• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Manipulating vector solitons with super-sech pulse shapes

    2022-05-16 07:09:38YanZhou周延KeyunZhang張克赟ChunLuo羅純XiaoyanLin林曉艷MeisongLiao廖梅松GuoyingZhao趙國(guó)營(yíng)andYongzhengFang房永征
    Chinese Physics B 2022年5期
    關(guān)鍵詞:周延國(guó)營(yíng)

    Yan Zhou(周延) Keyun Zhang(張克赟) Chun Luo(羅純) Xiaoyan Lin(林曉艷)Meisong Liao(廖梅松) Guoying Zhao(趙國(guó)營(yíng)) and Yongzheng Fang(房永征)

    1School of Science,Shanghai Institute of Technology,Shanghai 201418,China

    2Key Laboratory of Materials for High Power Laser,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China

    3School of Materials Science and Engineering,Shanghai Institute of Technology,Shanghai 201418,China

    Keywords: vector soliton,super-sech,central wavelength,manipulation,optical fiber

    1. Introduction

    The research about optical solitons is always a hot topic in recent decades. Optical soliton can be considered as a kind of ultra-short optical pulse that maintains its temporal waveform in nonlinear medium under appropriate constrained conditions.[1–5]Optical soliton is often studied in passively mode-locked fiber laser with compact structure, because of the controllable dispersion and nonlinearity in optical fiber cavity.[6–10]Until now, there have been many reports about femtosecond fiber lasers in normal and anomalous dispersion regimes. In these fiber lasers, nanomaterial based saturable absorber is often adopted to achieve stable mode-locking. All fiber saturable absorber that combines single-mode fiber and graded index multimode fiber has been proved to have good modulation property because of the nonlinear multimode interference in mode-locked fiber laser. Besides,there are some other techniques that can generate mode-locked pulses, such as nonlinear polarization rotation, nonlinear amplified loop mirror and nonlinear optical loop mirror. Recently, the soliton dynamics in fiber lasers have also been investigated experimentally and theoretically. For instance, soliton molecules have been observed in real time,[11]the transition dynamics fromQ-switching to mode-locking has been reported,[12]and the entire buildup process of harmonic mode-locking has been revealed firstly in Ref.[13]. The soliton with super-sech pulse shape has also been theoretically analyzed,[14]but the generation of super-sech optical soliton in fiber laser has seldom been reported. The study about super-sech optical soliton is meaningful to the fields of optical communications, fiber sensing and fiber laser.

    Generally,the single-mode fiber(such as SMF-28,SMF-28e and HI 1060)used in the laser cavity is slightly anisotropic because of the fabrication imperfection, which can produce weak intra-cavity intrinsic linear birefringence. Combining intrinsic birefringence and externally imposed birefringence, output laser pulse can have two electric components in orthogonal polarization directions, meaning vector soliton (VS) is achieved in this condition. The externally imposed birefringence can be tuned by using polarization controller(PC)or introducing a piece of polarization-maintained optical fiber. The generated VS can be polarization-locked,group-velocity-locked or polarization-rotated,which is dependent on the strength of linear birefringence and linear birefringence induced cross-phase modulation between orthogonal polarization modes.[15–17]The generation and dynamics of fiber VSs have been reported by many research groups. Also,the manipulation of VSs out of laser cavity has been theoretically and experimentally studied. For example, Zhaoet al.reported the numerical simulations about the generation of pseudo-high-order group-velocity-locked VSs.[18]Zhaoet al.also demonstrated their experimental results in their later work.[19]We theoretically investigated the out-cavity manipulation of Yb-doped fiber laser VSs with various pulse properties, which include super-Gaussian pulses,[20]dark–dark pulses,[21]bright–dark pulses,[22]self-similar pulses,[23]selfsimilar vector bisolitons,[24]and so on.[25–28]Through varying soliton pulse parameters in orthogonal directions, finally,various kinds of pulse shapes and optical spectra in output orthogonal directions were got. But there have been few reports about super-sech VS pulses’ modulation. In this manuscript, we simulate the out-cavity modulation of supersech VS pulses at or near 1064 nm wavelength position,when it is polarization-locked or group-velocity-locked. Through the change of pulse parameters in orthogonal polarization directions,various kinds of VSs are shown after the polarization splitting. Our simulations are useful for relevant theoretical and experimental studies about super-sech VS.

    2. Optical fiber system description

    Fig.1. Optical fiber system.

