• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological Lifshitz transition and novel edge states induced by non-Abelian SU(2)gauge field on bilayer honeycomb lattice

    2022-05-16 07:11:28WenXiangGuo郭文祥andWuMingLiu劉伍明
    Chinese Physics B 2022年5期

    Wen-Xiang Guo(郭文祥) and Wu-Ming Liu(劉伍明)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: topological Lifshitz transition,SU(2)gauge field,bilayer honeycomb lattice

    1. Introduction

    In recent decades,the discovery of topological insulators has extended our understanding of topological states of matter tremendously.[1–3]In Landau theory of phase transitions,different states of matter are classified by spontaneous symmetry breaking. However, topological states cannot be distinguished from topological trivial states by symmetry, and thus topological phase transitions can not be characterized by a local order parameter.[1–3]Consequently, various topological invariants are introduced to identify the topological phase transitions.[1–3]Different from usual topological transitions,topological Lifshitz transitions[4–6]are determined by topologies of Fermi surfaces in momentum space. They are accompanied by the change of topology of Dirac points,[7]Weyl points,[8,9]nodal lines,[10,11]and so on.[5]

    Since the first preparation of graphene,[12]twodimensional materials have been investigated widely due to their various exotic properties and prospective applications. For instance, the charge carriers in graphene are massless Dirac fermions described by Dirac’s relativistic equation,[13–15]which allows for the investigation of quantum electrodynamic phenomena. Furthermore, the Fermi surface of several Dirac points also makes graphene an excellent platform to study topological Lifshitz transitions.[4,5]However,owing to the inevitable disorder,defects,and impurities in materials,it is difficult for us to manipulate the materials arbitrarily. Fortunately, ultra-cold atoms in optical lattices[16,17]provide a flexible and controllable playground to stimulate the phenomena in condensed matter and particle physics, such as Mott transition[18–20]and gauge invariance.[21]Artificial gauge fields on neutral atoms have been created by atom–laser interaction,[22–27]which makes it possible to investigate the topological phase transitions in optical lattices.[28–42]

    The SU(2) gauge effects on the honeycomb lattice have been investigated thoroughly.[30,31]The non-Abelian gauge potential induces an annihilation and creation of massless Dirac points. Different from the massless Dirac fermions in graphene,the charge carriers of bilayer graphene are massive chiral quasiparticles.[43,44]What’s more, a tunable band gap has been realized by applying a biased electric field on bilayer graphene.[45–49]Accordingly,bilayer honeycomb lattice(BHL)has been studied widely and various exotic phenomena have been discovered.[50–59]Thus how the SU(2) gauge field will act on the BHL deserves to be investigated.

    In this work, we investigate the SU(2) gauge effects on BHL.Based on the tight-binding model,we obtain the model with SU(2) gauge potential by Peierls substitution.[30,60,61]Then we discover a topological Lifshitz transition induced by the non-Abelian gauge potential by calculating the Fermi surfaces. The phase diagram of the gauge fluxes is also obtained by solving the secular equation. In addition,edge states of biased bilayer ribbons are studied under the influence of gauge potential.

    The paper is organized as follows. In Section 2, we introduce the model. Then we analyze the topological Lifshitz transition induced by the non-Abelian SU(2) gauge potential in Section 3 and obtain the phase diagram of the transition in Section 4. Next in Section 5,the edge states of biased bilayer ribbon with gauge fluxes are studied. Finally, we summarize our results briefly in Section 6.

    2. Tight-binding model with SU(2)gauge potential

    Fig. 1. (a) The illustration of the AB-Bernal stacking bilayer honeycomb lattice(BHL).(b)Top view of the BHL lattice. The cell consists of four sites,including A1(B1)in the lower layer and A2(B2)in the upper layer. The lattice primitive vectors a1 =(,-),a2 =(,).(c)The frist Brillouin zone(FBZ)and the reciprocal lattice vector b1= (1,-, b2 = (1,. K = 23π (1,) and K′ = (1,-)are two inequivalent corners of the FBZ.(d)The energy band structure for the Hamiltonian(2)along the loop Γ →K →M →Γ in the FBZ.One conduction band and one valence band touch parabolically at the K point no matter what t⊥equals to.

