• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material

    2022-05-16 07:12:06BoShenZhou周博深HaoRanGao高浩然YuChenLiu劉雨辰ZiMuLi李子木YangYangHuang黃陽陽FuChunLiu劉福春andXiaoChunWang王曉春
    Chinese Physics B 2022年5期
    關(guān)鍵詞:陽陽李子

    Bo-Shen Zhou(周博深) Hao-Ran Gao(高浩然) Yu-Chen Liu(劉雨辰) Zi-Mu Li(李子木)Yang-Yang Huang(黃陽陽) Fu-Chun Liu(劉福春) and Xiao-Chun Wang(王曉春)

    1Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    2College of Physics,Jilin University,Changchun 130012,China

    Keywords: density functional theory,electronic structure,near-infrared radiation shielding material

    1. Introduction

    With higher demands for living quality,the expenditure of energy to maintain a comfortable indoor environment is everincreasing. To control the indoor temperature within an appropriate interval, over 10% of total electricity consumption is consumed on air conditions and fans, and a corresponding amount of global greenhouse gas has been released.[1]Much good research has been performed on clean energy materials to decrease the greenhouse-gas emissions.[2—9]Thermal losses and solar irradiation through glass window account for 60% of the total energy expenditure of air-conditioned and heating systems.[10]Furthermore, solar radiation consists of roughly 5%ultraviolet radiation(UV,10—400 nm),43%visible radiation (400—780 nm), and 52% near-infrared radiation(NIR, 780—2500 nm),[11]which implies that the NIR spectrum accounts for the bulk source of thermal energy from the Sun. Therefore,with the expectation to reduce the emission of greenhouse gas,the utilization of new NIR-shielding material in green building areas is indispensable.

    Some corresponding materials have attracted a lot of attention such as vanadium dioxide (VO2),[12,13]rare-earth hexaboride nanoparticles (RB6),[14,15]tin-doped indium oxide(ITO),[16,17]and hexagonal tungsten bronze(HTB).[18—25]However,VO2shows poor transmittance(30%)[13]in the visible light range. RB6(transmittance over 50% in the 2000—2500 nm range)[15]and ITO (near 0 absorption coefficient in 780—1000 nm)[16,17]shields only part of NIR which indicates that the NIR-shielding ability is limited. Although the CsxWO3[26]exhibits a wide NIR shielding range and acceptable transmittance in the visible light range, it also exhibits chromatic instabilities when heated in a humid environment or being exposed to strong ultraviolet (UV) light,which renders detrimental effects on its long-life commercial application. Recently SnxWO3was reported as a nontoxic theranostic agent for imaging-guided cancer therapy,because of its absorption ability of NIR.[25]However,compared with the CsxWO3, the NIR-shielding ability of SnxWO3is not so satisfying(transmittance over 20%in the near-infrared range). Therefore,there is a necessity to find a less toxic,and chromatic stable material simultaneously with a wide NIRshielding range and acceptable visible transmittance.

    Among these materials, HTB exhibits high visible light transmissivity and a wide NIR-shielding range (780—2500 nm). Recent studies have revealed the changing mechanism of the optical properties of HTB,which is highly correlated with the band structures and concentration of free carriers. In more detail,when photons in the NIR spectrum irradiate these materials,the photons could be absorbed to complete the transition of electrons in the valence bands (VBs) to the conductor bands(CBs).[19,27]On the other hand,the localized surface plasma resonance (LSPR) can be induced by the aggregated free electrons in the CBs to shield the near-infrared ray.[27—29]In recent research,it was found that the empty trigonal cavity could be occupied by light metallic elements,e.g.,Li.[19,30]Therefore,there is a possibility to improve the NIRshielding ability of materials by inserting Li and Sn atoms at trigonal and hexagonal cavities of HTB, respectively, which renders the rise of free carrier concentration in materials. As far as I know,rare studies have reported LixSnyWO3as one of the promising materials for the future energy-saving window.

    In this work,the LixSnyWO3was investigated using density functional theory(DFT).First and foremost,the geometry structures of LixSnyWO3with six different doping concentrations had been constructed. Thereafter, binding energy was calculated for comparing the chemical stability of these structures. To further illustrate the thermal stability, the molecular dynamics study of Sn0.33WO3was performed. And then,the electronic properties of structures were investigated for a better understanding of the changing of optical properties.Finally, the optical properties of LixSnyWO3were calculated considering local field effects based on the random-phase approximation(RPA).[31]The results show that wheny=0 the NIR shielding ability increased with thexincrease,and wheny=0.33 the NIR shielding ability first increases and then decreases with thexincrease. Whenx=0 andy=0.33,the material exhibits the strongest NIR-shielding ability,is less toxic,has satisfying chemical stability, wide NIR-shielding range(780—2500 nm),and an acceptable visible transmittance which means it can be applied on the future energy-saving smart window.