    The optical fiber system used in our simulation is demonstrated in Fig. 1, and this theoretical model has been used in some previous papers.Figure 1 shows that input vector soliton from 1064 nm ultrafast fiber laser with electric amplitudes ofA1andA2in orthogonal directions enters into the optical fiber system,and is manipulated through the change of four soliton pulse parameters,including amplitude ratio(A2/A1),time delay(ΔT)between orthogonal components,linear birefringence(or phase difference)that is imposed by PC,and projection angle(θ)that can be varied by rotating polarization beam splitter(PBS). SMF is single-mode fiber, and Col is optical collimator which can align the output vector soliton pulses. We can see during the manipulation, the principal and minor axes of the elliptically polarized laser beam are rotated, and the amplitudes in these two orthogonal polarization directions also vary under appropriate conditions. In this optical fiber system,the polarization of VS can be controlled through the variations of amplitude ratio, time delay and phase difference. And the energy of manipulated VS is separated through changing projection angle.

    In Eq. (3),Ax(t) andAy(t) are respectively the complex amplitudes in horizontal and vertical directions after polarization splitting by PBS,andθis projection angle. After polarization splitting, the temporal intensities in output orthogonal directions are

    In Eq.(4),Ii(t)represents the output pulse shape’s intensity in horizontal or vertical direction wheniisxory.And the optical spectra of orthogonal modes can be calculated according to

    In Eq. (5),I′i(ω) is optical spectrum’s intensity in horizontal or vertical direction wheniisxory,ωis angular frequency,andF[]represents Fourier transform.

    Indeed, the VS evolution in optical fiber system can be numerically solved by using coupled nonlinear Schr¨odinger equations(NLSEs). In our simulation,we simplify the model by assuming the net effects of different pulse parameters. This assumption has already been reported in Ref.[19],and the experimental results agreed with the theory. In this approximation, the length of SMF in the model is assumed to be much shorter than dispersion length(T20/|β2|)and nonlinear length(1/(γP0)),which neglect the influence of dispersion and nonlinearity on pulse shapes and optical spectra. This approximation can be achieved through the control of pulse width(T0),group-velocity dispersion(β2)and pulse peak power(P0).γis fiber nonlinearity and depends on the type of SMF. Of course,if the fiber length is comparable or larger than dispersion/nonlinear length, the coupled NLSEs must be employed and soliton pulses in orthogonal polarizations will breathe in time/frequency domain.

    3. Simulation

    In this section, we conduct the simulation about manipulating super-sech VSs. Firstly, we assume input orthogonal components own the same central wavelength (λ1=λ2=1064 nm)and simulate the manipulation(see Figs.2–5).Secondly, input orthogonal components are assumed to have different central wavelengths(λ1=1063 nm,λ2=1065 nm),and the results are concluded from Figs.6–9.

    Figure 2 gives theoretical simulation results whenA2/A1is 1/1.5, 1/1.3, 1/1, 1.3/1, 1.5/1, andθ=0°, ΔT=0.5 ps,Δφ=π/2.T1=T2=5 ps,which is the same for all the cases in this manuscript. The input orthogonal modes’ phase difference isπ/2 when polarization is locked, and in this situation the net phase difference is alsoπ/2, so the summation of externally imposed linear birefringence and intrinsic linear birefringence is zero. Figures 2(a)–2(e) show that the output pulse peak intensities in horizontal and vertical directions have consistent variation trend as the change of amplitude ratioA2/A1,because of the energy exchange whenθ=0°. The pulse shapes in orthogonally polarized directions are slightly mismatched and will be overlapped totally when ΔT=0 ps.In corresponding optical spectra of Figs.2(f)–2(j),both orthogonally polarized optical spectra have trapezoid like optical spectrum shapes,which means the optical spectrum peak position has a flat region, because of the temporal sharp pulse peak.Also,the optical spectra in orthogonal directions will coincide with each other whenA2/A1=1/1,although ΔT/=0 ps in this situation.

    Fig.2. Simulation results of orthogonal modes when A2/A1 is changed(λ1=λ2): (a)–(e)waveforms,(f)–(j)corresponding spectra.

    Figure 3 gives theoretical simulation results whenθis 10°, 25°, 40°, 55°, 70°, andA2/A1=1, ΔT=1.5 ps, Δφ=π/2. The time delay of orthogonally polarized pulse shapes in Figs.3(a)–3(e)will be changed as the increase ofθ. The variation trend is that the time delay in orthogonal directions will decrease whenθapproaches to 45°,and the time delay is zero whenθ=45°. In optical spectra of Figs.3(f)–3(j),the central wavelength difference has contrary variation trend compared with time delay of orthogonal components. From this figure,it is concluded that through changing projection angle,the energy distribution in horizontal and vertical directions will be varied,which will induce the changes of phase velocities(time delay)and group velocities(central wavelengths)of output orthogonal components.

