understand the atomic processes occurring at the interface of two materials in relative motion.[1–21]So far,the FK models have become an extremely important theoretical tool in the field of nano-tribology. Relevant generalizations of the FK models have also been proposed in the literature to cover a large class of physically interesting nano-friction phenomena,[7–13]such as hysteresis, superlubricity, and stick-slip,etc. Furthermore, both the dynamics process of friction and the mechanism of energy dissipation on the nanoscale are explained, according to the FK models and nano-friction.

    However, most studies on FK models focus on deterministic systems,[7–13]and only a few involves the stochastic systems.[15–20]In fact,noise is usually inevitable as modeling a real system at the nanoscale level. Teki′cet al.[15–18]studied the noise effects on the dynamical mode-locking phenomena in the overdamped FK model. The effects of the temperature and substrate disorder on the FK model are investigated by Guerraet al.[19]The noise,[20,22]as a stochastic excitation,can not only make deterministic systems random but also change their dynamical behaviors. The interference of random factors is an important factor that cannot be ignored in the study of nonlinear dynamics. The random factor refers to Gaussian white noise or some associated colored noise. As the spectrum of Gaussian white noise[20]is unbounded and there is no Gaussian white noise in nature, the introduction of Gaussian white noise may go against the essential characteristics of some systems in nature.So the introduction of colored noise is very necessary. Therefore,the study of stochastic FK models under colored noise excitation has important practical significance for the understanding of nano-friction mechanism. This paper mainly studies the FK model under the Gaussian colored noise excitation and studies the variation of some nano-friction phenomena,such as hysteresis,maximum static friction force,and super-lubricity. The Langevin molecular dynamics approach allows us to introduce Gaussian colored noise via the inclusion of a stochastic force.[19,20]Working in the dissipative regime, we analyze the display of hysteretic behavior in theB(F) characteristics[19]for the variation of the external driving force and the relationship between the maximum static friction force and the noise parameters.

    The rest of the paper is organized as follows.Section 2 introduces the driven FK model with the Gaussian colored noise excitation. In Section 3, the simulation results are presented.The effects of different parameters (such as the noise intensity and the correlation time) on the chain mobility and the maximum static friction force have been investigated in detail for incommensurate case and commensurate case,respectively. Finally,the main conclusions are drawn in Section 4.

    2. Model

    The system here describes the dynamics of a driven FK model, whoseNparticle positionsxisatisfy the following equation of motion:[3,19,20]

    whereDis the noise intensity and the correlation timeτ=λ-1.

    The ratioB=VCM/Fof the time-averaged CM velocity to the external applied force(the chain mobility).[19]Observation of finite static friction implies that the contacting solids have locked into a local energy minimum,andFsis maximum static friction force which represents the force needed to lift them out of it.

    The researches of Vanossi[3]and Braun[9]on the FK models show that when strengthKis small[3,10]and the system is in an underdamped state,the hysteresis of the system is obvious which is also convenient for the explanation of some problems in this article. In this paper, we focus on the effects of Gaussian colored noise in the underdamped[2,20]dynamics of a onedimensional chain of interacting atoms sliding over a substrate potential. If not stated differently,the valuem=1,K=1,andγ=0.7 define our system units.Bf=(mγ)-1represents the maximum asymptotic value of the chain mobility.[19,20]

    3. Results and disussion

    The length scale competition between the substrate and interatomic potentials controls the static and dynamic behavior of the system,[3,4,17]resulting in a rich complexity of spatially modulated structures for the chain particles. Following the previous studies in the FK models,[1–3]we have studied the incommensurate case(b/a=144/233)and the commensurate case (b/a=1). For different values of the model parameters noise intensityDand the correlation timeτ, we explore the behavior of the chain mobility as a function of variations ofF.And the combined effects of noise intensityDand correlation timeτon the maximum static friction forceFshave also been investigated in detail.

    3.1. Noise intensity effects

    3.1.1. Incommensurate case (b/a = 144/233)

    The behavior of the chain mobilityBas a function of variations of the driving forceF,for three different values of noise intensityDand fixed correlation times (τ=1,τ=10, andτ=100), is shown in Fig. 1, to investigate the effect of the noise intensityD. In this section, we consider the case of the incommensurate, and we choosea=1,b/a=144/233,c=a/β=144/89,so that the system size isL=144 and the chain is made up ofN=233 particles.[7,15]

    Fig.1. Noise effects on static friction and hysteresis of the B(F)characteristics for the incommensurate case when D=0,0.005,0.05 for three cases:(a)τ =1,(b)τ =10,and(c)τ =100. Triangles and circles denote,respectively,the increasing and decreasing processes of F.