    The AB-Bernal stacking BHL,as shown in Figs.1(a)and 1(b), is commonly described by a tight-binding Hamiltonian with the nearest-neighbor intra-layer hopping and the interlayer hopping betweenA1andA2sites,[13–15,62–65]which is symmetric around the zero energy due to the electron–hole symmetry. We also find thatf(k) = 0 for two inequivalent corners of the first Brillouin zone (FBZ)[Fig.1(c)],such that the lower conduction band and upper valence band touch at zero energy at the cornersKandK′. We definek=K+qnear theKpoint and expand the spectrum to investigate the low-energy properties. The low-energy band spectrum is approximately

    Fig. 2. (a) The illustration for the BHL subjected to the SU(2) gauge field. The odd(even)indices denote A(B)sites of the BHL.Subjected to SU(2)gauge field, the hopping integrals are dressed by T1 = eiατx,T2 = 1, T3 = eiβτy. (b) The magnitude |W| of the Wilson loop as a function of α and β in [0,π] range. The Abelian regimes include the four edges of α–β square and the center point (π/2,π/2), where|W(α,β)|=2.

    3. Topological Lifshitz transition

    For the graphene point (α,β) = (0,0), the Hamiltonian (9) is reduced to the Hamiltonian (2) with color degeneracy,

    Therefore, the band structure at graphene point is the same with spectrum (3), except for the double degeneracy of each band[see Fig.3(a)].Consequently,the number of Dirac points increases fromN=2 toN=4. Then we consider the entire Abelian regimes.

    Fig.3. Band structure of the BHL with SU(2)gauge potential for different fluxes (α,β). (a) Graphene point α =β =0. (b) π-flux pointα =β =π/2.

    Comparing SU(2) gauge Hamiltonian (8) with Hamiltonian (1), we can easily find that the electron–hole symmetry persists against the gauge field. Thus, the spectrum modified by gauge potential is also symmetric around zero energy. Under these circumstances, all Dirac points can be identified by the zero energy modes of the uppermost valence band,which could be utilized to demonstrate the topologies of Fermi surfaces. Patterns of zero modes for different gauge fluxes(α,β)along the Abelian path(0,0)→(0,π)→(π,π)are shown in Fig. 4. The number of Dirac points is invariant in the trivial Abelian regimes and only their positions are transported in the momentum space by the Abelian gauge field. The positions of Dirac pointsP1andP2in the trivial Abelian regimes are determined by the following expressions:P3andP4are the space inversion ofP1andP2,respectively. If their coordinates exceed FBZ,these points must be translated into FBZ along reciprocal vectors.

    To illustrate the topological Lifshitz transition, a topological argument must be attached. The universality class of gapless excitations is determined by a topological winding number.[5,30,66]If the Hamiltonian satisfy a particle–hole symmetry{Γ,H(k)}=0,whereΓ=diag{12,-12,12,-12},we can define a local winding number

    whereCis a loop surrounding the singularity in the momentum space.[30,66]For the honeycomb lattice with SU(2)gauge potential,the topological charges of massless Dirac points areν=±1.[30]For trivial Abelian regimes on BHL,there are two negative topological chargesν(P1) =ν(P2) =-2, and two positive onesν(P3)=ν(P4)= +2. Forπ-flux point, there are four positive topological chargesν(K′,Q2,Q3,Q6)=+2 and four negative topological chargesν(K,Q1,Q4,Q5)=-2.In this way,the universality classes of trivial Abelian regimes andπ-flux point are different, indicating a topological Lifshitz transition connecting these two phases driven by the non-Abelian gauge fluxes.[5]

    Fig.4. Topologies of Fermi surfaces for different gauge fluxes(α,β)along the Abelian path(0,0)→(0,π)→(π,π). In the trivial Abelian regimes,the number of Dirac points is invariant. The Abelian gauge field only changes the positions of these zero modes in momentum space.The position change of Dirac point P1 with fluxes(α,β)is shown in detail.

    Fig.5. Topology of Fermi surfaces for different gauge fluxes(α,β)along the non-Abelian path(0,π)→(π,0),where β =π-α. There are four Dirac points in(a)–(b)and(h)–(i),which are the same with trivial Abelian regimes. Panels(c)–(g)belong to the N=8 phase.