    Figure 4 gives theoretical simulation results when ΔTis 2 ps, 4 ps, 6 ps, 8 ps, 10 ps, andA2/A1= 1,θ= 40°,Δφ=π/2. Figures 4(a)–4(e)demonstrate that the pulse peak intensities in orthogonal directions will decrease when ΔTincreases from 2 ps to 6 ps, and then remain stable when ΔTincreases from 6 ps to 10 ps. We can see there are obvious two pulse peaks in both horizontal and vertical directions when ΔTis 6 ps, 8 ps and 10 ps, which means “2+2” pseudo-highorder VSs with group-velocity-locked are generated. They are called “pseudo-high-order” rather than “high-order” because the phases of orthogonal pulses are not locked in this situation.The occurrence of two pulses in horizontal/vertical direction is due to the interferences in orthogonal directions. Figures 4(f)–4(j) demonstrate the simulated optical spectra, showing that the peak intensities increase with increased ΔT. Orthogonal modes have slightly different central wavelengths, meaning group velocities are changed when ΔTincreases. Besides,another pedestal that at shorter(or longer)wavelength position in horizontal(or vertical)direction will appear when ΔTreaches 6 ps,and peak intensity of the pedestal will also increase with increased ΔT.

    Fig.3. Simulation results of orthogonal modes when θ is changed(λ1=λ2): (a)–(e)waveforms,(f)–(j)corresponding spectra.

    Fig.4. Simulation results of orthogonal modes when ΔT is changed(λ1=λ2): (a)–(e)waveforms,(f)–(j)corresponding spectra.

    At last,we change Δφand Fig.5 gives theoretical simulation results when Δφisπ/7,2π/7,3π/7,4π/7,5π/7,andA2/A1=1,θ=45°, ΔT=0 ps. Pulse shapes in Figs. 5(a)–5(e) and optical spectra in Figs. 5(f)–5(j) demonstrate similar variation trend as the increase of Δφ. In other words,the peak intensities of pulse shapes and corresponding optical spectra in horizontal/vertical polarization direction will decrease/increase with increased Δφ. The peak intensities of pulse shapes/optical spectra in orthogonal directions are always different under symmetry projection, which means the change of phase difference can induce energy flow between orthogonal directions.

    Figure 6 gives theoretical simulation results whenA2/A1is 1/1.5, 1/1.3, 1/1, 1.3/1, 1.5/1, andθ=0°, ΔT=0.5 ps,Δφ=0.The peak intensity variation trend in Figs.6(a)–6(e)is almost the same to Figs.2(a)–2(e),regardless of different Δφvalues. The optical spectra in Figs.6(f)–6(j)show that the optical spectrum peak intensity of horizontal/vertical mode has the same variation trend to the change ofA2/A1. The horizontal(or vertical)mode is always at shorter(or longer)wavelength position regardless of the variation of peak intensity.The unchanged output central wavelengths indicate that the group velocities of orthogonal modes are robust to the change of amplitude ratio.

    Fig.5. Simulation results of orthogonal modes when Δφ is changed(λ1=λ2): (a)–(e)waveforms,(f)–(j)corresponding spectra.

    Fig.6. Simulation results of orthogonal modes when A2/A1 is changed(λ1/=λ2): (a)–(e)waveforms,(f)–(j)corresponding spectra.

    Figure 7 demonstrates the simulation results whenθis 10°,25°,40°,55°,70°,andA2/A1=1,ΔT=1.5 ps,Δφ=0.Comparing Figs. 7(a)–7(e) and 3(a)–3(e), it is obvious that pulse splitting occurs for the case of different central wavelengths whenθis changed. The generation of multiple peaks is due to the enhanced interference in horizontal/vertical direction whenθ/=0°and with different input central wavelengths. Also,the maximum pulse peak intensities of orthogonal modes vary with differentθvalues. The temporal peak intensity and oscillation depth of horizontal/vertical mode will reach the maximum whenθ=45°(not depicted in Fig.7). In Figs.7(f)–7(j),there are two peaks for both output modes.The peak intensity of shorter wavelength of horizontal(or vertical)mode will decrease(or increase)with increasedθ,which will induce the increased (or decreased) peak intensity of longer wavelength of horizontal (or vertical) mode. The reason of generating dual-wavelength VS is that the change of projection angle will induce the intensity redistribution in two wavelengths with fixed total energy. It should be noted that the orthogonal optical spectra are overlapped but corresponding pulse shapes are not whenθ=45°.