    2. Calculational method

    In this paper, all calculation results were obtained via the Viennaab initiosimulation package (VASP).[32]We employed the generalized gradient approximation (GGA) with the Perdew—Burke—Ernzerh(PBE).[33]and used the projector augmented wave (PAW)[34]method. The influence of spin—orbit coupling effect (SOC) on electronic and optical properties was concerned. The valence electrons configurations for O, W, Li, Sn atoms were 2s22p4, 5d46s2, 2s1and 5s25p2, respectively. We adopted a Brillouin zone of 9×9×15 with aΓcentered Monkhorst—Packk-point mesh with cut-off energy of 500 eV during geometry optimization. And all of the structures were relaxed until the force on each atom was less than 0.02 eV/°A. And molecular dynamics simulations were performed at the time step of 2 fs,canonical ensemble(NVT),on the 2×2×2 supercell at the temperature of 300 K. Selfconsistent computations were performed with a convergence criterion of 10-8eV in energy.And the optical properties were concerned with approximation including local field effects in the RPA.[31]When calculating optical properties, nearly 100 bands were set to ensure that the empty bands were included in the calculations.

    3. Results and discussion

    3.1. Geometry structures and thermal stability

    Table 1 shows the lattice parameters of optimized h-WO3,which were in accord with previous experimental results (xray diffraction data of h-WO3with a space group ofP6/mmm(No.191)).[35]

    Table 1. Calculated and experimental crystal structure parameters ofh-WO3.

    In this research,six structures of LixSnyWO3(withx=0,0.33 or 0.66;y=0 or 0.33)were concerned. For each structure, all spatial arrangements for Sn and Li atoms were considered,and only the most stable one was singled out as representative of every structure. Then,the binding energy of those six structures was calculated as below:

    whereEtotalis the total energy of the system,EWO3is the energy of the pure h-WO3,nLiis the number of the Li atoms,ELiis the energy of the isolated Li atom,nSnis the number of the Sn atoms, andESnis the energy of the isolated Sn atom. In Fig.2,it was found that the binding energy declines while thexandyincrease. As is well known,this indicates the increase of stability. The energy evolution of the 10 ps MD simulation of Sn0.33WO3under the room temperature was exhibited in Fig.3. And the average energy of each atom was nearly a constant. This means Sn0.33WO3is stable at room temperature.

    Fig.1. The top view and side view of Li0.66Sn0.33WO3.

    Fig.2. The binding energy of LixSnyWO3 (x=0,0.33,0.66;y=0,0.33).

    Fig. 3. (a) The energy evolution of Sn0.33WO3 during 10 ps MD simulations at room temperature,(b)and(c)are the structures before and after MD simulations.

    3.2. Electronic structure

    In Fig.4,it was found that h-WO3is an indirect bandgap semiconductor since whose valence band maximum (VBM)and conduction band minimum (CBM) do not at the same point,which occurs atApoint andΓpoint,respectively. The calculated bandgap of h-WO3is 0.44 eV, which approaches the previous result,[37]as results obtained through DFT theory are always underestimated. The band structure after doping is very similar to the pure h-WO3. Besides, it is found that the Fermi energy has been upshifted into the conduction bands(CBs) and the electrons occupied the bands that were empty before.

    The density of states of LixSnyWO3is shown in Fig. 5.The DOS of pure h-WO3is in line with Liu’s result.[18]For pure h-WO3, the valence bands (VBs) mainly consist of the O-2p states,and the conduction bands(CBs)are mainly composed of the W-5d states,which are consistent with the experimental characterizations.[38]Since one W atom is surrounded by six O atoms forming an octahedral structure, W-5d states are split into t2g(low energy)and eg(high energy)states,[39,40]which could be observed through several peaks shown on PDOS curves of h-WO3, contributed from W-5d states. And the strong hybridization between O-2p states and W-5d states also indicates a strong covalency of the bonding. On the one hand, when Sn is doped in the h-WO3, the Fermi energy is upshifted in the conduction band,and the material exhibits the metal-like behavior,while electrons in Sn-5p mainly act as the free electrons. As the result, the materials display the n-type electronic conductivity. On the other hand,albeit Li-2s states are nearly zero, once Li is doped into h-WO3, the Fermi energy was upshifted, which improves the free carrier concentration of the material. In more detail, as shown in Table 2,it was found that the more ions are doped,the higher the free carrier concentration of the material will be. Compared with other structures,the free carrier concentration of Li0.33WO3is rather low, which is the reason why its NIR-shielding ability is almost zero.phase approximation(RPA).[31]And the real part of the dielectric function was calculated through the Kramer—Kronig relation. The reflectivityR, absorption coefficientα, and transmittanceTcould be derived from the dielectric function by the following formula:[18,42,43]

    Fig.4. The band structures of(a)Li0.66Sn0.33WO3,(b)Li0.33Sn0.33WO3,(c)Sn0.33WO3,(d)Li0.66WO3,(e)Li0.33WO3 and(f)WO3.

