• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-responded tunable metalenses based on phase transition materials

    2022-05-16 07:10:18JingJunWu伍景軍FengTang唐烽JunMa馬駿BingHan韓冰CongWei魏聰QingZhiLi李青芝JunChen陳駿NingZhang張寧XinYe葉鑫WanGuoZheng鄭萬國andRiHongZhu朱日宏
    Chinese Physics B 2022年5期
    關(guān)鍵詞:韓冰馬駿萬國

    Jing-Jun Wu(伍景軍) Feng Tang(唐烽) Jun Ma(馬駿) Bing Han(韓冰) Cong Wei(魏聰)Qing-Zhi Li(李青芝) Jun Chen(陳駿) Ning Zhang(張寧) Xin Ye(葉鑫)Wan-Guo Zheng(鄭萬國) and Ri-Hong Zhu(朱日宏)

    1School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    2MIIT Key Laboratory of Advanced Solid Laser,Nanjing University of Science and Technology,Nanjing 210094,China

    3Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang 621900,China

    4IFSA Collaborative Innovation Center,Shanghai Jiao Tong University,Shanghai 200240,China

    Keywords: temperature-responded,tunable metalenses,phase change material VO2

    1. Introduction

    Lenses are one of the most important components in optical systems,such as cameras,microscopes,projective lithographic machines, spectrometers, triggering off a wide investigation of optics and photonics.[1]Traditional lenses based on refractive or reflective principles have some limitations in integration,weight,chromatic aberration,etc.,which restricts the development of multifunctional optical devices.[2]Recently,metalens technology based on metasurfaces,which control the wavefront of light by using subwavelength nanostructures,has shown peculiar optical performance with micrometer thickness. Therefore, metalenses have been investigated widely to replace the bulk devices with thin,flat,lightweight devices.[3]However, the functions of most of metalenses are invariable once they are fabricated. For being harnessed in more applications with lower cost, the tunability of their performance becomes important.

    To date, two common approaches have been exploited to tune metalenses. One is based on the reconfigurability of unit cells,[4,5]such as physical dimensions,interspace between unit-cells[6–8]and shapes,[9–11]to actively manipulate the output wavefront.[12]This tuning is typically accompanied by some forms of overall spatial variation of the devices,which,however,is not always desirable for some highly compact photonic devices.[3]The other is to integrate active materials into metalenses.[13]The active materials’optical properties can be tuned by external excitation,such as thermal,[14]electrical,[15]or optical stimuli.[12]Owing to the resonances of unit cells being highly sensitive to the dielectric background, the placed active material can control the metalenses’ optical response.This allows the controlling of metalens without reconfiguring their structures.

    Among these active materials, phase change and phase transition materials(PCMs and PTMs)are good candidates to provide widely tunable capabilities.[16]The PCM materials,such as germanium–antimony–tellurium(GST)and antimony sulfide (Sb2S3), are irreversible, that is, nonvolatile, and will remain in a fixed state of the matter unless an input excitation “resets” it back to its original state. Yinet al.proposed a bifocal zoom metalens, focusing position can be controlled actively according to the requirement.[17]Baiet al.designed an actively tunable metalens array by patterning the GST resonators. The metalenses array shows excellent broadband performance,and the“on”or“off”state of each metalens can be actively controlled manually.[18]Besides,Baiet al.designed a tunable duplex metalenses,which can focus the incident light at any position by actively controlling the state of GST.[19]Chenet al.designed multifunctional metalens with dual working modes based on bilayer geometric phase elements consisting of low-loss phase change materials (Sb2Se3) and amorphous silicon(a-Si).[20]The above-mentioned metalenses’focus position or intensities can be actively tuned to a great extent, but they are difficult to dynamically control in real-time due to PCMs requiring new excitation to “reset” it back to its original state.[16]The PTM material,e.g., vanadium dioxide (VO2), is naturally reversible and will return to its initial state if the external stimulus is discontinued. Therefore,VO2is more suitable for the equipment whose performance needs controlling in real-time,e.g., intelligent temperature control systems. Recently,Chenet al.realized a reflected metalens in the far-infrared band by combining a geometrical metasurface and a VO2film.[21]The metasurfaces work as a reflective lens with a protective function from strong light. However,the tunable focusing and photothermal interaction of metalens have not been investigated previously.

    In this paper, we propose a tunable metalens based on a hybrid structure combined with a VO2film and Si nanocylinders. The hybrid metalens works at 1550 nm and provide realtime tunability by using thin PTM layers. The temperaturedependent transmitted amplitude can be controlled within a certain range in which the system can work normally. Finally, the optothermal simulations are conducted to estimate the optothermal conversion progress of dynamic focusing,and the maximum laser density that the hybrid metalens can handle.The light-dose sensitive tunable smart metalens presents a new approach to the application of anti-satellite blinding,bioimaging,etc.