    4. Phase diagram

    To investigate the topological Lifshitz transition thoroughly,we tune the gauge fluxes(α,β)along the non-Abelian path (0,π)→(π,0) and obtain the topologies of respective Fermi surfaces in Fig.5. We find that the region aroundπ-flux point is in theN=8 phase [Figs. 5(c)–5(g)]. It is necessary to obtain the phase boundary of the topological Lifshitz transition.

    As we know, the energy bands can be obtained by solving the secular equation det[H(k)-E]=0. If zero modes exist,the equation det[H(k)]=0 will have roots,the number of which will equal the number of zero modes.Since the number of zero modes differs in the topological Lifshitz transition induced by non-Abelian SU(2)gauge potential,we can obtain the phase boundary by solving the equation det[H(k)]=0. It is easy to find that

    which is independent oft′. Thus the value oft′does not affect the phase transition. Therefore,the problem is reduced to solving the equation det[F(k)]=0.

    Fig.6. The α–β phase diagram. The phase boundary of the topological Lifshitz transition is the red line, which corresponds to Δ =0. There are N=4 Dirac points outside the boundary.

    When the discriminantΔ=0,the corresponding equation has multiple roots. Consequently,we obtain the phase diagram of gauge fluxes(α,β)in Fig.6. The phase boundary of the topological Lifshitz transition is the red line,which corresponds toΔ=0. TheN=4 phase is outside the phase boundary,whileN=8 phase inside the boundary. The phase diagram can also be confirmed by calculating the Fermi surfaces.

    5. Novel edge states

    Different from honeycomb lattice,there are some unique phenomena on the BHL, which also exhibit exotic changes under the influence of SU(2) gauge field. Localized edge states have been reported to exist at the zigzag edges of bilayer graphene.[67]Now we begin to investigate the effects of the SU(2)gauge potential on the localized edge states. A tunable band gap has been realized by applying a biased electric field on bilayer graphene.[45–49]Hence we consider the biased BHL nanoribbon with zigzag edges [see Fig. 1(b)]. When a gated voltage is applied to BHL,the Hamiltonian(9)should be modified by adding a termHV=Vdiag{14,-14},where 2Vis the voltage difference between the two layers. A two-photon dressing field can be used to produce an effective gauge potential for neutral atoms. Through the time dependence of the effective potential,we can generate synthetic electric field on neutral atoms.[25]A generalization of Bragg spectroscopy can be used to detect edge states in optical lattices.[68]

    Fig. 7. Energy spectrum for a bilayer ribbon of NL =80 cells with zigzag edges. (a) V =0,α =β =0. (b) V =0,α =β =π/10. (c)V =0,α =β =π/2. (d)V =0.1,α =β =0. (e)V =0.1,α =β =2π/5. (f)V =0.1,α =β =π/2.

    WhenV= 0, we tune the gauge fluxes (α,β) along(0,0)→(π/2,π/2). Four partly flat bands at Fermi level locate in the range of[2π/3,4π/3][Fig.7(a)],which correspond to four edge states.[67]As we know,these bands are doubly degenerate and the increasing flux will result in a nondegeneracy.We can find that four additional dispersive bands appear away from the flat bands in Fig.7(b). The nondegenerate flat bands are also transported by gauge fluxes in momentum space and thus their range is also enlarged. When the fluxes continue to increase, the nondegenerate flat bands will separate into two parts.Finally,forα=β=π/2,the nondegeneracy disappears again,but the two parts of flat bands remain in Fig.7(c).

    Considering biased voltageV= 0.1, we show the energy spectrum of a bilayer ribbon for different gauge fluxes in Figs.7(d)–7(f). The bias will move two flat bands from Fermi level toE=±V, and the other two edge states become two dispersive bands crossing the opened gap[Fig.7(d)]. Similar to the unbiased case, the SU(2) gauge potential will destroy the color degeneracy and transport the bands. As a result,we can see eight band crossing in the gap whenα=β=2π/5 in Fig.7(e). Atπ-flux point,both the flat and crossing bands separate into two parts[Fig.7(f)].

