• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices

    2022-05-16 07:11:26ZiXuanChen陳子軒JiaLinSun孫家林QiangZhang張強(qiáng)ChongXinQian錢崇鑫MingZiWang王明梓andHongJianFeng馮宏劍
    Chinese Physics B 2022年5期
    關(guān)鍵詞:張強(qiáng)孫家王明

    Zi-Xuan Chen(陳子軒), Jia-Lin Sun(孫家林), Qiang Zhang(張強(qiáng)), Chong-Xin Qian(錢崇鑫),Ming-Zi Wang(王明梓), and Hong-Jian Feng(馮宏劍)

    School of Physics,Northwest University,Xi’an 710127,China

    Keywords: ferroelectric polarization,charge transfer,density-functional theory,perovskite solar cell

    1. Introduction

    Ferroelectrics has been widely investigated by researchers in theory and experiment. The polarization of ferroelectrics can be switched between various directions by exerting different external electric fields.[1]The universal viewpoint believes that the long-range Coulomb interaction induces the displacive ferroelectric polarization but impedes the conductivity.[2]While recent research reveals the correlation between the short-range portion of the Coulomb force and the ferroelectric polarization,in which case the long-range Coulomb force is screened by charge carriers,thus ensures the coexistence of the ferroelectricity and conductivity in bulk ferroelectrics and interfaces.[3—6]Since the development of scanning probe microscopy techniques,domain wall(DW)conductivity in ferroelectrics is experimentally captured even at room temperature,thus triggered series of experimental and theoretical studies on this phenomenon. Commonly, ferroelectric crystals are characterized to have numerous individual domain regions separated by DWs when a ferroelectric phase arose.[7]These localized domain regions spontaneously orient into different directions and form the polarizations. After adding adequate external electric field,the orientations of different domains rotate to rearrange along the field,thus the various domains incorporated and reconfigured into uniform ones.[8—11]During this period,the original domains restructure into new domains.[12,13]Seidelet al.investigated the DW conduction behavior in the insulating multiferroic BiFeO3by means of conductive atomic force microscopy(c-AFM).[14]

    Ferroelectrics, especially ferroelectric films, are applied in piezoelectric sensors, microwave electronics, nonvolatile ferroelectric random-access memories, ferroelectric field effect transistors, ferroresistive storage, and multiprobe mass storage.[15—18]Ferroelectrics is a candidate for application in photoelectric devices, such as light emitting diodes, sensors and solar cells, in which the charge transfer can be efficiently tuned with the introducing of ferroelectrics.[19]PSCs have triggered extensive attention since 2009,[20]and its rapid development reveals the considerable application potential.[21—23]Ba1-xSrxTiO3is a traditional dielectric material of which the ferroelectricity can be easily controlled by changing the Sr molar ratio (x <0.3 BST exhibits ferroelectricity at room temperature), which makes it a reliable choice for ferroelectric applications.[24]In a ferroelectricsbased PSC, the built-in-field induced by the ferroelectric polarization will lead to a band realignment of the ferroelectricphotosensitive interface which favours the interfacial charge transfer. Besides, by applying an electric field on the device, the charge transfer direction can also be controlled under the influence of ferroelectric polarization. In addition,the Fermi levels of the selective contacts and the non-radiative recombination in PSCs could both result in a lower open-circuit voltage (Voc). Thus, the BST ferroelectric layer can be introduced into PSCs as both ferroelectric tunable layer and electron transport layer to enhance the built-in-field and suppress the carrier recombination in the trapping states. Moreover,the charge transfer of BST-based devices can be regulated by ferroelectric polarization, which is demonstrated by the photovoltaic performance under external poling. In this work,by means of experiments and DFT calculations, we systematically investigate the coexistence of the ferroelectricity and conductivity in BST,as well as the charge transfer of the BSTbased devices. Different with the conventional processing of ferroelectric films with high cost,a low temperature chemical solution deposition method is used for BST film fabrication,which effectively reduce the cost of the device. The conductivity of the BST film is 2.98×10-4S/cm,and the champion PCE of the BST-based PSCs is 19.05% after positive poling.The photovoltaic behavior of the BST-based PSCs can be controlled by external poling,which is associated with the tunable charge transfer caused by ferroelectric polarization of BST.Furthermore, the SRIM simulation indicates that the ion implantation is an attemptable method for further device performance improvement.[25]

    2. Experimental details

    2.1. Materials synthesis

    The BST powders are synthesized by a sol—gel method.Firstly,0.2873 g of barium acetate and 0.0771 g of strontium acetate hemihydrate were mixed with 20 mL of acetic acid,followed by intense stirring at 90°C until a complete dissolution. The mixture solution was marked as solution 1. Secondly,0.5125 mL of tetrabutyl titanate and 0.3079 mL of ethylene glycol monomethyl ether were mixed, followed by intense stirring at 50°C until a complete dissolution. The mixture solution was marked as solution 2. Thirdly, solutions 1 and 2 were mixed,followed by stirring at 50°C for 2 h. After that, the mixture solution was stored for 24 h in the ambient environment.Lastly,the aged mixture solution was transferred into the muffle furnace for annealing at 850°C for 20 h, and the final white crystalline powders were grinded for further operation.