    Fig. 5. The total density of states (TDOS) and project density of states (PDOS) of (a) Li0.66Sn0.33WO3, (b) Li0.33Sn0.33WO3, (c) Sn0.33WO3,(d)Li0.66WO3,(e)Li0.33WO3 and(f)WO3. The Fermi energy level is indicated by the vertical dashed lines at energy equal to zero.

    Table 2. Free carrier concentration and binding energy of five structures.

    Besides,the codes behind the effects of doping Sn and Li atoms on the enhancement of free carrier concentration have been trying to decipher, which are crucial to understanding the changes in the NIR-shielding ability of various structures of LixSnyWO3. The number of free carriers (N) is given by Eq.(2),wheref(E)is the Fermi—Dirac distribution andg(E)is the density of states. At 0 K, the Fermi—Dirac distribution for electrons would simplify to either 0 (E >Ef) or 1(E <Ef). Although this assumption is only completely accurate at 0 K,the total concentration should relatively remain unchanged when temperature build-up. Therefore Eq.(2)can be simplified to Eq. (3), where theVis the unit cell volume and theEcis the bottom of the conduction band.[41]

    wheredis the thickness of the film, which is 50 nm in this calculation, andε1andε2are real part and imaginary part of the dielectric function,respectively. For simplicity,only conditions concerning optical properties along with thex-axis of LixSnyWO3are shown below.

    To understand the change of optical properties,two models were introduced.The first model is the interband transition.In this module, the electrons can move or jump from a filled band to the higher empty band. The second is the intraband transition, which can describe the contribution of free carriers and always be concerned as the source of plasmonic resonances. And it always leads to a large of optical losses at low frequency.[44—46]In this model, the free carrier concentration plays a very important role. The dielectric function of intra-

    3.3. Optical properties

    In this investigation, the imaginary part of the dielectric function was concerned with the local field in the randomband transition can be described by the Drude model[44,47,48]

    whereγis the Drude relaxation rate,which is inverse with the mean free path of electrons,[49]andωpis the plasma frequency which is scales with the free carrier concentration.[14]

    As shown in Fig. 6(b), the imaginary part of the dielectric function of h-WO3goes to zero when the energy approaches 0 eV,which is in line with the previous result.[19,50]The plasma energy where the intersection points between the gray line where the real part equals zero, is corresponding to a fast abatement of the reflectivity as shown in Fig.7,respectively. In Fig. 6, when energy is less than 1, it can be found that with the increase of free carrier concentration,the imaginary part of the dielectric function increases first and then decreases, and the situation is quite reversed for the real part.This change is caused by the increase of free carrier concentrations and the decrease of the mean free path of electrons.The mean free path of electrons describes the average distance traveled by the electron. When the inserted atoms increase,the possibility of the electron being stopped by inserted ions increases. Therefore, the mean free path of electrons would decrease with the increase of doping concentration. And the Drude relaxation rate is inversed with the mean free path of electrons Therefore, when Li and Sn are codoped in the h-WO3, although the free carrier concentration would increase with the doping concentration increasing,the Drude relaxation rate would also increase. This explains the decline of the NIR shielding ability with excessive doping concentration.

    Fig. 6. The dielectric function of LixSnyWO3 (x=0,0.33,0.66 and y=0,0.33)at approximation including local field effects in the RPA.

    In Fig. 7, the h-WO3shows nearly no NIR-shielding ability, which corresponds with the previous result.[30]The absorption coefficient and reflectivity of Sn0.33WO3sharply changed in the visible light range,which is also in good agreement with the experiment.[25]The peak of the absorption coefficient of h-WO3at 700 nm is originated due to the transition of electrons, which is in accordance with the transition between two bands in Fig.4(f). For other structures, the Fermi energy upshifted, and the electron occupied the bands that were empty before. That is why the absorption peaks of other structures disappeared. Compared with ITO,[16,17]which shows nearly zero absorption coefficient in the range from 780—1000 nm, the absorption coefficient of Sn0.33WO3is over 3×105at 1000 nm. In Fig. 8, except the Li0.33WO3is nearly the same as the h-WO3, other structures show pronounced improvement of reflectivity.