    2. Materials and methods

    Figure 1(a) shows the schematic diagram of our design.It comprises two films and an array of nanocylinder unit cells within a square lattice array. The materials of these layers from the bottom to the top are silicon oxide (SiO2), vanadium oxide (VO2), and silicon (Si), respectively. The period of unit cells isP=600 nm. The nanocylinder’s height is optimized to beH=750 nm. The diameter of the nanocylinder isD. The phase difference of the transmitted light can be tuned by changing the diameter of nanocylinder. The optical components’ phase profiles can be achieved by the unit cells of nanocylinders if the phase difference can cover the entire range of 0–2π. Nanocylinder is polarization independent due to its structural symmetry.[22]

    In this study,the three-dimensional(3D)finite-difference time-domain method is used for optical simulations, and the discontinuous Galerkin time-domain method is used for thermal simulations. In optical simulations, the incident optical source is set to be a plane wave. The direction of propagation is along thezaxis, and the polarization direction is along thexaxis. The boundaries around the unit cell are periodic boundary conditions, and the top and bottom perfectly matches with the layer boundary conditions. The mesh accuracy is set to be 3. In thermal simulations, thex/yaxis boundaries are set to be “closed”, and thezaxis boundaries are set to be “shell”. The source and all objects are modeled as shown in Fig. 1(a) and limited in the optical/optothermal simulation region. The condition mode of boundaries is set to be the steady-state with a temperature of 330 K, and the temperature boundary is set to be at the bottom of the simulation region. The VO2permittivity’s real and imaginary part are illustrated in Figs. A1(a) and A1(b) in Appendix A, respectively, and the data are cited from Ref. [23]. The constants of heat transport properties and electronic properties are cited from Refs. [24,25]. For the VO2material in an insulating state, the electrical conductivity, density, heat capacity, and thermal conductivity are set to be 221.8045 S/m,4570 kg/m3, 6560 J·kg-1·K-1, and 3.5 W·m-1·K-1, respectively. For the VO2material in a metallic state, the electrical conductivity, density, heat capacity, and thermal conductivity are set to be 94586.4662 S/m,4650 kg/m3,7800 J·kg-1·K-1,and 6 W·m-1·K-1, respectively. The ambient temperature is set to be 330 K.The real parts and imaginary parts of SiO2and Si are cited from Ref.[26].

    Fig.1. Design of unit cells,showing(a)3D view of unit cells,(b)transmission,and(c)phase for nanocylinders varying with nanocylinders’diameters.

    3. Results and discussion

    3.1. Optical properties of nanocylinders

    The diameter-dependent transmission and phase difference of nanocylinders are illustrated in Figs. 1(b) and 1(c).The results (λ=1550 nm) of unit cells can cover the entire range of 0–2π,which is the fundament of constructing metalens. In this research,the high transmission is obtained,when the heightH=750 nm, the lattice constantP=600 nm. To realize the phase control of the metasurface(x,y)position,the appropriate diameters of the nanocylinders with high transmission in the range of 0–2πare selected. The phase modulation and the transmission corresponding to different nanocylinder sizes are shown in Table 1. These 8 high-transmission unit cells that entirely cover the range of 0–2πcan be used to construct the metasurface.

    Table 1. Dimensions of nanocylinders covering phase range of 0–2π.

    3.2. Metalens design and property

    Fig.2. Metalens construction and performance simulations,indicating(a)function of metalens phase distribution in a radial direction,(b)top and side view of metalens, (c) partially enlarged details of the metalens, marked by the red box in panel (b), (d) power distributions of the focusing spot in the x–z(y=0 μm),(e)x–y(z=68.6756 μm)plane,and(f)full width at half maximum(FWHM)of the focusing spot.