    Figure 8 gives theoretical simulation results when ΔTis 2 ps, 4 ps, 6 ps, 8 ps, 10 ps, andA2/A1= 1,θ= 40°,Δφ=0. Figures 8(a)–8(e) demonstrate that as the increase of ΔT, the two pulsed waveforms in orthogonally polarized directions start to separate with each other, and their pulse peak intensities decrease with increased ΔT. Also, the pulse shapes will become relatively smooth when they start to separate,because of the decreased interaction between orthogonal components when time delay increases. In the optical spectra described in Figs. 8(f)–8(j), there are two peaks for both orthogonally polarized modes because of non-zeroθvalue. The optical spectrum peak intensity of 1063 nm component in horizontal/vertical direction is always higher/lower than 1065 nm component,and the peak intensities are almost unchanged under the variation of ΔT.

    Fig.7. Simulation results of orthogonal modes when θ is changed(λ1/=λ2): (a)–(e)waveforms,(f)–(j)corresponding spectra.

    Fig.8. Simulation results of orthogonal modes when ΔT is changed(λ1/=λ2): (a)–(e)waveforms,(f)–(j)corresponding spectra.

    At last,Δφis changed and Fig.9 gives theoretical simulation results when Δφisπ/7,2π/7,3π/7,4π/7,5π/7,andA2/A1=1,θ=45°, ΔT=0 ps. In Figs. 9(a)–9(e), pulsed waveforms in orthogonally polarized directions have multiple pulse peaks. The temporal envelopes are almost the same but these peaks are not overlapped even when ΔT=0 ps,because of different phase distributions in orthogonal directions. In Figs. 9(f)–9(j), the optical spectra in horizontal and vertical directions are overlapped because of the symmetry projection.Besides, the dual-wavelength optical spectra at 1063 nm and 1065 nm are unchanged as the increase of Δφ,meaning optical spectra in orthogonal directions are robust to the change of phase difference.

    Fig.9. Simulation results of orthogonal modes when Δφ is changed(λ1/=λ2): (a)–(e)waveforms,(f)–(j)corresponding spectra.

    4. Conclusion

    We gave theoretical simulation results about manipulating super-sech VSs in this work,whether the orthogonal components had same or different input central wavelengths. The output orthogonally polarized pulse shapes and optical spectra were always smooth when input orthogonal modes have the same central wavelength. By comparison, pulse shapes with multiple peaks and dual-wavelength optical spectra in orthogonally polarized directions could be achieved with different central wavelengths. The simulation results explore the supersech vector optical soliton dynamics in optical fiber system,and have applications in the fields of polarization multiplexing and coherent optical detectors in optical communications,through controlling the polarizations of super-sech VSs.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0504500),the National Natural Science Foundation of China (Grant Nos. 62105208, 51972317, and 61875052), Shanghai Sailing Program (Grant No. 20YF1447500), Special Project for Industrialization of High-tech Science and Technology between Jilin Province and the Chinese Academy of Sciences(Grant No.2021SYHZ0029),and Natural Science Foundation of Shanghai(Grant No.22ZR1470700).