    Figure 9 shows the transmittance of LixSnyWO3in the NIR and visible light range. The valley of transmittance of pure h-WO3can be found at 700 nm, which is according to the absorption coefficient and interband transition.The Sn0.33WO3shows the strongest NIR shielding ability and acceptable transmittance at the visible light range. For Sn0.33WO3, the maximum visible transmittance is over 60%at 562 nm which is larger than the VO2(36.2%)and the minimum NIR transmittance is nearly 10%over 1000 nm which is very close to the VO2.[13]The results show that the Sn0.33WO3can be applied as excellent NIR-shielding material with acceptable visible transmittance.

    Fig. 7. The absorption coefficient of LixSnyWO3 (x=0,0.33,0.66 and y=0,0.33)at approximation including local field effects in the RPA.

    Fig.8. The reflectivity of LixSnyWO3 (x=0,0.33,0.66 and y=0,0.33)at approximation including local field effects in the RPA.

    Fig.9. Comparing the transmittance of LixSnyWO3. The grey and light gray areas indicate the global tilt and extraterrestrial reference solar spectrum(ISO 9845-1,1992).

    4. Conclusions

    In summary, the binding energy, electric structure, and optical properties of LixSnyWO3were studied using the DFT calculation. After doping, the Fermi energy level entered into the conductor band and the electrons occupied the bands that were empty before doping,which indicates the metal-like characteristics of the doped material. The density of states shows that the Sn-5p electrons act as the free electrons in the conductor and Li-ions provide nearly no electron. Therefore,except the Li0.33WO3,other doped structures show metal-like characteristics. The optical properties show that except the Li0.33WO3exhibiting poor NIR shielding ability, other materials show excellent visible transmittance and NIR-shielding.Our results show that Sn0.33WO3is the material with satisfying chemical stability,excellent NIR-shielding ability,wide NIR-shielding range (780—2500 nm), and acceptable visible transmittance. It can be expected that our rational theoretical prediction should serve as an impetus for the pursuit of experimental realization of these(Li,Sn)codoped hexagonal tungsten bronze as NIR-shielding materials for the energy-saving smart window made in buildings.

    Acknowledgment

    Thanks to the Beijing Super Cloud Computing Center for assistance with calculation.