    In Fig.1(a),when noise intensityD=0,a large hysteresis is clear. The larger value of noise intensity contributes to the disappearance of hysteretic and the decrease of the maximum static friction forceFs(whenD=0,Fs≈0.18;D=0.005,Fs≈0.15;D= 0.05,Fs<0.017), which indicates that the noise makes the atoms move along the chain much easier than themselves. Moreover,as the value of theFrises,the increase ofDcomes with a greater chain mobilityB(whenF=0.6,D=0,B ≈0.58;D=0.005,B ≈0.62;D=0.05,B ≈0.65).Recent studies[19,20]of the one-dimensional FK models have demonstrated that noise excitation makes it easier for atoms to escape from the substrate potential. The results concluded from Fig.1 also verify this view.

    Figures 1(a) and 1(b) have a similar conclusion that is the hysteresis and maximum static frictionFsof the system decline as the noise intensity grows. The difference between Figs. 1(a) and 1(b) can be concluded that the increase of the correlation timeτrenders a slower decline of the hysteresis andFs. As shown in Fig. 1(c) (τ=100), the comparatively large value of the correlation timeτmakes the hysteresis andFsalmost insusceptible to noise intensity. We can obtain from Fig. 1 that the greater the correlation timeτ, the slower the decrease of the hysteresis andFs. The result means that noise intensity has a positive effect on reducing hysteresis andFs,whereas a change in correlation time will hinder this process.

    Fig.2. Noise effects on maximum static friction force for the incommensurate case.

    Figure 2 displays the detailed behavior of the maximum static friction forceFswith growing noise intensityD. The maximum static frictionFsdrops asDincreases. However,this trend varies depending on the correlation time. The variation is dramatic whenτ=1 and invisible whenτ=10.In particular, with appropriate parameters (whenD ≈0.15,τ=1),the system will give rise to super-lubricity. And the region,in which super-lubricity can happen, is marked in Fig. 3. However, there is no super-lubricity while the correlation time is too large(τ=100)which indicates that super-lubricity is possible for us if we choose appropriate noise parameters.

    Fig.3. Super-lubricity region for the incommensurate case.

    Figures 1 and 2 show that for the incommensurate case,noise excitation makes it easier for atoms to escape from the substrate potential and accelerate the motion of the system. With suitable noise intensity and correlation time,superlubricity happens. To verify the relevant conclusions indepth,we have also carried out simulations for other irrational choices of the three characteristic lengthsa,b, andcof the model.

    3.1.2. Commensurate case (b/a = 1)

    In this section, we shall focus on the hysteretic behavior ofBas a function ofFand the effect of noise intensity imposed onFsfor the case of a commensurate choice among the three model length scales already considered in a previous study.[19,20]Therefore, the numerical results refer to a substrate potential characterized by the parametersa=1 andc=a/β=30/24. The simulations are performed for a sizeL=140 and a chain made up ofN=140 particles.[2,10]

    Fig.4. Noise effects on static friction and hysteresis of the B(F)characteristics for the commensurate case when D=0, 0.005, 0.05 for three cases:τ =1,τ =10,and τ =100. Triangles and circles denote the increasing and decreasing process of F respectively.

    Figure 4 shows the noise intensityDeffects on the mobility-driving characteristics for a commensurate interface.In Fig. 4, when the correlation time is fixed, the width of the hysteretic region and the maximum static friction forceFsdecrease to varying degrees due to the increase ofD.This trend is less pronounced when the value of correlation time is large. Moreover, as shown in Fig.4(a), the introduction of the noise accelerates the chain motion of the system as the forceFrises (whenF= 0.6,D= 0,B ≈0.6;D= 0.005,B ≈0.63;D=0.05,B ≈0.8), the greater the noise intensity,the greater the chain mobility. The relevant change diminishes with the increase of correlation time which can be observed from Figs.4(b)and 4(c). As a result,the noise intensity tends to reduce the hysteretic region at finite correlation time, destroy the occurrence of parametric resonances inside the chain,and favor sliding with higher mobility values.

    Conclude from Figs. 1(a) and 4(a): for a commensurate interface,the chain length isL=144,and the number of atoms isN=233,whilst an incommensurate case has the followingL=140 andN=140.Albeit similar in chain length, despite having fewer atoms, when the commensurate interface has a noise intensity ofD=0,its hysteresis region andFsare significantly larger in comparison.Figure 1(a)shows that the hysteresis andFsvary by noise. The distinction between the two circumstances is that for the commensurate interface (Figs. 4 and 5), the atoms are more strongly coupled and entrapped by the substrate potential[5,10,19]so that the introduction of the noise make this coupling unstable and makes the atoms move along the chain much easier than before. Therefore,the influence is more vigorous for the commensurate case.