    The dynamic focusing performance of the hybrid metalens is explored in detail as shown in Fig. 3. Figures 3(a)–3(f) show the power distributions of the focusing spot on thex–zplane at different temperatures (330 K, 339 K, 341 K,343 K, 345 K, 350 K respectively). The power of the hybrid metalens focused spot gradually decreases as the temperature increases. It is seen that the focus wavelength of the hybrid metalens at different temperatures are almost the same, focal distancef=68.6756 μm. Figure 3(g)illustrates the power distributions of the focal point on the optical axis(white dashed line in Figs.3(a)–3(f)). The FWHMs of the focal spots are almost the same when the temperature changes.It proves that the hybrid metalens proposed here can realize the dynamic focusing of the incident light. Because of our limited computer source, the diameter of metalens is set to be 87 μm. By increasing the diameter of the metalens, the FWHM can be miniaturized.[28]The transmission(T),reflection(R),absorption(A),and focusing efficiency(E)of the hybrid metalens at different temperatures are shown in Fig.3(h).TheT,R, andEof the hybrid metalens gradually decrease,and theAincreases as the temperature increases. TheT,R,andEare suppressed due to the strong absorption. As the temperature increases, the imaginary part of the VO2permittivity gradually increases, leading the absorption to increase sharply. The VO2appears in a full metallic state while the temperature is well above the transition temperature. Inhere,theT,R,andEof the hybrid metalens reach the highest values(T=59.09%,R=13.44%,E=42.28%) and the absorption reaches the lowest values (A=27.47%) at 330 K. While the hybrid metalens at 350 K, theT,R, andEreach the lowest values (T=17.25%,R=0.86%,E=12.68%) and the absorption reaches the highest values(A=81.89%). The modulation efficiency ofT(T350K/T330K-1|) is~70.81%,R(|R350K/R330K-1|) is~93.60%,E(|E350K/E330K-1|) is~70.01%, andA(|A350K/A330K-1|) is 66.46%. As it can be seen that the hybrid metalens not only dynamically control the optical intensity, but also protect the speciesin measurement from being overe-exposed when the incident light is too strong.

    Fig.3. Metalens properties at different temperatures: 330 K(a),339 K(b),341 K(c),343 K(d),345 K(e),350 K(f),respectively,showing[(a)–(f)]power distributions of focusing spot in x–z(y=0 μm)plane,with white dashed lines representing focal position,(g)FWHMs of focusing spots,(h)transmission(T),reflection(R),absorption(A),and focusing efficiency(E)of hybrid metalens.

    Although the optical simulations can calculate the dynamic focusing efficiency of incident light with the increase of temperature,they cannot reflect the optothermal conversion process of dynamic focusing. For the quantitative analysis,some optothermal simulations are conducted to estimate the optothermal conversion process of the dynamic focusing,and the maximum light intensity that the hybrid metalens can handle. Figure 4(a)shows the temperature distribution in the hybrid metalens, composed of 19 selected unit cells in Table 1,illustrated by a plane-wave laser with power 3.64×10-10W(the area is 0.6 μm×11.4 μm = 6.84 μm). We simplify the original two-dimensional (2D) metalens (D= 11.4 μm,f=9.12 μm) into a one-dimensional (1D) one, due to our limited computing source. The 1D hybrid metalens has a similar temperature value of 330 K while the laser power is lower than 3.64×10-10W. Under the illumination of different incident power, the maximum temperature values in the three-dimensional (3D) volume made of the metalens are reported in Fig. 4(c). It is shown that the temperature of hybrid metalens increases gradually as the laser power is higher than 3.64×10-10W, the laser density is 5.32×10-3W/cm2.Therefore,we believe that the hybrid metalens works normally while the ambient temperature is lower than 330 K and the incident light power is lower than 5.32×10-3W/cm2. As the laser energy increases,the temperature of the metalens gradually increases,and the VO2transits from the insulating state to the metallic state. It is usually considered that VO2is a fully metallic state while the temperature reaches 350 K, or even higher than 350 K. We suppose that the optical and thermal constants of VO2, SiO2, Si remain unchanged while the temperature is higher than 350 K.Figure 4(b)shows the temperature distribution in the hybrid metalens illustrated by a planewave laser with power 1.78×10-6W. The temperature difference between the silicon nanocylinders and the VO2film is less than 1 K,just as the temperature is 330 K.The temperature of the hybrid metalens increases as the laser power increases as illustrated in Fig. 4(d). It is shown that the hybrid metalens can handle the maximum laser power(1.21×10-4W per 6.84×10-8cm2),i.e., the laser density is 1.76×103W/cm2.The melting point of Si, SiO2, VO2are 1683 K, 1683 K,1996 K,1818 K respectively.

    Fig. 4. Photothermal analysis of the hybrid metalens, indicating [(a), (b)]temperature distribution in 1D metalens(area: 6.84×10-8 cm2)illustrated by plane-wave lasers with power 3.64×10-10 W and 1.78×10-6 W respectively,[(c),(d)]the highest temperature in 3D volume of panels(a)and(c)under the illumination of different incident powers respectively.