    猜你喜歡
    陽陽李子
    程陽陽繪畫作品
    睡蓮
    一次難忘的生日
    秋天
    淺談公開不充分的判斷與審查實踐
    李子有多少
    奔跑吧!李子柒
    海峽姐妹(2020年1期)2020-03-03 13:35:52
    交換秘密
    我的糊涂媽媽
    李子核
    快樂語文(2016年29期)2016-02-28 09:03:24
    三级经典国产精品| 国产成人a∨麻豆精品| 亚洲av免费高清在线观看| 国产人妻一区二区三区在| 一区二区三区免费毛片| 美女xxoo啪啪120秒动态图| 日本色播在线视频| 亚洲第一区二区三区不卡| 熟妇人妻久久中文字幕3abv| 国产午夜精品论理片| 天天一区二区日本电影三级| 欧美高清成人免费视频www| 午夜精品一区二区三区免费看| 亚洲在线观看片| 久久久精品大字幕| 亚洲av中文字字幕乱码综合| 在线播放国产精品三级| 十八禁国产超污无遮挡网站| 亚洲人成网站在线观看播放| 插逼视频在线观看| 在线观看一区二区三区| 一级毛片电影观看 | 99久国产av精品| 简卡轻食公司| 高清毛片免费看| 国产精品电影一区二区三区| 亚洲色图av天堂| av中文乱码字幕在线| 久久婷婷人人爽人人干人人爱| 99久久精品热视频| 国产精品日韩av在线免费观看| 岛国在线免费视频观看| 久久久久九九精品影院| 又爽又黄无遮挡网站| 直男gayav资源| 尾随美女入室| 插逼视频在线观看| 国产午夜精品久久久久久一区二区三区 | 永久网站在线| 亚洲精品一区av在线观看| 一a级毛片在线观看| 乱人视频在线观看| 熟女人妻精品中文字幕| 十八禁国产超污无遮挡网站| 欧美绝顶高潮抽搐喷水| 全区人妻精品视频| 两个人的视频大全免费| 婷婷色综合大香蕉| 丰满人妻一区二区三区视频av| av天堂在线播放| 日韩欧美 国产精品| 亚洲第一区二区三区不卡| 亚洲中文字幕日韩| 国产老妇女一区| 国语自产精品视频在线第100页| 人妻制服诱惑在线中文字幕| 国产伦在线观看视频一区| 美女被艹到高潮喷水动态| 黄色欧美视频在线观看| 老女人水多毛片| 少妇熟女aⅴ在线视频| 18+在线观看网站| 波多野结衣巨乳人妻| 国产精品电影一区二区三区| 亚洲三级黄色毛片| 成人永久免费在线观看视频| 黄色一级大片看看| 婷婷亚洲欧美| 色哟哟哟哟哟哟| 天堂动漫精品| 国产真实乱freesex| 成人综合一区亚洲| 蜜臀久久99精品久久宅男| 国产精品精品国产色婷婷| aaaaa片日本免费| 国产亚洲精品综合一区在线观看| www日本黄色视频网| av在线播放精品| 精品99又大又爽又粗少妇毛片| 99久久九九国产精品国产免费| 3wmmmm亚洲av在线观看| 国产亚洲精品久久久com| 成人美女网站在线观看视频| 亚洲真实伦在线观看| 中国国产av一级| 最新在线观看一区二区三区| 99久久九九国产精品国产免费| 久久这里只有精品中国| 一本一本综合久久| 18+在线观看网站| 欧美日本亚洲视频在线播放| 毛片一级片免费看久久久久| 免费观看精品视频网站| 最好的美女福利视频网| 国产成人a∨麻豆精品| 精品久久久久久久久久久久久| 欧美日韩综合久久久久久| 丰满人妻一区二区三区视频av| 好男人在线观看高清免费视频| 欧美潮喷喷水| 亚洲乱码一区二区免费版| 少妇裸体淫交视频免费看高清| 人妻久久中文字幕网| 国产色婷婷99| 波多野结衣巨乳人妻| 不卡视频在线观看欧美| 18+在线观看网站| 天天一区二区日本电影三级| 国产高潮美女av| 亚洲美女视频黄频| 精品久久久久久久久av| 一夜夜www| 乱系列少妇在线播放| 中文字幕免费在线视频6| 99久久精品一区二区三区| 国产精品一区二区三区四区免费观看 | www日本黄色视频网| 国产一区二区激情短视频| videossex国产| 在线看三级毛片| 精品久久久久久久久久免费视频| 成人高潮视频无遮挡免费网站| 久久亚洲精品不卡| 简卡轻食公司| 国产毛片a区久久久久| 丰满的人妻完整版| 最近2019中文字幕mv第一页| 97超碰精品成人国产| 91av网一区二区| 亚洲婷婷狠狠爱综合网| 小蜜桃在线观看免费完整版高清| 午夜a级毛片| 高清毛片免费观看视频网站| 国产亚洲精品综合一区在线观看| 精品一区二区免费观看| 成人性生交大片免费视频hd| 国内精品久久久久精免费| 欧美不卡视频在线免费观看| 国产高清不卡午夜福利| 国产亚洲精品久久久久久毛片| 色哟哟哟哟哟哟| 热99在线观看视频| 1024手机看黄色片| 