    Fig.5.Noise effects on maximum static friction force for the commensurate case.

    The variation of the maximum static friction forceFswith respect to noise intensityDfor the commensurate interface is plotted in Fig.5. It is found that the increase ofDcontributes to the decrease ofFs. The shorter the correlation timeτ, the more obviouslyFsvaries.Figure 6 depicts the region,in which the super-lubricity can appear. It is noteworthy that the system is much easier to give rise to super-lubricity for the incommensurate interface (τ ≈0.01,D ≈0.1) than the commensurate interface(τ ≈0.01,D ≈0.1).

    Fig.6. Super-lubricity region for the commensurate case.

    3.2. Correlation time effects

    The above simulation results indicate that the hysteretic and maximum static friction forceFsdepends notably on the correlation timeτ.In order to study the effect of the correlation time on the nano-friction phenomena in more detail, we plot the variation of theB(F)for different values of correlation timeτwith different noise intensitiesD.Meanwhile,the maximum static friction forceFswith respect to correlation timeτis given. This section is divided into the incommensurate case and the commensurate case.

    3.2.1. Incommensurate case (b/a = 144/233)

    In this section,we have considered the case of the incommensurate, so we choosea=1,b/a=144/233,c=a/β=144/89,so that the system size isL=144 and the chain is made up ofN=233 particles.[2,7]

    As depicted in Fig. 7, for the incommensurate case, the correlation time has a clear effect on the hysteresis and maximum static friction forceFs.And the hysteretic region tends to increase with increasing values of correlation timeτ, and the correlation time also affects the maximum static friction forceFs(in Fig. 7(a),τ=0.1,Fs≈0.11;τ=1,Fs≈0.15;τ=10,F ≈0.17). Figures 7(a) and 7(b) demonstrate similar conclusion,however,under the fixed noise intensityD,the trend of increasing the hysteretic region andFsare different due to different correlation time.

    Fig. 7. Correlation time on static friction forces as well as the hysteresis for the incommensurate case, in which triangle and circle denote the processes of increasing and decreasing external forces depicting the hysteresis behavior for two cases: (a)D=0.005,(b)D=0.05.

    Figure 8 displays the detailed behavior of the maximum static friction forceFswith the change of correlation timeτat different noise intensityD.Fsis increased asτgrows,and eventually reaches a relatively stable value (D=0.005,Fs≈0.18;D= 0.05,Fs≈0.17). The difference between the two situations (D=0.005,D=0.05) is that the greater the noise intensity,the more sharply the increase. The results mean that the correlation time encourages the increase of the hysteresis and the maximum static friction forceFs,however,the noise intensity plays the opposite role. The findings summarized in Figs. 7 and 8 verify some of the conclusions in Subsection 3.1.

    Fig.8.Correlation time on maximum static friction force for the incommensurate case.

    3.2.2. Commensurate case (b/a = 1)

    In order to further study the effect of the correlation time on the nano-friction phenomena, this section investigates the commensurate case. Therefore, the numerical results refer to the substrate potential characterized by the parametersa=1 andc=a/β=30/24.In this case, the chain lengthL=140 and the number of atomsN=140.

    Fig.9. Correlation time effects on static friction and hysteresis of the B(F)characteristics for the incommensurate case, when τ =0.1, 1, 10 for two cases: (a)D=0.005,(b)D=0.05.

    Figure 9 gives the process of the hysteretic behavior in the characteristicsB versus Ffor the commensurate interface.It is shown that for given values of noise intensityD(whereD=0.005, 0.05 respectively), with the increase of the correlation timeτ,the region of the hysteretic is increased. Meanwhile, the maximum static friction forceFsgoes up with increasing the correlation times(in Fig.9(a),τ=0.1,Fs≈0.25;τ= 10,Fs≈0.3). To sum up, the difference between the Figs.9(a)and 9(b)is the increased tendencies of the hysteresis region which is related to noise intensityD.

    For the commensurate case,the variation of the maximum static friction forceFswith respect to correlation timeτfor different noise intensitiesDis plotted in Fig. 10. The maximum static friction forceFsincreases to a relatively stable value(D=0.005,τ ≈0.33;D=0.05,τ ≈0.31)whileτincreases. The greater the noise intensity, the more evident the increase.

    Fig.10. Correlation time on maximum static friction force for the commensurate case.