    4. Conclusions and perspectives

    In this work, we introduce a temperature-dependent tunable hybrid metalens operating at 1550 nm. Firstly, the geometrical dependence of the phase and transmittance of an Si nanocylinder is investigated. And then, a hybrid metalens is constructed and the temperature-dependent characteristics are simulated in detail. As the temperature increases, the focused power,transmission,reflection,and focusing efficiency of the hybrid metalens gradually decrease,and the absorption increases. The focusing efficiency of incident light and modulation efficiency of the focused efficiency are 42.28% and 70.01% respectively. Finally, the optothermal simulations illustrate the optothermal conversion progress of the dynamic focusing,and the hybrid metalens can handle a maximum laser density of 1.76×103W/cm2at an ambient temperature lower than 330 K. We believe that the light-dose sensitive tunable smart metalens proposed in this work can provide a new practicable platform for realizing the instruments/systems or material damage protection,and potential applications in numerous technologically important fields such as anti-satellite blinding,bio-imaging,etc.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.61875087)and the Innovation and Development Foundation of China Academy of Engineering Physics(Grant No.CX20200020).

    Appendix A:The figure cited from Ref.[23]

    Fig. A1. Curves of (a) real part and (b) imaginary part versus wavelength of VO2 permitivity data are cited from Ref.[23].