国产成人freesex在线 | 成人一区二区视频在线观看| 在线观看一区二区三区| 乱系列少妇在线播放| 熟妇人妻久久中文字幕3abv| 波多野结衣高清作品| 午夜激情欧美在线| 亚洲专区国产一区二区| 久久久久久大精品| 久久精品国产鲁丝片午夜精品| 永久网站在线| 狠狠狠狠99中文字幕| 日韩欧美国产在线观看| 午夜福利18| 欧美xxxx黑人xx丫x性爽| 国内精品久久久久精免费| 亚洲真实伦在线观看| 国产成人a∨麻豆精品| 欧美一级a爱片免费观看看| 久久久午夜欧美精品| 亚洲欧美日韩卡通动漫| 国产伦精品一区二区三区四那| 午夜影院日韩av| 中国美女看黄片| 一级毛片aaaaaa免费看小| 国产 一区精品| 高清毛片免费观看视频网站| 国产精品亚洲美女久久久| 国产伦精品一区二区三区视频9| 精品欧美国产一区二区三| 尾随美女入室| 欧美精品国产亚洲| 九九爱精品视频在线观看| 悠悠久久av| 国产黄色小视频在线观看| 国产综合懂色| 美女免费视频网站| 51国产日韩欧美| 人妻制服诱惑在线中文字幕| 色综合站精品国产| 国产 一区 欧美 日韩| 日韩精品青青久久久久久| 色播亚洲综合网| 联通29元200g的流量卡| 国内揄拍国产精品人妻在线| 国产黄色视频一区二区在线观看 | 欧美高清成人免费视频www| 亚洲欧美成人综合另类久久久 | 精品久久久久久久末码| 大型黄色视频在线免费观看| 男女视频在线观看网站免费| 免费一级毛片在线播放高清视频| 久久久成人免费电影| 国产精品美女特级片免费视频播放器| 变态另类成人亚洲欧美熟女| 免费大片18禁| 亚洲丝袜综合中文字幕| 国产私拍福利视频在线观看| 中出人妻视频一区二区| 精品人妻偷拍中文字幕| 美女cb高潮喷水在线观看| 日韩欧美在线乱码| 天堂动漫精品| 精品久久久久久久久久久久久| 久久久午夜欧美精品| 97热精品久久久久久| 精品久久久久久久人妻蜜臀av| 少妇被粗大猛烈的视频| 亚洲成a人片在线一区二区| 小说图片视频综合网站| 一个人免费在线观看电影| 国产又黄又爽又无遮挡在线| 欧美bdsm另类| 国产日本99.免费观看| 在线天堂最新版资源| 欧美一区二区亚洲| 国产欧美日韩精品一区二区| 香蕉av资源在线| 国产亚洲欧美98| 亚洲国产高清在线一区二区三| 18禁在线播放成人免费| 国产激情偷乱视频一区二区| 美女黄网站色视频| 九九爱精品视频在线观看| 亚洲精品亚洲一区二区| 老司机影院成人| 久久久久国产精品人妻aⅴ院| 精品久久久久久久久av| 亚洲精品乱码久久久v下载方式| 在线观看av片永久免费下载| 国产精品精品国产色婷婷| 久久草成人影院| 国产亚洲精品久久久久久毛片| 亚洲综合色惰| 亚洲成a人片在线一区二区| 成年女人看的毛片在线观看| 久久天躁狠狠躁夜夜2o2o| 免费av观看视频| 丰满人妻一区二区三区视频av| 免费看av在线观看网站| 在线观看av片永久免费下载| 国内精品宾馆在线| 国产精品一区二区三区四区免费观看 | 欧美国产日韩亚洲一区| 美女大奶头视频| 别揉我奶头~嗯~啊~动态视频| 国语自产精品视频在线第100页| 淫秽高清视频在线观看| 亚洲丝袜综合中文字幕| 亚洲精品色激情综合| 精品午夜福利视频在线观看一区| 欧美日本亚洲视频在线播放| 中文字幕精品亚洲无线码一区| 亚洲人成网站在线播放欧美日韩| 夜夜爽天天搞| 亚洲性久久影院| 国产高清视频在线观看网站| 99热这里只有精品一区| 久久国产乱子免费精品| 国产亚洲欧美98| 亚洲成人久久性| 久久午夜福利片| 国产伦一二天堂av在线观看| 国产一区二区三区在线臀色熟女| 国产激情偷乱视频一区二区| 亚洲熟妇熟女久久| 99热这里只有是精品50| 美女黄网站色视频| 中文字幕人妻熟人妻熟丝袜美| 91av网一区二区| 亚洲人与动物交配视频| 国产精品综合久久久久久久免费| 精品欧美国产一区二区三| 网址你懂的国产日韩在线| 免费看美女性在线毛片视频| 免费av观看视频| 国产欧美日韩精品亚洲av| 久久精品国产鲁丝片午夜精品| 亚洲自拍偷在线| 在线免费十八禁| 插逼视频在线观看| 在线观看午夜福利视频| 国产毛片a区久久久久| 亚洲性夜色夜夜综合| 联通29元200g的流量卡| 欧美精品国产亚洲| 成人综合一区亚洲| 丰满人妻一区二区三区视频av| 成人亚洲精品av一区二区| 欧美又色又爽又黄视频| 三级毛片av免费| 亚洲中文字幕一区二区三区有码在线看| 欧美zozozo另类| 91狼人影院| 男女边吃奶边做爰视频| 国产av麻豆久久久久久久| 