    6. Summary

    In this work,we systematically study the SU(2)gauge effects on BHL. Based on the tight-binding model of graphene bilayer,we deduce the model by Peierls substitution. A topological Lifshitz transition induced by the non-Abelian gauge potential is discovered. Topological Lifshitz transitions are identified by the topologies of Fermi surfaces. The Fermi surface atπ-flux point consists ofN=8 Dirac points,instead ofN=4 in the trivial Abelian regimes. We also define a local winding number to classify the universality class of different topological phases. Then the phase diagram of gauge fluxes is demonstrated. The influence of gauge potential on edge states of biased bilayer ribbon is investigated. At the end,we would like to emphasize that the gauge potentials of different layers are independent in the present work,and the interlayer gauge fields cannot be considered. If we consider the interlayer gauge fields,the problem would become much more sophisticated and interesting,which will be studied in the future.In conclusion,our work will contribute to the research of topological Lifshitz transition and SU(2) gauge effects on bilayer honeycomb lattice. And the comprehension will be helpful for the electronic applications of bilayer graphene.

    Acknowledgements

    We are grateful to X.D.Zhang,F.Sun,D.Y.Jing,and J.K.Wang for helpful discussions.

    This work was supported by the National Key R&D Program of China (Grant Nos. 2021YFA1400900,2021YFA0718300, and 2021YFA1400243) and the National Natural Science Foundation of China(Grant No.61835013).