    猜你喜歡
    周延國(guó)營(yíng)
    國(guó)營(yíng)第八九一廠
    周延《虞原璩江心寺詩(shī)》
    Polarization manipulation of bright-dark vector bisolitons?
    大山里種幸福
    國(guó)營(yíng)第八九一廠
    國(guó)營(yíng)第八九一廠
    國(guó)營(yíng)第八九一廠
    國(guó)營(yíng)第八九一廠
    國(guó)營(yíng)第八九一廠
    為百姓著想
    歌海(2017年6期)2017-05-30 05:20:26
    国产av国产精品国产| 听说在线观看完整版免费高清| 成人午夜高清在线视频| 欧美3d第一页| 中文字幕av在线有码专区| 亚洲电影在线观看av| 国产精品国产三级专区第一集| 777米奇影视久久| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩无卡精品| 深爱激情五月婷婷| 三级毛片av免费| 精品久久久噜噜| 在线a可以看的网站| 久久精品久久久久久噜噜老黄| 欧美日韩视频高清一区二区三区二| 狂野欧美白嫩少妇大欣赏| 一级爰片在线观看| 日本-黄色视频高清免费观看| 日韩制服骚丝袜av| 看非洲黑人一级黄片| 国产av不卡久久| 一本久久精品| 夜夜爽夜夜爽视频| 男的添女的下面高潮视频| 黑人高潮一二区| 久久久久九九精品影院| 又黄又爽又刺激的免费视频.| 人人妻人人澡人人爽人人夜夜 | 一级a做视频免费观看| 99久久精品国产国产毛片| 高清在线视频一区二区三区| 大陆偷拍与自拍| 日韩不卡一区二区三区视频在线| 在线观看免费高清a一片| 嘟嘟电影网在线观看| 久久亚洲国产成人精品v| 亚洲激情五月婷婷啪啪| 久久综合国产亚洲精品| 中文字幕免费在线视频6| 日韩,欧美,国产一区二区三区| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 欧美丝袜亚洲另类| av专区在线播放| 三级国产精品欧美在线观看| 激情五月婷婷亚洲| 久久精品久久久久久久性| 国产精品人妻久久久久久| 91午夜精品亚洲一区二区三区| 国产成人福利小说| 久99久视频精品免费| 免费观看精品视频网站| 人人妻人人澡欧美一区二区| 视频中文字幕在线观看| 欧美成人午夜免费资源| 免费观看av网站的网址| 九色成人免费人妻av| 国产淫片久久久久久久久| 一级爰片在线观看| 亚洲精品久久久久久婷婷小说| 欧美另类一区| 国语对白做爰xxxⅹ性视频网站| 青春草亚洲视频在线观看| 欧美另类一区| 国国产精品蜜臀av免费| 少妇丰满av| 亚洲精品日韩av片在线观看| 国产精品久久久久久精品电影| 免费不卡的大黄色大毛片视频在线观看 | 99久久中文字幕三级久久日本| 午夜激情久久久久久久| 69人妻影院| 99久久精品国产国产毛片| 如何舔出高潮| 天堂网av新在线| 国产一级毛片七仙女欲春2| 国产精品人妻久久久影院| 免费观看的影片在线观看| 观看免费一级毛片| 日韩av在线免费看完整版不卡| 久久久久久久午夜电影| 国产v大片淫在线免费观看| 少妇熟女aⅴ在线视频| 国产不卡一卡二| 六月丁香七月| 免费人成在线观看视频色| 两个人的视频大全免费| 狂野欧美激情性xxxx在线观看| 99热6这里只有精品| 赤兔流量卡办理| 午夜福利高清视频| 久久99热这里只频精品6学生| 免费看日本二区| 女人久久www免费人成看片| 日韩不卡一区二区三区视频在线| 婷婷色综合www| 亚洲人成网站高清观看| 国产亚洲5aaaaa淫片| 在线观看美女被高潮喷水网站| 久久草成人影院| 人妻制服诱惑在线中文字幕| 亚洲av男天堂| 日韩 亚洲 欧美在线| 亚洲在线观看片| 男的添女的下面高潮视频| 狂野欧美激情性xxxx在线观看| 久久精品久久久久久久性| 黄色配什么色好看| 亚洲熟妇中文字幕五十中出| 韩国av在线不卡| 高清视频免费观看一区二区 | 极品少妇高潮喷水抽搐| 你懂的网址亚洲精品在线观看| 国产精品一区二区三区四区久久| 国产精品一区www在线观看| 成人午夜精彩视频在线观看| 少妇人妻一区二区三区视频| 国产精品久久视频播放| 黄色欧美视频在线观看| 2021天堂中文幕一二区在线观| 日本免费a在线| 欧美成人午夜免费资源| 天堂中文最新版在线下载 | 国产黄片视频在线免费观看| 久久久久久久久久久丰满| av.