    It is summarized from Figs.7–10 that for commensurate interface,the influence of colored noise on hysteresis andFsis more evident. From what we have mentioned above,noise intensityD=0.05,correlation time rises fromτ=0 toτ=10,hystersis region (Figs. 7(b) and 9(b)) and the maximum friction (Figs. 6 and 8) both experienced the processes from appearing to growing. However, difference also exists. Given the larger increase ofFsfrom 0 to 0.31 for commensurate interface(Fig.7(b),τ=10)and from 0 to 0.17 for incommensurate case(Fig.5(b),τ=10)and wider hysteresis area for the former interface,it is easy to conclude that noise poses a more significant effect on hysteresis andFsfor commensurate case.

    4. Conclusions

    In this paper,we have investigated the effects of Gaussian colored noise on a one-dimensional chain of interacting atoms driven by an external force. Starting from the two geometrically opposite ideal cases of commensurate and incommensurate interface. In particular,we have focused our study on the variation regularity of the hysteretic behavior and the maximum static friction force which are affected by the Gaussian colored noise.

    The results indicate that the noise intensity has a positive effect on reducing hysteresis andFs,whereas the change in correlation time hinders this process. In particular,suitable correlation time and noise intensity give rise to super-lubricity.The difference between the two circumstances is that for the commensurate mating contacts, the influence of the noise is much stronger in terms of triggering the motion of the FK model than for the incommensurate interface since the atoms in the former case are coupled and entrapped more strongly by the substrate potential. We hope that the results presented in this work may be relevant to future theoretical and experimental studies concerning microscopic tribology of the real physical systems,where the geometrical features of the interfaces in relative motion could play a major role.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.11902081),the Science and Technology Innovation Foundation of Higher Education Institutions of Shanxi Province, China (Grant No. 2020L0172), the Natural Science Foundation for Young Scientists of Shanxi Agricultural University,China(Grant No.2020QC04),and the Research Fund of Shanxi Agriculture University,China(Grant No.2021BQ12).