    日本与韩国留学比较| 最近在线观看免费完整版| 亚洲av不卡在线观看| 国产av麻豆久久久久久久| 动漫黄色视频在线观看| 国产蜜桃级精品一区二区三区| 99国产综合亚洲精品| 一级作爱视频免费观看| 国产激情偷乱视频一区二区| 中文字幕av成人在线电影| 97超视频在线观看视频| a在线观看视频网站| 国产69精品久久久久777片| 国产欧美日韩精品一区二区| 国产一区二区三区视频了| 色综合亚洲欧美另类图片| АⅤ资源中文在线天堂| tocl精华| 亚洲国产色片| 亚洲欧美日韩高清专用| 国产主播在线观看一区二区| 亚洲精品粉嫩美女一区| 露出奶头的视频| 美女cb高潮喷水在线观看| xxxwww97欧美| 国产成人av激情在线播放| 午夜日韩欧美国产| 国产亚洲精品久久久久久毛片| 午夜福利高清视频| 中文字幕人成人乱码亚洲影| АⅤ资源中文在线天堂| 美女cb高潮喷水在线观看| 亚洲国产中文字幕在线视频| 免费在线观看日本一区| 最近最新中文字幕大全电影3| 在线播放无遮挡| 激情在线观看视频在线高清| ponron亚洲| 久久精品国产自在天天线| 日韩 欧美 亚洲 中文字幕| 18禁国产床啪视频网站| 国产一区二区激情短视频| 超碰av人人做人人爽久久 | 一级作爱视频免费观看| 国产精品 欧美亚洲| 精品一区二区三区av网在线观看| 亚洲国产欧美网| 欧美绝顶高潮抽搐喷水| 小说图片视频综合网站| 成人国产一区最新在线观看| avwww免费| 亚洲精品粉嫩美女一区| 两个人视频免费观看高清| 欧美日韩一级在线毛片| 亚洲在线观看片| 欧美日韩综合久久久久久 | 国产乱人伦免费视频| 国产不卡一卡二| 成人午夜高清在线视频| 黄色丝袜av网址大全| 在线观看66精品国产| 国产免费av片在线观看野外av| 女人十人毛片免费观看3o分钟| 熟女少妇亚洲综合色aaa.| 国产毛片a区久久久久| 日韩 欧美 亚洲 中文字幕| 两个人视频免费观看高清| 成人亚洲精品av一区二区| 国内精品一区二区在线观看| 午夜免费观看网址| 真人一进一出gif抽搐免费| 日韩大尺度精品在线看网址| 精品人妻1区二区| 有码 亚洲区| 给我免费播放毛片高清在线观看| 免费在线观看日本一区| 精品人妻偷拍中文字幕| 在线观看美女被高潮喷水网站 | 成人鲁丝片一二三区免费| 特级一级黄色大片| 欧美午夜高清在线| 久久性视频一级片| 99久久精品一区二区三区| 伊人久久大香线蕉亚洲五| 噜噜噜噜噜久久久久久91| 最近在线观看免费完整版| 日日摸夜夜添夜夜添小说| 国产高潮美女av| 哪里可以看免费的av片| www国产在线视频色| 好看av亚洲va欧美ⅴa在| 国产午夜精品久久久久久一区二区三区 | a级毛片a级免费在线| 国产成人av教育| 中文字幕高清在线视频| 亚洲乱码一区二区免费版| 九九热线精品视视频播放| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲美女久久久| 一级a爱片免费观看的视频| 狠狠狠狠99中文字幕| 色综合欧美亚洲国产小说| 婷婷亚洲欧美| 变态另类丝袜制服| 亚洲精品456在线播放app | 看黄色毛片网站| 波多野结衣高清无吗| 99国产综合亚洲精品| 国产精品久久久久久久久免 | 1000部很黄的大片| 国产黄色小视频在线观看| 精品日产1卡2卡| 老熟妇乱子伦视频在线观看| 老汉色av国产亚洲站长工具| 国产美女午夜福利| 成人国产综合亚洲| 欧美黑人欧美精品刺激| 国产成人aa在线观看| 久久精品国产综合久久久| 国产三级中文精品| 一区二区三区免费毛片| 精品久久久久久久人妻蜜臀av| 久久欧美精品欧美久久欧美| 久久久久久久精品吃奶| 可以在线观看毛片的网站| 午夜免费成人在线视频| a在线观看视频网站| 国产精品电影一区二区三区| 久久精品国产自在天天线| 一边摸一边抽搐一进一小说| 久久久久久久久中文| 国产午夜精品久久久久久一区二区三区 | 久久精品国产99精品国产亚洲性色| 国内精品一区二区在线观看| 少妇的逼好多水| 久久精品国产综合久久久| 嫩草影视91久久| 我要搜黄色片| 精品久久久久久久久久免费视频| 国产野战对白在线观看| 国产精品 国内视频| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 国产精品久久视频播放| 亚洲午夜理论影院| 久久精品国产清高在天天线| 两人在一起打扑克的视频| 老司机在亚洲福利影院| 亚洲av美国av| 婷婷丁香在线五月| 国产精品综合久久久久久久免费| 极品教师在线免费播放| 国产成人a区在线观看| 欧美+亚洲+日韩+国产| 