在线天堂| 国产成人福利小说| 成人亚洲精品av一区二区| 网址你懂的国产日韩在线| 七月丁香在线播放| av女优亚洲男人天堂| 人人妻人人看人人澡| av免费观看日本| 亚洲精品影视一区二区三区av| 丝袜喷水一区| 国产av在哪里看| 日日摸夜夜添夜夜爱| 精品人妻一区二区三区麻豆| 久久久亚洲精品成人影院| 国产综合精华液| 亚洲精品乱码久久久v下载方式| 你懂的网址亚洲精品在线观看| 精品久久国产蜜桃| 欧美3d第一页| 国产一级毛片七仙女欲春2| 成人特级av手机在线观看| 成人鲁丝片一二三区免费| 亚洲色图av天堂| 久久久久久久久久黄片| 日韩制服骚丝袜av| 禁无遮挡网站| 高清视频免费观看一区二区 | 亚洲丝袜综合中文字幕| 97人妻精品一区二区三区麻豆| 18禁在线无遮挡免费观看视频| 免费少妇av软件| 蜜臀久久99精品久久宅男| 国精品久久久久久国模美| 国产在视频线在精品| 国产永久视频网站| 亚洲精品影视一区二区三区av| 午夜精品一区二区三区免费看| 国产亚洲5aaaaa淫片| 性插视频无遮挡在线免费观看| 亚洲人成网站高清观看| 欧美日韩精品成人综合77777| 最近手机中文字幕大全| 国产伦在线观看视频一区| 精品久久久久久电影网| av女优亚洲男人天堂| 亚洲无线观看免费| 亚洲精品乱久久久久久| 成人二区视频| ponron亚洲| 视频中文字幕在线观看| 一级爰片在线观看| 国产精品无大码| 最后的刺客免费高清国语| 一级毛片aaaaaa免费看小| 亚洲成人精品中文字幕电影| 中文乱码字字幕精品一区二区三区 | 色吧在线观看| 啦啦啦啦在线视频资源| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 久久久a久久爽久久v久久| 日产精品乱码卡一卡2卡三| 色播亚洲综合网| 国产色婷婷99| 久久精品久久久久久噜噜老黄| 国产免费又黄又爽又色| 男人舔奶头视频| 一个人观看的视频www高清免费观看| 国产高清三级在线| 日韩伦理黄色片| 亚洲国产色片| 国产毛片a区久久久久| 五月玫瑰六月丁香| 亚洲精品国产av蜜桃| 成人毛片60女人毛片免费| 国产综合精华液| 久久久久久久亚洲中文字幕| 婷婷色综合大香蕉| 熟女人妻精品中文字幕| 欧美区成人在线视频| 亚洲精品国产成人久久av| 亚洲美女搞黄在线观看| 亚洲精品,欧美精品| 国模一区二区三区四区视频| 国产伦理片在线播放av一区| 国产一区亚洲一区在线观看| 别揉我奶头 嗯啊视频| 日韩一本色道免费dvd| 国产成人a∨麻豆精品| 午夜视频国产福利| 亚洲18禁久久av| 欧美3d第一页| 久久精品人妻少妇| 亚洲四区av| 人妻制服诱惑在线中文字幕| 九色成人免费人妻av| 99热这里只有精品一区| 深夜a级毛片| 精品欧美国产一区二区三| 久久精品国产亚洲av涩爱| xxx大片免费视频| 亚洲成人一二三区av| 国内精品美女久久久久久| 69人妻影院| 美女被艹到高潮喷水动态| 看非洲黑人一级黄片| 亚洲人与动物交配视频| 肉色欧美久久久久久久蜜桃 | 亚洲国产成人一精品久久久| 22中文网久久字幕| 国产亚洲av嫩草精品影院| 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| 国产色爽女视频免费观看| 中文欧美无线码| 国内精品宾馆在线| 精品国产一区二区三区久久久樱花 | 天天一区二区日本电影三级| 国产国拍精品亚洲av在线观看| 久久久久久久国产电影| 久久国产乱子免费精品| 麻豆精品久久久久久蜜桃| 成年女人看的毛片在线观看| 卡戴珊不雅视频在线播放| 少妇的逼水好多| 亚洲av.av天堂| 婷婷色av中文字幕| 亚洲精品日韩在线中文字幕| 毛片女人毛片| 在线a可以看的网站| 少妇裸体淫交视频免费看高清| 欧美97在线视频| 又大又黄又爽视频免费| 免费看日本二区| 久久久亚洲精品成人影院| 国语对白做爰xxxⅹ性视频网站| 99re6热这里在线精品视频| 日韩三级伦理在线观看| 亚洲国产精品国产精品| 成人国产麻豆网| 天堂俺去俺来也www色官网 | 禁无遮挡网站| 九九在线视频观看精品| 嫩草影院入口| 伦理电影大哥的女人| 搡老乐熟女国产| 亚洲av成人精品一区久久| 成人国产麻豆网| 色视频www国产| 精品一区二区三区人妻视频| 国产免费视频播放在线视频 | 国产 亚洲一区二区三区 | 搡老乐熟女国产| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩精品一区二区| 亚洲精品aⅴ在线观看| 一级a做视频免费观看| 韩国av在线不卡| kizo精华| 最新中文字幕久久久久| 欧美日韩视频高清一区二区三区二| 嘟嘟电影网在线观看| 免费无遮挡裸体视频| 国产精品一及| 在现免费观看毛片| 日韩在线高清观看一区二区三区| 免费高清在线观看视频在线观看| 听说在线观看完整版免费高清| 嘟嘟电影网在线观看| 精品酒店卫生间| 国产精品人妻久久久影院| 