    猜你喜歡
    鵬飛
    樊應(yīng)舉
    書香兩岸(2020年3期)2020-06-29 12:33:45
    漫畫
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    執(zhí)“迷”不悟
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    漫畫
    粗看“段”,細(xì)看“端”
    漫畫
    97超级碰碰碰精品色视频在线观看| 久久久久久九九精品二区国产| 日韩中字成人| 69人妻影院| 午夜激情福利司机影院| 美女被艹到高潮喷水动态| 国产精品1区2区在线观看.| 丁香欧美五月| 毛片一级片免费看久久久久 | 成年免费大片在线观看| 亚洲av中文字字幕乱码综合| 好男人电影高清在线观看| 国产精品一区二区三区四区久久| 国产亚洲精品久久久com| 黄色丝袜av网址大全| 日本熟妇午夜| 一区福利在线观看| 欧美成人一区二区免费高清观看| 一级av片app| 91九色精品人成在线观看| 欧美+亚洲+日韩+国产| 哪里可以看免费的av片| 久久久国产成人免费| 又黄又爽又刺激的免费视频.| 变态另类成人亚洲欧美熟女| 99热只有精品国产| 99在线视频只有这里精品首页| 最近最新中文字幕大全电影3| 亚洲精品一卡2卡三卡4卡5卡| 色噜噜av男人的天堂激情| 国产伦人伦偷精品视频| 午夜福利成人在线免费观看| 亚洲经典国产精华液单 | 日本一本二区三区精品| 12—13女人毛片做爰片一| 日本精品一区二区三区蜜桃| 久99久视频精品免费| 精品一区二区三区av网在线观看| 国产一区二区三区视频了| 国产精品免费一区二区三区在线| 国产精品嫩草影院av在线观看 | 亚洲成av人片在线播放无| 精品人妻偷拍中文字幕| 黄色视频,在线免费观看| 久久久久性生活片| 国产伦在线观看视频一区| 国产精品一及| 青草久久国产| 真人做人爱边吃奶动态| 久久人人精品亚洲av| 欧美性猛交╳xxx乱大交人| 国产成人av教育| 国产激情偷乱视频一区二区| av中文乱码字幕在线| 亚洲狠狠婷婷综合久久图片| 婷婷丁香在线五月| 国产精品亚洲一级av第二区| 长腿黑丝高跟| 亚洲欧美日韩高清专用| 窝窝影院91人妻| 亚洲专区中文字幕在线| 亚洲av一区综合| 日韩有码中文字幕| 亚洲av中文字字幕乱码综合| 精品人妻1区二区| 国产一区二区三区在线臀色熟女| 久久久久性生活片| 99久久九九国产精品国产免费| eeuss影院久久| 欧美zozozo另类| 成人亚洲精品av一区二区| 久久久久国产精品人妻aⅴ院| 3wmmmm亚洲av在线观看| 欧美成人一区二区免费高清观看| 成人一区二区视频在线观看| 国产男靠女视频免费网站| 美女xxoo啪啪120秒动态图 | 亚洲内射少妇av| 精品熟女少妇八av免费久了| 一本综合久久免费| 久久婷婷人人爽人人干人人爱| 久久亚洲真实| www.熟女人妻精品国产| 国产视频一区二区在线看| 国产91精品成人一区二区三区| 一边摸一边抽搐一进一小说| 人妻丰满熟妇av一区二区三区| 我的老师免费观看完整版| 变态另类丝袜制服| 欧美3d第一页| 一级黄色大片毛片| 九色成人免费人妻av| 日韩 亚洲 欧美在线| 99久久99久久久精品蜜桃| 免费看a级黄色片| 超碰av人人做人人爽久久| 午夜激情福利司机影院| 久久久久久久久久成人| 国产精品久久久久久精品电影| 午夜免费激情av| 夜夜躁狠狠躁天天躁| 人妻夜夜爽99麻豆av| 床上黄色一级片| 少妇人妻精品综合一区二区 | 久久精品影院6| 欧美xxxx性猛交bbbb| 亚洲国产日韩欧美精品在线观看| 国产一区二区在线观看日韩| 给我免费播放毛片高清在线观看| 91在线观看av| 久久人人精品亚洲av| 国产三级黄色录像| 欧美在线一区亚洲| 国产成人影院久久av| 国产亚洲av嫩草精品影院| 欧美3d第一页| 看免费av毛片| 亚洲国产精品合色在线| 国产高清视频在线播放一区| 亚洲欧美日韩无卡精品| 我的女老师完整版在线观看| 黄色视频,在线免费观看| 给我免费播放毛片高清在线观看| 久久久国产成人精品二区| av黄色大香蕉| 一本综合久久免费| 日韩欧美 国产精品| 搡女人真爽免费视频火全软件 | netflix在线观看网站| 亚洲 欧美 日韩 在线 免费| 国产精品,欧美在线| 给我免费播放毛片高清在线观看| 国产精品不卡视频一区二区 | 精品人妻熟女av久视频| 韩国av一区二区三区四区| 精品久久久久久久久亚洲 | 色尼玛亚洲综合影院| 成年女人看的毛片在线观看| 中文字幕熟女人妻在线| 精品人妻一区二区三区麻豆 | 国产在线男女| 美女免费视频网站| 毛片女人毛片| 老司机深夜福利视频在线观看| 男女做爰动态图高潮gif福利片| 美女cb高潮喷水在线观看| 中文字幕久久专区| 日韩中字成人| 免费观看的影片在线观看| 真人做人爱边吃奶动态| avwww免费| 久久九九热精品免费| 赤兔流量卡办理| 成人三级黄色视频| 国产亚洲精品久久久com| 午夜免费男女啪啪视频观看 | 日韩精品青青久久久久久| 亚洲av一区综合| av黄色大香蕉| 精品久久久久久,| 久久午夜福利片| 欧美最黄视频在线播放免费| 深夜a级毛片| 在线观看午夜福利视频| 99久久99久久久精品蜜桃| 最新中文字幕久久久久| 51国产日韩欧美| 欧美日韩瑟瑟在线播放| 欧美一区二区国产精品久久精品| 尤物成人国产欧美一区二区三区| 好男人电影高清在线观看| 69人妻影院| 久久久久久久亚洲中文字幕 | 日本在线视频免费播放| av天堂在线播放| 毛片一级片免费看久久久久 | 在线观看66精品国产| 国产精品免费一区二区三区在线| 欧美中文日本在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人巨大hd| 国产欧美日韩精品一区二区| 国产蜜桃级精品一区二区三区| 欧美日韩福利视频一区二区| 波野结衣二区三区在线| 嫩草影院精品99| 老司机福利观看| 国产一级毛片七仙女欲春2| 九九热线精品视视频播放| 一卡2卡三卡四卡精品乱码亚洲| 999久久久精品免费观看国产| 麻豆国产97在线/欧美| 99久国产av精品| 国产午夜福利久久久久久| 俄罗斯特黄特色一大片| 老女人水多毛片| 午夜免费成人在线视频| 亚洲欧美日韩高清专用| 在线十欧美十亚洲十日本专区| 亚州av有码| 日本撒尿小便嘘嘘汇集6| 免费av不卡在线播放| 欧美黑人欧美精品刺激| 国产精品久久电影中文字幕| 人人妻,人人澡人人爽秒播| 毛片一级片免费看久久久久 | 在线十欧美十亚洲十日本专区| www.999成人在线观看| 老司机午夜福利在线观看视频| 熟女电影av网| 美女xxoo啪啪120秒动态图 | 久久6这里有精品| 欧美最黄视频在线播放免费| 国产精品一及| 久久99热6这里只有精品| 日本成人三级电影网站| 91在线精品国自产拍蜜月| 亚洲在线观看片| 丁香欧美五月| aaaaa片日本免费| 在线天堂最新版资源| 俄罗斯特黄特色一大片| 99久久精品一区二区三区| 国内揄拍国产精品人妻在线| 成年免费大片在线观看| 999久久久精品免费观看国产| 最近中文字幕高清免费大全6 | 欧美+日韩+精品| 88av欧美| 精品人妻一区二区三区麻豆 | 又黄又爽又免费观看的视频| 最近视频中文字幕2019在线8| av黄色大香蕉| 日本 av在线| 国内精品久久久久久久电影| 成人毛片a级毛片在线播放| 亚洲aⅴ乱码一区二区在线播放| 国产伦精品一区二区三区四那| 亚洲片人在线观看| 蜜桃亚洲精品一区二区三区| 国产爱豆传媒在线观看| 高清毛片免费观看视频网站| 免费无遮挡裸体视频| 亚洲无线在线观看| 亚洲欧美日韩高清在线视频| 日韩欧美一区二区三区在线观看| 欧美3d第一页| av天堂在线播放| 久久九九热精品免费| 中文资源天堂在线| www日本黄色视频网| 亚洲av一区综合| xxxwww97欧美| 亚洲国产精品合色在线| 中文字幕熟女人妻在线| 99久久精品一区二区三区| 亚洲综合色惰| 欧洲精品卡2卡3卡4卡5卡区| 日本五十路高清| 国产亚洲精品久久久com| 欧美日韩瑟瑟在线播放| 午夜亚洲福利在线播放| 国产精品不卡视频一区二区 | 一本综合久久免费| 露出奶头的视频| 国产成人a区在线观看| 3wmmmm亚洲av在线观看| 国产精品伦人一区二区| 国产男靠女视频免费网站| 好男人在线观看高清免费视频| 欧美不卡视频在线免费观看| 少妇裸体淫交视频免费看高清| 欧美最黄视频在线播放免费| 亚洲国产欧洲综合997久久,| 老女人水多毛片| 少妇被粗大猛烈的视频| 国产成人欧美在线观看| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区精品| 国产极品精品免费视频能看的| 日韩av在线大香蕉| 亚洲最大成人中文| 一个人免费在线观看电影| 丁香六月欧美| 少妇的逼好多水| 天堂影院成人在线观看| 久久婷婷人人爽人人干人人爱| 女人被狂操c到高潮| 91午夜精品亚洲一区二区三区 | 啦啦啦观看免费观看视频高清| 国产主播在线观看一区二区| 欧美极品一区二区三区四区| 亚洲国产精品999在线| 国产美女午夜福利| 午夜福利高清视频| 国产真实乱freesex| 免费av不卡在线播放| 天堂√8在线中文| 