亚洲av第一区精品v没综合| 在线播放国产精品三级| 亚洲精品在线观看二区| 午夜老司机福利剧场| 国产精品电影一区二区三区| 久久这里只有精品中国| 日韩有码中文字幕| 国产精品一区二区三区四区免费观看 | 桃色一区二区三区在线观看| 亚洲一区二区三区不卡视频| 天堂动漫精品| 欧美极品一区二区三区四区| 老汉色∧v一级毛片| 极品教师在线免费播放| 人妻丰满熟妇av一区二区三区| 嫩草影视91久久| 日韩av在线大香蕉| 欧美高清成人免费视频www| 久久精品国产自在天天线| 亚洲最大成人手机在线| 成人高潮视频无遮挡免费网站| 88av欧美| 欧美3d第一页| 99久久久亚洲精品蜜臀av| 我要搜黄色片| 亚洲av成人精品一区久久| av天堂在线播放| 色精品久久人妻99蜜桃| 久久久久免费精品人妻一区二区| 88av欧美| 亚洲人成网站在线播| 悠悠久久av| 免费观看人在逋| 最近最新中文字幕大全电影3| 波多野结衣高清无吗| 日本 欧美在线| 波多野结衣巨乳人妻| eeuss影院久久| 欧美成狂野欧美在线观看| netflix在线观看网站| 亚洲美女视频黄频| 国产美女午夜福利| 国产精品1区2区在线观看.| 亚洲国产欧美人成| 亚洲精品乱码久久久v下载方式 | 国产精品永久免费网站| 2021天堂中文幕一二区在线观| 免费看十八禁软件| 在线国产一区二区在线| 国产精品久久久人人做人人爽| 日韩有码中文字幕| 成年版毛片免费区| 深爱激情五月婷婷| 美女被艹到高潮喷水动态| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区视频在线 | 青草久久国产| 国产毛片a区久久久久| 国产黄a三级三级三级人| 精品久久久久久成人av| 最好的美女福利视频网| 久久久国产成人免费| 757午夜福利合集在线观看| 国产国拍精品亚洲av在线观看 | 日韩欧美国产一区二区入口| 午夜精品在线福利| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩卡通动漫| 亚洲美女视频黄频| 久久久久亚洲av毛片大全| 国产黄a三级三级三级人| 操出白浆在线播放| 午夜精品一区二区三区免费看| 国产高潮美女av| 亚洲av成人av| 午夜精品在线福利| 免费人成在线观看视频色| 国产一区二区三区视频了| 美女高潮喷水抽搐中文字幕| 欧美激情在线99| 国产在视频线在精品| 亚洲中文字幕日韩| 国产91精品成人一区二区三区| 久久性视频一级片| xxx96com| 国产99白浆流出| 国产一区二区亚洲精品在线观看| 嫁个100分男人电影在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 两个人视频免费观看高清| 欧美日韩福利视频一区二区| 欧美最黄视频在线播放免费| 亚洲成人久久性| 成年女人永久免费观看视频| 国产麻豆成人av免费视频| 国产在视频线在精品| 麻豆成人av在线观看| 在线观看一区二区三区| 欧美激情在线99| 国产aⅴ精品一区二区三区波| 一个人看的www免费观看视频| av天堂在线播放| 制服丝袜大香蕉在线| 免费在线观看成人毛片| 中文字幕高清在线视频| 久久国产乱子伦精品免费另类| 日本a在线网址| 久久久久精品国产欧美久久久| 一区二区三区激情视频| АⅤ资源中文在线天堂| 非洲黑人性xxxx精品又粗又长| 中文资源天堂在线| 一a级毛片在线观看| 十八禁人妻一区二区| 中文字幕久久专区| 非洲黑人性xxxx精品又粗又长| 在线播放国产精品三级| 亚洲精品在线观看二区| 一进一出抽搐动态| 每晚都被弄得嗷嗷叫到高潮| 美女cb高潮喷水在线观看| 又黄又爽又免费观看的视频| 午夜亚洲福利在线播放| 国产亚洲精品av在线| 十八禁网站免费在线| 亚洲久久久久久中文字幕| av天堂在线播放| 最近在线观看免费完整版| 免费av不卡在线播放| 观看美女的网站| 免费一级毛片在线播放高清视频| 久久精品影院6| 国内久久婷婷六月综合欲色啪| 少妇人妻一区二区三区视频| xxxwww97欧美| av天堂在线播放| 午夜精品久久久久久毛片777| 亚洲专区国产一区二区| 床上黄色一级片| 成年免费大片在线观看| 一区二区三区国产精品乱码| 日韩欧美 国产精品| 性色av乱码一区二区三区2| 淫妇啪啪啪对白视频| www日本黄色视频网| 久9热在线精品视频| 搡老熟女国产l中国老女人| 午夜影院日韩av| 日日干狠狠操夜夜爽| av黄色大香蕉| 国产爱豆传媒在线观看| 日韩欧美免费精品| 精品人妻一区二区三区麻豆 | 在线十欧美十亚洲十日本专区| 