免费在线观看成人毛片| 国产老妇女一区| 啦啦啦中文免费视频观看日本| 久久久欧美国产精品| 九草在线视频观看| 国产视频首页在线观看| 久久这里有精品视频免费| 黑人高潮一二区| 尤物成人国产欧美一区二区三区| 又大又黄又爽视频免费| 免费黄网站久久成人精品| 亚洲欧美日韩无卡精品| 一级av片app| 中文字幕av成人在线电影| 一本一本综合久久| 寂寞人妻少妇视频99o| 久久韩国三级中文字幕| h日本视频在线播放| 国产综合精华液| 免费av观看视频| 男女边吃奶边做爰视频| 国产欧美日韩精品一区二区| 国产精品三级大全| 99久久精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 一区二区三区乱码不卡18| 亚洲人成网站在线观看播放| 久久久精品94久久精品| 国产激情偷乱视频一区二区| 九色成人免费人妻av| 亚洲av成人精品一区久久| 国产成人免费观看mmmm| 国产综合懂色| 色吧在线观看| 亚洲在线自拍视频| 国产亚洲91精品色在线| 老师上课跳d突然被开到最大视频| 国产不卡一卡二| 久久草成人影院| av播播在线观看一区| 少妇熟女欧美另类| 久久久午夜欧美精品| 最近2019中文字幕mv第一页| 成人毛片60女人毛片免费| 大香蕉97超碰在线| 日本黄大片高清| 99久久精品国产国产毛片| 人体艺术视频欧美日本| 一区二区三区乱码不卡18| 老司机影院毛片| 大片免费播放器 马上看| 伦理电影大哥的女人| 久久6这里有精品| 久久久久久久久久成人| 久久97久久精品| 亚洲在久久综合| 欧美日韩视频高清一区二区三区二| 国产精品不卡视频一区二区| 欧美日韩视频高清一区二区三区二| 亚洲国产日韩欧美精品在线观看| av在线天堂中文字幕| kizo精华| 视频中文字幕在线观看| 岛国毛片在线播放| 久久午夜福利片| 亚洲经典国产精华液单| av国产久精品久网站免费入址| 精品酒店卫生间| 亚洲aⅴ乱码一区二区在线播放| 少妇熟女aⅴ在线视频| 免费观看性生交大片5| 国产精品人妻久久久久久| 国产亚洲最大av| 久久久精品免费免费高清| 精品久久国产蜜桃| kizo精华| 美女xxoo啪啪120秒动态图| 久久久久免费精品人妻一区二区| 在线观看美女被高潮喷水网站| 国产伦在线观看视频一区| 综合色丁香网| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 不卡视频在线观看欧美| 午夜福利视频精品| av天堂中文字幕网| 毛片女人毛片| 国内少妇人妻偷人精品xxx网站| 午夜爱爱视频在线播放| 免费高清在线观看视频在线观看| 免费看av在线观看网站| 日韩中字成人| 直男gayav资源| 色综合亚洲欧美另类图片| 高清在线视频一区二区三区| av又黄又爽大尺度在线免费看| 国产免费又黄又爽又色| a级毛片免费高清观看在线播放| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 一个人看的www免费观看视频| 国产精品久久视频播放| 国产免费福利视频在线观看| 51国产日韩欧美| 国产免费一级a男人的天堂| 国产老妇伦熟女老妇高清| 国产免费一级a男人的天堂| 久99久视频精品免费| 亚洲精品自拍成人| 久久精品久久久久久久性| 91av网一区二区| 成年av动漫网址| 美女国产视频在线观看| 青春草视频在线免费观看| 少妇的逼好多水| 少妇的逼水好多| 美女xxoo啪啪120秒动态图| 日韩国内少妇激情av| 免费观看无遮挡的男女| 国产熟女欧美一区二区| 能在线免费观看的黄片| 日产精品乱码卡一卡2卡三| 免费看av在线观看网站| 国产伦精品一区二区三区视频9| 老师上课跳d突然被开到最大视频| 国产精品人妻久久久影院| 美女被艹到高潮喷水动态| 青春草亚洲视频在线观看| 免费看光身美女| 色播亚洲综合网| 插逼视频在线观看| 午夜爱爱视频在线播放| 91aial.com中文字幕在线观看| 午夜福利成人在线免费观看| 亚洲一级一片aⅴ在线观看| 成人美女网站在线观看视频| 国产高清国产精品国产三级 | 日韩一区二区视频免费看| 最近视频中文字幕2019在线8| 伊人久久精品亚洲午夜| 精品久久久精品久久久| 国产永久视频网站| 亚洲精品中文字幕在线视频 | 婷婷色av中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 一级爰片在线观看| 噜噜噜噜噜久久久久久91| 亚洲,欧美,日韩| 成人午夜高清在线视频| 免费观看av网站的网址| 久久人人爽人人片av| av国产免费在线观看| 中文字幕免费在线视频6| 最近最新中文字幕免费大全7| 一级毛片aaaaaa免费看小| 欧美性猛交╳xxx乱大交人| 