    猜你喜歡
    韓冰馬駿萬國
    Thermal stress damage mechanism in single-crystal germanium caused by 1080 nm laser irradiation
    Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
    房地產(chǎn)估價風(fēng)險評估與防范
    何處埋忠骨:六棵樹的“密碼”
    春節(jié)700萬國人出境游
    馬萬國作品
    白蘿卜· 綠玉米
    喜劇世界(2017年11期)2017-06-24 12:38:26
    Preliminary Study about Narrative Art of the Micro Film
    “萬國茶幫”拜媽祖
    海峽姐妹(2016年7期)2016-02-27 15:21:38
    藏獒
    故事會(2013年12期)2013-05-14 15:24:09
    精品人妻一区二区三区麻豆| 1024视频免费在线观看| 久久鲁丝午夜福利片| 搡老岳熟女国产| 纯流量卡能插随身wifi吗| 亚洲欧美中文字幕日韩二区| av国产精品久久久久影院| 日韩av免费高清视频| 欧美黄色淫秽网站| 亚洲国产av新网站| 国产一区二区三区av在线| 亚洲激情五月婷婷啪啪| 天天躁夜夜躁狠狠久久av| 午夜福利免费观看在线| 女人久久www免费人成看片| 欧美老熟妇乱子伦牲交| 成人午夜精彩视频在线观看| 国产免费又黄又爽又色| 亚洲伊人色综图| 老司机靠b影院| 啦啦啦啦在线视频资源| 亚洲欧美日韩另类电影网站| 下体分泌物呈黄色| 婷婷色综合www| 99九九在线精品视频| 91成人精品电影| 亚洲精品成人av观看孕妇| 欧美日韩亚洲综合一区二区三区_| 亚洲精品美女久久av网站| 精品人妻在线不人妻| 精品一区二区三卡| 久久久国产欧美日韩av| 十八禁高潮呻吟视频| 亚洲图色成人| 自线自在国产av| 午夜视频精品福利| 建设人人有责人人尽责人人享有的| 97人妻天天添夜夜摸| 在线 av 中文字幕| 美女国产高潮福利片在线看| 精品久久久精品久久久| 亚洲成人手机| 少妇猛男粗大的猛烈进出视频| 国产成人精品久久二区二区免费| 热re99久久国产66热| 中文字幕av电影在线播放| 人人妻人人添人人爽欧美一区卜| 久久影院123| 久久国产精品人妻蜜桃| 亚洲欧洲精品一区二区精品久久久| 激情五月婷婷亚洲| 久久热在线av| 高潮久久久久久久久久久不卡| 中文字幕最新亚洲高清| 精品一区在线观看国产| 国产视频首页在线观看| 亚洲精品国产色婷婷电影| 国产片内射在线| 精品一区在线观看国产| 亚洲精品国产色婷婷电影| 久久久久精品国产欧美久久久 | 国产精品国产三级国产专区5o| 一边摸一边抽搐一进一出视频| 丰满少妇做爰视频| 天天躁日日躁夜夜躁夜夜| 最近手机中文字幕大全| 一级毛片我不卡| 天天躁日日躁夜夜躁夜夜| 无限看片的www在线观看| 欧美国产精品va在线观看不卡| 热99国产精品久久久久久7| 女性被躁到高潮视频| 欧美 亚洲 国产 日韩一| 热99国产精品久久久久久7| 夜夜骑夜夜射夜夜干| 欧美精品啪啪一区二区三区 | 亚洲欧洲国产日韩| 精品久久久久久电影网| 一级毛片 在线播放| 少妇的丰满在线观看| 一级片'在线观看视频| 激情五月婷婷亚洲| 久久久久久久久免费视频了| 国产成人av激情在线播放| 日本av手机在线免费观看| 免费在线观看日本一区| 黄色毛片三级朝国网站| 欧美日韩国产mv在线观看视频| 午夜91福利影院| 婷婷色综合www| 一边摸一边抽搐一进一出视频| 水蜜桃什么品种好| 水蜜桃什么品种好| 激情视频va一区二区三区| 999精品在线视频| 亚洲国产成人一精品久久久| www.自偷自拍.com| 久久国产精品男人的天堂亚洲| 日韩精品免费视频一区二区三区| 国产精品久久久人人做人人爽| kizo精华| 十八禁网站网址无遮挡| 国产精品.久久久| 丝袜美腿诱惑在线| 大话2 男鬼变身卡| 视频在线观看一区二区三区| 成人手机av| 免费在线观看黄色视频的| 极品人妻少妇av视频| 99久久精品国产亚洲精品| 国产精品人妻久久久影院| 免费久久久久久久精品成人欧美视频| av一本久久久久| 国产成人av激情在线播放| 少妇猛男粗大的猛烈进出视频| 女人爽到高潮嗷嗷叫在线视频| 99国产精品一区二区三区| 欧美日韩精品网址| 亚洲精品国产区一区二| 男女午夜视频在线观看| 午夜免费观看性视频| 人妻一区二区av| 五月开心婷婷网| 性色av乱码一区二区三区2| 大型av网站在线播放| 只有这里有精品99| 考比视频在线观看| 