久久这里只有精品中国| tocl精华| 久久精品亚洲精品国产色婷小说| 国产高清激情床上av| 精品一区二区三区视频在线 | 深爱激情五月婷婷| 丰满人妻熟妇乱又伦精品不卡| 国产高潮美女av| 亚洲七黄色美女视频| 亚洲人成网站高清观看| 婷婷精品国产亚洲av在线| 一级作爱视频免费观看| 12—13女人毛片做爰片一| 高清毛片免费观看视频网站| 99视频精品全部免费 在线| 免费搜索国产男女视频| 国产黄片美女视频| 一个人观看的视频www高清免费观看| 国产免费男女视频| 国产伦人伦偷精品视频| 欧美+日韩+精品| 最近视频中文字幕2019在线8| 99精品在免费线老司机午夜| 国产黄a三级三级三级人| 国产成人a区在线观看| 91麻豆精品激情在线观看国产| 99热这里只有精品一区| 草草在线视频免费看| 校园春色视频在线观看| 国产不卡一卡二| 成年女人毛片免费观看观看9| 欧美日本亚洲视频在线播放| 国产69精品久久久久777片| 国产精品影院久久| 国内精品久久久久久久电影| 神马国产精品三级电影在线观看| 日本撒尿小便嘘嘘汇集6| 久久精品人妻少妇| 一级作爱视频免费观看| 久久精品人妻少妇| 国产日本99.免费观看| 久久久久久人人人人人| 麻豆国产av国片精品| 国产一级毛片七仙女欲春2| 十八禁人妻一区二区| 在线a可以看的网站| 免费搜索国产男女视频| 在线观看66精品国产| 欧美成人a在线观看| 老熟妇乱子伦视频在线观看| 精品久久久久久久末码| 在线天堂最新版资源| 久久久久九九精品影院| 小说图片视频综合网站| 午夜福利视频1000在线观看| 日本黄大片高清| 欧美成狂野欧美在线观看| 精品一区二区三区视频在线观看免费| 午夜精品在线福利| ponron亚洲| 嫁个100分男人电影在线观看| 免费av观看视频| 长腿黑丝高跟| 亚洲在线观看片| 国产高清视频在线观看网站| 国产激情欧美一区二区| 免费高清视频大片| 成人18禁在线播放| 欧美日本亚洲视频在线播放| 中出人妻视频一区二区| 亚洲美女黄片视频| 欧美日韩一级在线毛片| 不卡一级毛片| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区色噜噜| 男人和女人高潮做爰伦理| 老汉色∧v一级毛片| 最近在线观看免费完整版| 12—13女人毛片做爰片一| 麻豆成人午夜福利视频| 国产爱豆传媒在线观看| 日本撒尿小便嘘嘘汇集6| 男女午夜视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产av在哪里看| 美女高潮的动态| 亚洲乱码一区二区免费版| 女人被狂操c到高潮| 美女免费视频网站| 日本在线视频免费播放| 88av欧美| 午夜视频国产福利| 极品教师在线免费播放| 岛国在线观看网站| 免费人成视频x8x8入口观看| 在线观看66精品国产| www.www免费av| 欧美三级亚洲精品| 熟女人妻精品中文字幕| 国产三级在线视频| 人妻久久中文字幕网| 少妇丰满av| 亚洲第一电影网av| 中文字幕人妻丝袜一区二区| 天堂av国产一区二区熟女人妻| 久久久久久国产a免费观看| a级一级毛片免费在线观看| 精品久久久久久久毛片微露脸| 在线观看舔阴道视频| 国内毛片毛片毛片毛片毛片| 成人高潮视频无遮挡免费网站| 色播亚洲综合网| 亚洲精品一卡2卡三卡4卡5卡| 中国美女看黄片| 精品国产亚洲在线| 国产成人av教育| 亚洲美女黄片视频| 国产久久久一区二区三区| 国内揄拍国产精品人妻在线| 最新美女视频免费是黄的| 十八禁网站免费在线| 精品久久久久久久人妻蜜臀av| 乱人视频在线观看| 手机成人av网站| 亚洲精品影视一区二区三区av| 国产亚洲精品久久久久久毛片| 日韩亚洲欧美综合| 日韩欧美国产一区二区入口| 婷婷丁香在线五月| 色吧在线观看| 午夜视频国产福利| 狠狠狠狠99中文字幕| 黄色成人免费大全| 1024手机看黄色片| 国产av在哪里看| 精品午夜福利视频在线观看一区| 久久久久久久久大av| 精品一区二区三区av网在线观看| a级毛片a级免费在线| 久久精品亚洲精品国产色婷小说| 天天躁日日操中文字幕| 动漫黄色视频在线观看| x7x7x7水蜜桃| 日韩欧美一区二区三区在线观看| 级片在线观看| 亚洲精品国产精品久久久不卡| 18+在线观看网站| 天美传媒精品一区二区| 成人三级黄色视频| 女人被狂操c到高潮| 18禁黄网站禁片免费观看直播| 欧美成人免费av一区二区三区| 久久久久亚洲av毛片大全| 国产精品精品国产色婷婷| 亚洲av熟女| 中文字幕久久专区| 亚洲片人在线观看| 