国产毛片a区久久久久| 三级经典国产精品| 18禁裸乳无遮挡免费网站照片| 午夜福利网站1000一区二区三区| 国产亚洲一区二区精品| 日本wwww免费看| 成人综合一区亚洲| 99九九线精品视频在线观看视频| 网址你懂的国产日韩在线| 日本欧美国产在线视频| 久久久午夜欧美精品| 亚洲av不卡在线观看| 国产成人免费观看mmmm| 赤兔流量卡办理| 91在线精品国自产拍蜜月| 99视频精品全部免费 在线| 麻豆成人午夜福利视频| 国产 一区精品| 日日啪夜夜爽| 97在线视频观看| 免费看光身美女| 18禁裸乳无遮挡免费网站照片| 国产爱豆传媒在线观看| 国产精品蜜桃在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av.av天堂| 午夜免费观看性视频| 欧美一区二区亚洲| 在线a可以看的网站| 人妻少妇偷人精品九色| 少妇人妻一区二区三区视频| 观看免费一级毛片| 亚洲av电影在线观看一区二区三区 | 在线天堂最新版资源| 日韩 亚洲 欧美在线| 免费高清在线观看视频在线观看| 高清毛片免费看| 亚洲18禁久久av| 国产伦理片在线播放av一区| av国产久精品久网站免费入址| 国产爱豆传媒在线观看| 成人亚洲精品av一区二区| 国产成年人精品一区二区| 欧美日本视频| 国产精品久久视频播放| 日韩av在线免费看完整版不卡| 久久久久久久大尺度免费视频| 黑人高潮一二区| 久久久久免费精品人妻一区二区| 最后的刺客免费高清国语| 亚洲精品乱码久久久久久按摩| 久久久久久久大尺度免费视频| 国产精品人妻久久久影院| 亚洲无线观看免费| 一本久久精品| 亚洲精品,欧美精品| 高清在线视频一区二区三区| or卡值多少钱| 最近中文字幕2019免费版| 少妇人妻精品综合一区二区| 免费播放大片免费观看视频在线观看| 国产综合懂色| 18禁在线播放成人免费| 插逼视频在线观看| 国产精品一二三区在线看| 久久久久久久久大av| 国产又色又爽无遮挡免| 欧美xxxx黑人xx丫x性爽| 男的添女的下面高潮视频| 国产精品伦人一区二区| 国产精品一区二区三区四区久久| 99re6热这里在线精品视频| 99久久精品国产国产毛片| 国产精品福利在线免费观看| 真实男女啪啪啪动态图| 18禁在线播放成人免费| 三级男女做爰猛烈吃奶摸视频| 国产精品嫩草影院av在线观看| 国产 一区精品| 成人美女网站在线观看视频| 最近中文字幕高清免费大全6| 寂寞人妻少妇视频99o| 免费看日本二区| 欧美精品国产亚洲| 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 哪个播放器可以免费观看大片| 国产免费又黄又爽又色| 亚洲欧美日韩卡通动漫| 精品人妻偷拍中文字幕| 国产久久久一区二区三区| 精品一区在线观看国产| 最近中文字幕2019免费版| 国产视频内射| 亚洲一级一片aⅴ在线观看| 国产伦一二天堂av在线观看| 免费观看的影片在线观看| 日韩欧美精品v在线| 国产免费又黄又爽又色| 欧美zozozo另类| 国产乱人视频| av黄色大香蕉| 国国产精品蜜臀av免费| 欧美+日韩+精品| 国产成人a∨麻豆精品| av天堂中文字幕网| 午夜免费激情av| 国产熟女欧美一区二区| 久久久色成人| 国产乱人视频| 美女高潮的动态| 看非洲黑人一级黄片| 丝瓜视频免费看黄片| www.色视频.com| 国产成人精品一,二区| 亚洲国产欧美人成| 中国美白少妇内射xxxbb| av在线播放精品| av福利片在线观看| 亚洲av免费高清在线观看| 国产高潮美女av| 韩国高清视频一区二区三区| 欧美bdsm另类| 观看免费一级毛片| 国产亚洲午夜精品一区二区久久 | 日本熟妇午夜| 毛片一级片免费看久久久久| 免费观看av网站的网址| 国产黄色视频一区二区在线观看| av在线观看视频网站免费| 亚洲国产成人一精品久久久| 国产成人免费观看mmmm| 美女被艹到高潮喷水动态| 欧美一区二区亚洲| h日本视频在线播放| 男人和女人高潮做爰伦理| 午夜日本视频在线| 一级av片app| 2018国产大陆天天弄谢| av福利片在线观看| 亚洲一区高清亚洲精品| 天堂√8在线中文| 免费av不卡在线播放| 麻豆精品久久久久久蜜桃| 欧美精品国产亚洲| 免费av不卡在线播放| 成人鲁丝片一二三区免费| 日本猛色少妇xxxxx猛交久久| 国产男女超爽视频在线观看| 男人狂女人下面高潮的视频| 国产黄a三级三级三级人| 大陆偷拍与自拍| 99久国产av精品| 亚洲精品国产成人久久av| 精品熟女少妇av免费看| 亚洲av不卡在线观看| 搡老乐熟女国产| 三级国产精品欧美在线观看| 亚洲图色成人| 亚洲av一区综合| 国产永久视频网站| 真实男女啪啪啪动态图|