国产成人精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇内射三级| av线在线观看网站| 视频区欧美日本亚洲| 国产精品成人在线| 久久久久久久精品精品| 欧美 日韩 精品 国产| 久久鲁丝午夜福利片| 国产熟女午夜一区二区三区| 天堂8中文在线网| 国产精品一二三区在线看| 精品人妻一区二区三区麻豆| av在线app专区| kizo精华| 国产成人精品在线电影| 精品免费久久久久久久清纯 | 国产亚洲精品久久久久5区| 久久免费观看电影| 国产精品一国产av| 少妇的丰满在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品久久午夜乱码| 女性被躁到高潮视频| 在线观看www视频免费| 新久久久久国产一级毛片| 欧美黑人精品巨大| 啦啦啦 在线观看视频| 亚洲国产精品一区二区三区在线| 18在线观看网站| 日韩制服骚丝袜av| 一级片'在线观看视频| 黄色怎么调成土黄色| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一卡2卡三卡4卡5卡 | 黑人欧美特级aaaaaa片| 99久久综合免费| 欧美精品亚洲一区二区| 999久久久国产精品视频| 国产成人系列免费观看| 一级毛片黄色毛片免费观看视频| 国产亚洲精品久久久久5区| 青草久久国产| e午夜精品久久久久久久| 一级毛片电影观看| 国产1区2区3区精品| 成年人午夜在线观看视频| 999精品在线视频| 欧美97在线视频| 精品少妇黑人巨大在线播放| 美女脱内裤让男人舔精品视频| 亚洲人成电影观看| 桃花免费在线播放| 国产高清videossex| 丝袜美足系列| a 毛片基地| 日韩制服丝袜自拍偷拍| 男人添女人高潮全过程视频| 国产在线免费精品| 一级片免费观看大全| 一区二区av电影网| 久久久精品94久久精品| 精品国产国语对白av| 天堂俺去俺来也www色官网| 新久久久久国产一级毛片| 99re6热这里在线精品视频| 亚洲七黄色美女视频| 欧美日韩福利视频一区二区| 午夜久久久在线观看| 亚洲色图综合在线观看| 亚洲欧美中文字幕日韩二区| 伊人久久大香线蕉亚洲五| 亚洲av美国av| 大型av网站在线播放| 久久这里只有精品19| 国产精品欧美亚洲77777| 9191精品国产免费久久| 韩国高清视频一区二区三区| 国产一区有黄有色的免费视频| a级片在线免费高清观看视频| 精品国产乱码久久久久久男人| 国产精品成人在线| 又粗又硬又长又爽又黄的视频| av国产精品久久久久影院| 狂野欧美激情性bbbbbb| 涩涩av久久男人的天堂| kizo精华| 国产成人精品无人区| 亚洲欧洲国产日韩| 校园人妻丝袜中文字幕| 欧美性长视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 日韩精品免费视频一区二区三区| 久久国产精品大桥未久av| 18在线观看网站| 中文精品一卡2卡3卡4更新| 真人做人爱边吃奶动态| 国产亚洲一区二区精品| 国产xxxxx性猛交| videosex国产| 久久精品亚洲av国产电影网| 成人国语在线视频| 久久 成人 亚洲| 一二三四在线观看免费中文在| 免费黄频网站在线观看国产| 久久久久精品人妻al黑| 男女边摸边吃奶| 日韩中文字幕视频在线看片| 亚洲情色 制服丝袜| 日韩 亚洲 欧美在线| 精品亚洲成a人片在线观看| 精品人妻熟女毛片av久久网站| 天天躁夜夜躁狠狠躁躁| 久久精品熟女亚洲av麻豆精品| 久久精品人人爽人人爽视色| 制服诱惑二区| svipshipincom国产片| 国产在视频线精品| 亚洲国产成人一精品久久久| 免费在线观看完整版高清| 高清黄色对白视频在线免费看| 老司机午夜十八禁免费视频| 亚洲国产精品一区三区| 97人妻天天添夜夜摸| 丁香六月天网| 视频区欧美日本亚洲| 国产精品成人在线| 免费av中文字幕在线| 在现免费观看毛片| 乱人伦中国视频| 19禁男女啪啪无遮挡网站| 亚洲精品日韩在线中文字幕| 国产亚洲午夜精品一区二区久久| 在线 av 中文字幕| 韩国精品一区二区三区| 一本一本久久a久久精品综合妖精| 在线看a的网站| 七月丁香在线播放| 91精品国产国语对白视频| 韩国高清视频一区二区三区| 国产又色又爽无遮挡免| 伊人亚洲综合成人网| 成人国语在线视频| 女人爽到高潮嗷嗷叫在线视频| 国产在线一区二区三区精| 黄色一级大片看看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产中文字幕在线视频| www日本在线高清视频| 精品亚洲乱码少妇综合久久| 啦啦啦 在线观看视频| 欧美人与性动交α欧美精品济南到| 国产精品一区二区在线不卡| 国产片特级美女逼逼视频| 国产真人三级小视频在线观看| 香蕉丝袜av| 日韩大片免费观看网站| 