国产精品爽爽va在线观看网站| 国产av不卡久久| 能在线免费观看的黄片| 国产精品人妻久久久久久| 亚洲真实伦在线观看| 欧美性猛交╳xxx乱大交人| 国产成人欧美在线观看| 免费av不卡在线播放| 97超视频在线观看视频| 91久久精品国产一区二区成人| 国产成人a区在线观看| 大型黄色视频在线免费观看| 99国产综合亚洲精品| 欧美极品一区二区三区四区| 成年版毛片免费区| 深夜精品福利| 欧美乱妇无乱码| 国产精品人妻久久久久久| 婷婷色综合大香蕉| 青草久久国产| 亚洲无线观看免费| 五月玫瑰六月丁香| 国产色婷婷99| 亚洲精品粉嫩美女一区| 国产激情偷乱视频一区二区| 欧美一区二区国产精品久久精品| 国产在线男女| 嫩草影院精品99| 天堂av国产一区二区熟女人妻| 国产成年人精品一区二区| av黄色大香蕉| 99热只有精品国产| 淫妇啪啪啪对白视频| 亚洲av.av天堂| 亚洲国产精品久久男人天堂| 精品一区二区免费观看| 国产在视频线在精品| 婷婷六月久久综合丁香| 亚洲在线观看片| 一进一出好大好爽视频| 观看免费一级毛片| 精品乱码久久久久久99久播| 国产色爽女视频免费观看| 久久久久久久久大av| 校园春色视频在线观看| 亚洲美女视频黄频| 级片在线观看| 国产成年人精品一区二区| 观看免费一级毛片| 国产精品一区二区三区四区久久| 精品国内亚洲2022精品成人| 国产一区二区激情短视频| 九色国产91popny在线| eeuss影院久久| 老司机福利观看| 18禁黄网站禁片免费观看直播| 性欧美人与动物交配| 日本五十路高清| 亚洲欧美激情综合另类| 精品久久久久久,| 女人被狂操c到高潮| 精品久久久久久,| 国产成人欧美在线观看| 国产不卡一卡二| 校园春色视频在线观看| 色综合亚洲欧美另类图片| 直男gayav资源| avwww免费| 国产成人啪精品午夜网站| 亚洲美女视频黄频| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 国产欧美日韩精品一区二区| 国产一区二区三区在线臀色熟女| 特级一级黄色大片| 欧美激情在线99| 激情在线观看视频在线高清| 亚洲精品影视一区二区三区av| h日本视频在线播放| 欧美成人a在线观看| .国产精品久久| 亚洲精品久久国产高清桃花| 精品一区二区三区视频在线观看免费| 国产真实乱freesex| 日本免费一区二区三区高清不卡| aaaaa片日本免费| 亚洲精品一区av在线观看| 色视频www国产| 亚洲国产精品sss在线观看| 亚洲第一欧美日韩一区二区三区| 午夜a级毛片| 内地一区二区视频在线| 免费av毛片视频| 一本精品99久久精品77| 天堂√8在线中文| 99久久精品一区二区三区| a级毛片免费高清观看在线播放| 国产精品人妻久久久久久| 极品教师在线免费播放| 国产精品国产高清国产av| 老鸭窝网址在线观看| 亚洲经典国产精华液单 | 又黄又爽又免费观看的视频| 欧美xxxx黑人xx丫x性爽| 亚洲成人免费电影在线观看| 精品一区二区三区视频在线| 波多野结衣高清无吗| 欧美色欧美亚洲另类二区| 日韩成人在线观看一区二区三区| 日韩欧美在线二视频| 高清日韩中文字幕在线| 国产探花在线观看一区二区| 国产精品自产拍在线观看55亚洲| 国内精品一区二区在线观看| 最后的刺客免费高清国语| 成年女人看的毛片在线观看| 日韩 亚洲 欧美在线| av在线观看视频网站免费| 亚洲第一欧美日韩一区二区三区| 国产免费av片在线观看野外av| 真实男女啪啪啪动态图| 久久久久久久午夜电影| 欧美激情国产日韩精品一区| 男女视频在线观看网站免费| 亚洲 欧美 日韩 在线 免费| 国产成人av教育| 亚洲美女黄片视频| 久久伊人香网站| 久久中文看片网| 亚洲三级黄色毛片| 99国产综合亚洲精品| 欧美精品啪啪一区二区三区| 日韩高清综合在线| 99久久久亚洲精品蜜臀av| 三级毛片av免费| 国产真实伦视频高清在线观看 | 欧美日韩亚洲国产一区二区在线观看| 成人亚洲精品av一区二区| 女同久久另类99精品国产91| 麻豆国产97在线/欧美| 亚洲不卡免费看| 亚洲国产精品sss在线观看| 99精品久久久久人妻精品| 日韩国内少妇激情av| 色综合站精品国产| 欧美一级a爱片免费观看看| 免费av毛片视频| 中文字幕免费在线视频6| 亚洲成人精品中文字幕电影| 99精品久久久久人妻精品| 99视频精品全部免费 在线| 搡老妇女老女人老熟妇| 午夜日韩欧美国产| 五月玫瑰六月丁香| 亚洲精品粉嫩美女一区| 韩国av一区二区三区四区| 久久久久久久精品吃奶| 欧美三级亚洲精品| 美女 人体艺术 gogo| 