在线免费观看的www视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品有码人妻一区| 一级av片app| 人人妻,人人澡人人爽秒播| 一本一本综合久久| 不卡一级毛片| 老司机影院成人| 国产熟女欧美一区二区| 午夜免费激情av| 黄色日韩在线| 六月丁香七月| 波野结衣二区三区在线| 久久韩国三级中文字幕| 欧美激情久久久久久爽电影| 欧美zozozo另类| 精品少妇黑人巨大在线播放 | 国产欧美日韩精品亚洲av| 国产在视频线在精品| www日本黄色视频网| 啦啦啦啦在线视频资源| 深夜a级毛片| 秋霞在线观看毛片| 国产三级中文精品| 麻豆乱淫一区二区| 欧美日本亚洲视频在线播放| 国产69精品久久久久777片| 波多野结衣高清无吗| 国产精品美女特级片免费视频播放器| 日韩人妻高清精品专区| 午夜激情欧美在线| 婷婷精品国产亚洲av在线| 欧美xxxx性猛交bbbb| 国产精品一区二区性色av| 免费观看的影片在线观看| 免费av不卡在线播放| 岛国在线免费视频观看| 色综合色国产| 91久久精品国产一区二区成人| 天天一区二区日本电影三级| 久久6这里有精品| 日韩国内少妇激情av| av在线天堂中文字幕| 精品久久久久久久人妻蜜臀av| 少妇的逼好多水| 久久久精品大字幕| 亚洲熟妇熟女久久| 麻豆一二三区av精品| 久久人人爽人人爽人人片va| 中文字幕久久专区| 九色成人免费人妻av| 黄色欧美视频在线观看| 亚洲精品粉嫩美女一区| 国产av麻豆久久久久久久| АⅤ资源中文在线天堂| 欧美最黄视频在线播放免费| 国产精品三级大全| 久久久久久久久中文| 成人特级av手机在线观看| 免费人成在线观看视频色| 亚洲国产欧洲综合997久久,| 观看免费一级毛片| 国产一区二区在线观看日韩| 最近的中文字幕免费完整| 小说图片视频综合网站| 亚洲性夜色夜夜综合| 国内久久婷婷六月综合欲色啪| 国产精品综合久久久久久久免费| 综合色丁香网| 亚洲图色成人| 午夜影院日韩av| 国产黄色小视频在线观看| 99热这里只有是精品50| 国产精品福利在线免费观看| 免费人成视频x8x8入口观看| 日日摸夜夜添夜夜添小说| 一区福利在线观看| 亚洲成人久久爱视频| 大香蕉久久网| 色哟哟·www| 成熟少妇高潮喷水视频| 国产爱豆传媒在线观看| 国产成人a∨麻豆精品| 欧美日本视频| 亚洲av免费在线观看| 欧美3d第一页| 亚洲中文字幕一区二区三区有码在线看| 日本一二三区视频观看| 91久久精品电影网| 男人和女人高潮做爰伦理| 精品福利观看| 有码 亚洲区| 一级av片app| 国产一级毛片七仙女欲春2| 床上黄色一级片| 亚洲人成网站在线播| 两个人的视频大全免费| av卡一久久| 成人一区二区视频在线观看| 午夜a级毛片| 一级黄片播放器| 熟女电影av网| 亚洲七黄色美女视频| 亚洲在线自拍视频| 一a级毛片在线观看| 在线免费十八禁| 三级经典国产精品| 偷拍熟女少妇极品色| 精品久久久噜噜| 久久精品国产自在天天线| 99热6这里只有精品| 精品一区二区三区人妻视频| 亚洲aⅴ乱码一区二区在线播放| 免费av观看视频| 国产黄a三级三级三级人| 级片在线观看| 亚洲自拍偷在线| 国产中年淑女户外野战色| 日本黄大片高清| 99久久无色码亚洲精品果冻| 亚洲人成网站在线观看播放| 久久久久久久久久黄片| 蜜桃久久精品国产亚洲av| 日本与韩国留学比较| 可以在线观看的亚洲视频| 国产极品精品免费视频能看的| 免费搜索国产男女视频| av在线亚洲专区| a级毛片免费高清观看在线播放| 国产在线精品亚洲第一网站| 成人国产麻豆网| 国产精品伦人一区二区| 亚洲精品亚洲一区二区| 久久九九热精品免费| 网址你懂的国产日韩在线| 日韩成人av中文字幕在线观看 | 美女黄网站色视频| 久久精品国产鲁丝片午夜精品| 亚洲成人中文字幕在线播放| 久久人人爽人人片av| 永久网站在线| 性色avwww在线观看| 亚洲人成网站在线播放欧美日韩| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| 亚洲精品乱码久久久v下载方式| 久久中文看片网| 国产av麻豆久久久久久久| 深爱激情五月婷婷| 免费av不卡在线播放| 在现免费观看毛片| 2021天堂中文幕一二区在线观| 精品午夜福利视频在线观看一区| 久久中文看片网| 国产av麻豆久久久久久久| 深爱激情五月婷婷| av天堂中文字幕网| 可以在线观看的亚洲视频| 亚洲美女黄片视频| 在线播放国产精品三级| 国产一区二区在线av高清观看| 