热re99久久国产66热| 久久人人97超碰香蕉20202| 日本黄色日本黄色录像| 久久精品成人免费网站| 亚洲欧洲日产国产| 欧美日韩精品网址| 亚洲精品久久成人aⅴ小说| cao死你这个sao货| 午夜激情久久久久久久| 中文字幕精品免费在线观看视频| 新久久久久国产一级毛片| 成人亚洲精品一区在线观看| 后天国语完整版免费观看| 高潮久久久久久久久久久不卡| 亚洲精品国产区一区二| 亚洲av美国av| 国产黄频视频在线观看| 久久久久精品国产欧美久久久 | 日韩伦理黄色片| 久久精品久久精品一区二区三区| 老司机靠b影院| 亚洲国产日韩一区二区| 久久九九热精品免费| 国产视频首页在线观看| 99热全是精品| 亚洲男人天堂网一区| 成人手机av| 久久精品久久精品一区二区三区| 久久久久久久国产电影| 岛国毛片在线播放| 精品熟女少妇八av免费久了| 久久国产亚洲av麻豆专区| 嫩草影视91久久| 人人妻人人澡人人爽人人夜夜| 国产一区二区在线观看av| 日日摸夜夜添夜夜爱| 新久久久久国产一级毛片| 大陆偷拍与自拍| 日韩大片免费观看网站| 一级毛片我不卡| 亚洲欧美色中文字幕在线| 国产成人精品久久二区二区91| 亚洲精品国产一区二区精华液| 黄色视频在线播放观看不卡| 午夜免费观看性视频| 天天躁夜夜躁狠狠久久av| 夫妻午夜视频| 一二三四在线观看免费中文在| 热99久久久久精品小说推荐| 嫁个100分男人电影在线观看 | 久久亚洲精品不卡| 伊人亚洲综合成人网| 国产精品一区二区在线不卡| 婷婷色av中文字幕| 国产欧美日韩精品亚洲av| 欧美精品一区二区免费开放| 少妇猛男粗大的猛烈进出视频| 亚洲少妇的诱惑av| 肉色欧美久久久久久久蜜桃| 又粗又硬又长又爽又黄的视频| 美女国产高潮福利片在线看| 一区福利在线观看| 男女边摸边吃奶| 亚洲情色 制服丝袜| 亚洲精品中文字幕在线视频| av有码第一页| 国产一区二区在线观看av| 老司机深夜福利视频在线观看 | 日本五十路高清| 狠狠婷婷综合久久久久久88av| 大片电影免费在线观看免费| 亚洲精品一卡2卡三卡4卡5卡 | 黄网站色视频无遮挡免费观看| 久久亚洲国产成人精品v| 制服诱惑二区| 青青草视频在线视频观看| 丝袜美足系列| 悠悠久久av| 欧美日韩黄片免| 精品少妇黑人巨大在线播放| 精品国产乱码久久久久久男人| 首页视频小说图片口味搜索 | 免费黄频网站在线观看国产| 国产成人精品久久二区二区91| 成人影院久久| 免费在线观看影片大全网站 | 操出白浆在线播放| 一区二区三区乱码不卡18| 搡老岳熟女国产| 天天躁夜夜躁狠狠久久av| 欧美大码av| 丝袜在线中文字幕| 成人亚洲精品一区在线观看| 可以免费在线观看a视频的电影网站| 午夜福利影视在线免费观看| 精品视频人人做人人爽| 波多野结衣一区麻豆| 国产成人精品久久二区二区免费| 波多野结衣av一区二区av| av网站免费在线观看视频| 欧美精品av麻豆av| 午夜视频精品福利| 中文字幕人妻丝袜制服| 亚洲精品国产一区二区精华液| 久久精品久久久久久久性| 视频区欧美日本亚洲| 各种免费的搞黄视频| 美女国产高潮福利片在线看| 欧美激情 高清一区二区三区| 欧美人与性动交α欧美精品济南到| 好男人视频免费观看在线| 久久久国产欧美日韩av| 免费看十八禁软件| 亚洲精品av麻豆狂野| 巨乳人妻的诱惑在线观看| 超色免费av| 精品高清国产在线一区| av在线老鸭窝| 亚洲精品自拍成人| 人人妻人人添人人爽欧美一区卜| 丝瓜视频免费看黄片| 国产成人精品久久久久久| 搡老乐熟女国产| 乱人伦中国视频| 男女边摸边吃奶| 亚洲精品av麻豆狂野| 搡老岳熟女国产| 免费高清在线观看视频在线观看| 国产成人a∨麻豆精品| 脱女人内裤的视频| 91成人精品电影| 亚洲精品自拍成人| 啦啦啦视频在线资源免费观看| 天天影视国产精品| 亚洲色图 男人天堂 中文字幕| 美国免费a级毛片| 国产欧美日韩一区二区三 | 国产又色又爽无遮挡免| 黄色片一级片一级黄色片| 精品福利观看| av有码第一页| svipshipincom国产片| 嫩草影视91久久| 日韩一本色道免费dvd| 久久精品久久精品一区二区三区| 成人亚洲精品一区在线观看| 精品福利永久在线观看| 亚洲 欧美一区二区三区| 欧美在线黄色| 日本色播在线视频| 国产在视频线精品| 亚洲久久久国产精品| 久久久久久亚洲精品国产蜜桃av| 秋霞在线观看毛片| 免费高清在线观看日韩| 中文字幕最新亚洲高清| 狠狠精品人妻久久久久久综合| 欧美精品人与动牲交sv欧美| 啦啦啦视频在线资源免费观看| 丝袜脚勾引网站| 久久毛片免费看一区二区三区| 大话2 男鬼变身卡| 男男h啪啪无遮挡| 另类亚洲欧美激情| 久久久精品国产亚洲av高清涩受| 国产黄色视频一区二区在线观看| 久久久精品免费免费高清| 国产成人精品久久二区二区91| 