亚洲国产精品sss在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟妇中文字幕五十中出| 国产午夜精品论理片| 色播亚洲综合网| 亚洲第一区二区三区不卡| 51国产日韩欧美| 97人妻精品一区二区三区麻豆| 国产av一区在线观看免费| 久久人人爽人人爽人人片va | 精品久久久久久,| 久久精品国产亚洲av天美| 88av欧美| 91狼人影院| 嫩草影院入口| 亚洲专区中文字幕在线| 成人亚洲精品av一区二区| 日韩欧美三级三区| 中文资源天堂在线| 97热精品久久久久久| 悠悠久久av| 性欧美人与动物交配| 欧美午夜高清在线| 麻豆一二三区av精品| 欧美性猛交╳xxx乱大交人| netflix在线观看网站| 俄罗斯特黄特色一大片| 好看av亚洲va欧美ⅴa在| av在线天堂中文字幕| 波多野结衣巨乳人妻| 麻豆国产97在线/欧美| 午夜视频国产福利| 国产高清有码在线观看视频| 国产午夜福利久久久久久| 99久久精品国产亚洲精品| 搡女人真爽免费视频火全软件 | 国产精品美女特级片免费视频播放器| 18禁黄网站禁片免费观看直播| 观看免费一级毛片| 欧美性感艳星| 在线天堂最新版资源| 一级黄片播放器| 婷婷六月久久综合丁香| 成人精品一区二区免费| 欧美在线一区亚洲| 成人毛片a级毛片在线播放| 蜜桃亚洲精品一区二区三区| 日本精品一区二区三区蜜桃| 欧美激情国产日韩精品一区| 国产亚洲av嫩草精品影院| av在线观看视频网站免费| 99久久成人亚洲精品观看| 琪琪午夜伦伦电影理论片6080| 国内精品一区二区在线观看| 久9热在线精品视频| 亚洲国产精品sss在线观看| 日本一本二区三区精品| 少妇裸体淫交视频免费看高清| 亚洲成人免费电影在线观看| 成年免费大片在线观看| 在线免费观看的www视频| 少妇的逼水好多| 亚洲五月天丁香| 好男人电影高清在线观看| 内地一区二区视频在线| 久久久久久久午夜电影| 亚洲经典国产精华液单 | 男人舔女人下体高潮全视频| 欧美潮喷喷水| 91久久精品国产一区二区成人| 91久久精品电影网| 亚洲人成网站在线播| 变态另类丝袜制服| 成年版毛片免费区| 无人区码免费观看不卡| 国产精品久久久久久精品电影| 18+在线观看网站| 日韩欧美精品免费久久 | 五月伊人婷婷丁香| 观看免费一级毛片| 我要搜黄色片| 国内精品美女久久久久久| 一级av片app| 亚洲熟妇中文字幕五十中出| 国内精品一区二区在线观看| 能在线免费观看的黄片| 男女做爰动态图高潮gif福利片| 小蜜桃在线观看免费完整版高清| 国产精品久久视频播放| 国产精品影院久久| 日韩欧美在线二视频| 淫秽高清视频在线观看| 精品不卡国产一区二区三区| 免费在线观看成人毛片| 在线免费观看的www视频| 熟妇人妻久久中文字幕3abv| 麻豆国产av国片精品| www日本黄色视频网| 国产欧美日韩精品一区二区| 亚洲精品影视一区二区三区av| 日韩欧美国产一区二区入口| 老女人水多毛片| 一夜夜www| 欧美日韩黄片免| 久久草成人影院| 国产黄a三级三级三级人| 黄色一级大片看看| 午夜精品在线福利| 五月伊人婷婷丁香| 麻豆一二三区av精品| 欧美xxxx黑人xx丫x性爽| 最好的美女福利视频网| 夜夜躁狠狠躁天天躁| 丝袜美腿在线中文| 久久欧美精品欧美久久欧美| 国产又黄又爽又无遮挡在线| 黄色视频,在线免费观看| 国产极品精品免费视频能看的| 亚洲av不卡在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品一区二区三区四区免费观看 | 3wmmmm亚洲av在线观看| 国产av麻豆久久久久久久| 国产精品久久视频播放| 日韩精品青青久久久久久| 九色国产91popny在线| 国产高清有码在线观看视频| 久久精品人妻少妇| 乱码一卡2卡4卡精品| 最近中文字幕高清免费大全6 | 国产三级在线视频| 高潮久久久久久久久久久不卡| 亚洲黑人精品在线| 婷婷精品国产亚洲av在线| av在线老鸭窝| 91久久精品国产一区二区成人| 午夜福利在线在线| 欧美一级a爱片免费观看看| 夜夜爽天天搞| 午夜影院日韩av| 国产探花在线观看一区二区| 一区二区三区免费毛片| 亚洲国产精品sss在线观看| 看片在线看免费视频| 美女cb高潮喷水在线观看| 久久精品久久久久久噜噜老黄 | 亚洲国产精品sss在线观看| 国产欧美日韩精品一区二区| 99riav亚洲国产免费| 中文字幕人成人乱码亚洲影| 中文字幕av在线有码专区| 成年人黄色毛片网站| 亚洲精品成人久久久久久| 国产精品人妻久久久久久| 亚洲欧美日韩高清专用| 久久99热这里只有精品18| 一本综合久久免费| 国产成人aa在线观看|