亚洲人与动物交配视频| 国产精品98久久久久久宅男小说| 床上黄色一级片| 精品久久久久久久久久久久久| 最好的美女福利视频网| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| 久久精品国产清高在天天线| 成年女人毛片免费观看观看9| 12—13女人毛片做爰片一| 男女视频在线观看网站免费| 午夜免费男女啪啪视频观看 | 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 精品99又大又爽又粗少妇毛片 | 精品熟女少妇八av免费久了| 激情在线观看视频在线高清| 九九热线精品视视频播放| 内地一区二区视频在线| 97碰自拍视频| 夜夜爽天天搞| 香蕉久久夜色| 久久香蕉国产精品| av黄色大香蕉| 婷婷六月久久综合丁香| 99久国产av精品| 精品人妻1区二区| 热99re8久久精品国产| 国内少妇人妻偷人精品xxx网站| 日韩亚洲欧美综合| 欧美日韩黄片免| 国产精品嫩草影院av在线观看 | 天天添夜夜摸| netflix在线观看网站| 舔av片在线| 99久久99久久久精品蜜桃| 一个人免费在线观看的高清视频| 免费一级毛片在线播放高清视频| 九色成人免费人妻av| 成人一区二区视频在线观看| АⅤ资源中文在线天堂| 国产探花在线观看一区二区| 天堂√8在线中文| 尤物成人国产欧美一区二区三区| 深夜精品福利| 又黄又粗又硬又大视频| 午夜福利视频1000在线观看| 日本与韩国留学比较| 99久久成人亚洲精品观看| 久久精品综合一区二区三区| 老熟妇乱子伦视频在线观看| 精品熟女少妇八av免费久了| 色噜噜av男人的天堂激情| 日韩大尺度精品在线看网址| 日本免费a在线| 婷婷精品国产亚洲av| 成人av在线播放网站| 97人妻精品一区二区三区麻豆| 两个人看的免费小视频| 亚洲av一区综合| 亚洲国产高清在线一区二区三| av片东京热男人的天堂| 国产精品免费一区二区三区在线| 91在线观看av| 中国美女看黄片| 97碰自拍视频| 久久久久精品国产欧美久久久| 色综合站精品国产| 黄色成人免费大全| 免费在线观看亚洲国产| 久久精品国产清高在天天线| 99久久99久久久精品蜜桃| 国产精品 国内视频| 又粗又爽又猛毛片免费看| 亚洲国产中文字幕在线视频| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区久久| 国产精品乱码一区二三区的特点| 成年人黄色毛片网站| 国产成人系列免费观看| 啦啦啦观看免费观看视频高清| 男女之事视频高清在线观看| 国内精品美女久久久久久| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩精品亚洲av| 成人高潮视频无遮挡免费网站| 久9热在线精品视频| 欧美bdsm另类| 国产欧美日韩精品一区二区| 天天躁日日操中文字幕| 欧美又色又爽又黄视频| 国产又黄又爽又无遮挡在线| 深爱激情五月婷婷| 不卡一级毛片| 校园春色视频在线观看| 丰满乱子伦码专区| 在线观看66精品国产| 亚洲成a人片在线一区二区| 亚洲,欧美精品.| 亚洲无线观看免费| 夜夜爽天天搞| 99国产极品粉嫩在线观看| 九色国产91popny在线| 男女之事视频高清在线观看| 日韩欧美 国产精品| 法律面前人人平等表现在哪些方面| 变态另类丝袜制服| 欧美不卡视频在线免费观看| 少妇人妻精品综合一区二区 | 成年女人永久免费观看视频| 在线观看66精品国产| e午夜精品久久久久久久| 欧美黑人欧美精品刺激| 色老头精品视频在线观看| 一进一出抽搐动态| 久久精品国产清高在天天线| 特级一级黄色大片| 在线观看日韩欧美| 国产伦精品一区二区三区视频9 | 亚洲av成人av| 国产乱人伦免费视频| aaaaa片日本免费| 国产成年人精品一区二区| 岛国在线观看网站| 午夜激情福利司机影院| 亚洲,欧美精品.| 成人高潮视频无遮挡免费网站| 女警被强在线播放| 美女黄网站色视频| 成人高潮视频无遮挡免费网站| 亚洲人与动物交配视频| 美女黄网站色视频| 岛国在线观看网站| 亚洲人成伊人成综合网2020| 国产精品,欧美在线| 内射极品少妇av片p| 可以在线观看的亚洲视频| 久久精品国产清高在天天线| 天天一区二区日本电影三级| 国产成人av教育| 欧美黄色片欧美黄色片| 国产毛片a区久久久久| 免费在线观看成人毛片| 亚洲熟妇中文字幕五十中出| 婷婷精品国产亚洲av| 亚洲一区高清亚洲精品| 九色成人免费人妻av| 99视频精品全部免费 在线| 精品午夜福利视频在线观看一区| 丰满乱子伦码专区|