看免费av毛片| 涩涩av久久男人的天堂| 香蕉国产在线看| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| 狂野欧美激情性xxxx| 国产无遮挡羞羞视频在线观看| 你懂的网址亚洲精品在线观看| 精品一区二区三区av网在线观看 | 久久久久精品人妻al黑| 久久久久视频综合| 欧美日韩黄片免| 亚洲黑人精品在线| 国精品久久久久久国模美| 午夜免费观看性视频| 日本wwww免费看| 麻豆乱淫一区二区| 亚洲av日韩在线播放| 丰满人妻熟妇乱又伦精品不卡| 精品亚洲乱码少妇综合久久| 亚洲五月婷婷丁香| 2021少妇久久久久久久久久久| 九草在线视频观看| 国产精品三级大全| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影观看| 又黄又粗又硬又大视频| 在线精品无人区一区二区三| 国产精品免费大片| 人人妻,人人澡人人爽秒播 | 可以免费在线观看a视频的电影网站| 在线亚洲精品国产二区图片欧美| 精品福利永久在线观看| 无限看片的www在线观看| 亚洲精品美女久久av网站| 美女扒开内裤让男人捅视频| 午夜免费成人在线视频| 91国产中文字幕| 国产精品免费视频内射| 天堂中文最新版在线下载| 高清不卡的av网站| 人妻一区二区av| 欧美中文综合在线视频| 91成人精品电影| 操出白浆在线播放| 午夜两性在线视频| 国产女主播在线喷水免费视频网站| 色播在线永久视频| www.999成人在线观看| 美女扒开内裤让男人捅视频| 在线观看人妻少妇| 操出白浆在线播放| 亚洲中文字幕日韩| 男女边摸边吃奶| 日本欧美国产在线视频| 九草在线视频观看| 我的亚洲天堂| 欧美激情 高清一区二区三区| 777米奇影视久久| 女人高潮潮喷娇喘18禁视频| 女警被强在线播放| 超碰97精品在线观看| 伊人亚洲综合成人网| 免费日韩欧美在线观看| 人人妻人人澡人人爽人人夜夜| 国产日韩一区二区三区精品不卡| 一区二区日韩欧美中文字幕| 精品欧美一区二区三区在线| 国产在线一区二区三区精| 后天国语完整版免费观看| 精品福利观看| 国产伦人伦偷精品视频| 91精品伊人久久大香线蕉| 欧美黑人欧美精品刺激| 久久久精品94久久精品| 欧美在线黄色| 精品久久蜜臀av无| 嫩草影视91久久| 精品国产一区二区久久| 欧美亚洲日本最大视频资源| 免费高清在线观看视频在线观看| 777久久人妻少妇嫩草av网站| 中文字幕另类日韩欧美亚洲嫩草| 91精品伊人久久大香线蕉| 19禁男女啪啪无遮挡网站| 一级毛片女人18水好多 | 啦啦啦在线观看免费高清www| 午夜免费成人在线视频| 久久这里只有精品19| 中文字幕制服av| 一区在线观看完整版| 亚洲欧美激情在线| 电影成人av| 777久久人妻少妇嫩草av网站| 亚洲欧美精品自产自拍| 99久久99久久久精品蜜桃| 亚洲av电影在线进入| 日日爽夜夜爽网站| 国产一区二区三区综合在线观看| 丰满迷人的少妇在线观看| 午夜福利一区二区在线看| 首页视频小说图片口味搜索 | 一个人免费看片子| 国产精品秋霞免费鲁丝片| 欧美 日韩 精品 国产| 69精品国产乱码久久久| 亚洲av综合色区一区| 18在线观看网站| 国产精品免费视频内射| 1024视频免费在线观看| 久热爱精品视频在线9| 天天躁夜夜躁狠狠久久av| 黄色视频在线播放观看不卡| 大型av网站在线播放| 免费日韩欧美在线观看| 精品国产乱码久久久久久男人| netflix在线观看网站| 精品久久久久久久毛片微露脸 | 午夜av观看不卡| 国产无遮挡羞羞视频在线观看| 日本av免费视频播放| 在线观看www视频免费| 亚洲精品久久久久久婷婷小说| 日韩 亚洲 欧美在线| 一级,二级,三级黄色视频| 亚洲五月色婷婷综合| 久久99精品国语久久久| 啦啦啦啦在线视频资源| 成年人黄色毛片网站| 亚洲av综合色区一区| av福利片在线| 999久久久国产精品视频| 国产欧美日韩综合在线一区二区| 欧美日韩黄片免| 亚洲天堂av无毛| 午夜视频精品福利| 少妇人妻 视频| 亚洲少妇的诱惑av| 一本色道久久久久久精品综合| 波多野结衣av一区二区av| 狂野欧美激情性xxxx| 天天影视国产精品| 久久久国产一区二区| 国产日韩欧美在线精品| 久久久国产一区二区| 人妻 亚洲 视频| 中国国产av一级| 不卡av一区二区三区| 亚洲人成电影观看| 丝瓜视频免费看黄片| 日韩制服骚丝袜av| 亚洲少妇的诱惑av| 国产成人欧美在线观看 | 精品人妻一区二区三区麻豆| 桃花免费在线播放| 国产精品久久久av美女十八| 亚洲综合色网址| 久久精品aⅴ一区二区三区四区| 国产高清videossex| 欧美人与善性xxx| 中文字幕av电影在线播放| 亚洲人成77777在线视频| 咕卡用的链子|