色5月婷婷丁香| av视频在线观看入口| 高清午夜精品一区二区三区 | 日韩一本色道免费dvd| 少妇熟女欧美另类| 国产不卡一卡二| 国产91av在线免费观看| 少妇被粗大猛烈的视频| 成人鲁丝片一二三区免费| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 亚洲中文字幕一区二区三区有码在线看| 乱人视频在线观看| 免费av观看视频| 男女边吃奶边做爰视频| 精品久久久噜噜| av免费在线看不卡| 蜜桃久久精品国产亚洲av| 精华霜和精华液先用哪个| 久久精品国产亚洲网站| 色哟哟哟哟哟哟| 99久国产av精品国产电影| 国产熟女欧美一区二区| 成人无遮挡网站| 少妇高潮的动态图| 国产精品女同一区二区软件| 午夜视频国产福利| 国产一区二区激情短视频| 一级毛片aaaaaa免费看小| 亚洲国产欧洲综合997久久,| 亚洲在线自拍视频| 国产男人的电影天堂91| 99久久精品一区二区三区| 精品免费久久久久久久清纯| 九九在线视频观看精品| 国产成人aa在线观看| 无遮挡黄片免费观看| 日韩欧美国产在线观看| 国产一区二区三区在线臀色熟女| 亚洲经典国产精华液单| 可以在线观看的亚洲视频| www日本黄色视频网| 国产精品一区二区免费欧美| 欧美性感艳星| 亚洲成人av在线免费| 51国产日韩欧美| 精品久久久久久久久亚洲| 真实男女啪啪啪动态图| 嫩草影院精品99| 看十八女毛片水多多多| 乱系列少妇在线播放| 少妇被粗大猛烈的视频| 欧美潮喷喷水| 91久久精品国产一区二区成人| 国产精品一区二区性色av| 欧美中文日本在线观看视频| 黑人高潮一二区| 日日摸夜夜添夜夜添av毛片| 一边摸一边抽搐一进一小说| 午夜福利在线在线| 色尼玛亚洲综合影院| 欧美一区二区国产精品久久精品| h日本视频在线播放| 亚洲成人久久爱视频| 男女下面进入的视频免费午夜| 联通29元200g的流量卡| 日日干狠狠操夜夜爽| 国产成人精品久久久久久| 夜夜夜夜夜久久久久| 91麻豆精品激情在线观看国产| 免费av观看视频| 成人无遮挡网站| 日产精品乱码卡一卡2卡三| 国内久久婷婷六月综合欲色啪| 成人特级av手机在线观看| 亚洲经典国产精华液单| 99热6这里只有精品| 国产精品久久久久久精品电影| 午夜日韩欧美国产| 一边摸一边抽搐一进一小说| 亚洲精品一区av在线观看| 又爽又黄a免费视频| 嫩草影院精品99| 九九在线视频观看精品| 欧美丝袜亚洲另类| 免费av毛片视频| 97超碰精品成人国产| 99riav亚洲国产免费| 日本与韩国留学比较| 99热这里只有是精品50| 国产高清有码在线观看视频| 99久久久亚洲精品蜜臀av| 一卡2卡三卡四卡精品乱码亚洲| 变态另类丝袜制服| 一个人看的www免费观看视频| 热99re8久久精品国产| 色综合亚洲欧美另类图片| 欧美日本视频| 给我免费播放毛片高清在线观看| 精品人妻视频免费看| 久久久精品大字幕| 欧美在线一区亚洲| 男人舔奶头视频| 一本精品99久久精品77| 日本免费a在线| 两个人的视频大全免费| 男女边吃奶边做爰视频| .国产精品久久| 一级黄片播放器| 精品乱码久久久久久99久播| 免费看光身美女| 精品人妻熟女av久视频| 色综合亚洲欧美另类图片| 国产午夜精品论理片| 久久午夜亚洲精品久久| 3wmmmm亚洲av在线观看| 小蜜桃在线观看免费完整版高清| 久久久久国内视频| 无遮挡黄片免费观看| 99精品在免费线老司机午夜| 亚洲婷婷狠狠爱综合网| 午夜影院日韩av| 国产探花在线观看一区二区| 六月丁香七月| 色在线成人网| 久久久久精品国产欧美久久久| 国产av不卡久久| 国产午夜精品论理片| 99久久无色码亚洲精品果冻| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av中文av极速乱| 国产在视频线在精品| 校园人妻丝袜中文字幕| 一区二区三区高清视频在线| 在线播放国产精品三级| 男女之事视频高清在线观看| 老熟妇仑乱视频hdxx| 中文字幕人妻熟人妻熟丝袜美| 一夜夜www| 97碰自拍视频| 国产成人a区在线观看| 99久久无色码亚洲精品果冻| 自拍偷自拍亚洲精品老妇| 精品国内亚洲2022精品成人| 一区二区三区免费毛片| 97人妻精品一区二区三区麻豆| 国产精品野战在线观看| 午夜免费激情av| 少妇被粗大猛烈的视频| 97超碰精品成人国产| 国产欧美日韩一区二区精品| 菩萨蛮人人尽说江南好唐韦庄 | 国产91av在线免费观看| 听说在线观看完整版免费高清| 免费在线观看影片大全网站|