    The compact-TiO2(c-TiO2) film was fabricated by a chemical deposition method. 200 mL of deionized water was used to create the ice, followed by the dropwise addition of 2.25 mL of titanium tetrachloride at room temperature. After that, the solid—liquid mixture naturally melted into a 0.2-mol/L liquid TiO2solution for subsequent deposition. The UV-treated FTO glasses were fixed at the bottom of the culture dish with heat-resistant tapes,and appropriate amount of the TiO2solution was added until the liquid level was higher than the FTO substrates. The culture dish was then transferred into the drying oven for a heat treatment at 70°C for 50 min.The intermediate TiO2films were washed alternately by ethyl alcohol and deionized water for 3 times, and dried by N2gas fluid. Finally, the intermediate TiO2films were annealed at 450°C for 120 min to crystalize.

    The high synthesis temperature of ferroelectric BST will influence the optimal and conductive property of the TiO2/FTO substrate. To overcome this, a low-temperature chemical deposition similar with that of the c-TiO2was employed. For the preparation of the BST solution (see Fig. S1 in supporting-information), appropriate amount of the as-prepared BST powders were added into N, Ndimethylformamide (DMF), followed by stirring at the room temperature for 15 min. After a 3-day standing at the room temperature,the turbid BST solution became transparent with an ideal Tyndall effect. It should be noted that an overlong standing time will cause a poor quality of the fabricated BST film,which leads to a low photovoltaic output of the final device. The process of the BST film deposition (see Fig. S2 in supporting-information) is basically similar with that of the TiO2film which is shown in the previous paragraph. To avoid the adverse impact of the residuals on the quality of the BST film, necessary washing and heat-treatment procedure should be carried out, as figure S2 shows. Table S1 shows the information of the materials used for BST preparation and TiO2/BST-based PSC fabrication.

    2.2. Device fabrication

    The TiO2/BST-based PSC was fabricated by the following procedure: The FTO-coated glass was washed in sequence by liquid detergent, acetone, isopropanol, ethyl alcohol, and deionized water, and finally blow-dried by nitrogen gas flow. The FTO substrates were immediately cleaned by ultraviolet ozone for 15 min for the next step. The TiO2film was prepared by the chemical deposition method mentioned above. The BST film was prepared as the above method and ultraviolet ozone treated for 15 min before depositing the perovskite layer. For the synthesis of the FAPbI3precursor, 231.8 mg of FAI, 645.4 mg of PbI2, and 6.2 mg of MDACl2were mixed into 1-mL mixture solution of DMF(Alfa, 99.9%) and dimethylsulfoxide (DMSO, Alfa, 99.9%)(8:1,volume ratio)with strong stirring at 25°C for 3 days in N2atmosphere. The FAPbI3layer was prepared by the deposition method. 50 μL of the FAPbI3precursor was dropped onto the BST film for spin-coating at 1000 rpm for 10 s and 6000 rpm for 20 s, and 100 μL of the chlorobenzene was dropped at the fifth second from the bottom during the second spinning step. Then the substrates were annealed at 100°C for 10 min until a dark brown perovskite phase formed.For the deposition of the hole transporting layer (HTL),90 mg of 2,2′,7,7′-tetrakis(N,N-di-pmethoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) with 22 μL of the LiTFSI solution (520 mg of LiTFSI in 1 mL of acetonitrile)and 36 μL of 4-tert-butylpyridine(t-BP)were dissolved in 1-mL chlorobenzene,and then spin-coated onto the FAPbI3film with 5000 rpm for 30 s. Finally,a 75-nm Au was deposited by thermal evaporation with rate of 1.2 °A/s.

    2.3. Characterizations

    The x-ray diffraction (XRD) of the BST film was collected by a Bruker D8 Advance power diffractometer with a 6.5-kW CuKαx-ray radiation (operation at 40 kV and 40 mA). The hysteresis loops were measured on aixACCT TF Analyzer 2000. Transmission electron microscope(TEM)data were acquired from FEI Tecnai G2 F20 microscope. The conductivity was measured by a four-point probe meter (ST-2258C).The steady-state photoluminescence(PL)spectra and the time-resolved PL decay spectra were obtained by a Flex-One Zolix PL instrument.J—Vcurves of the TiO2/BST-based solar cell were obtained from a Keithley 2400 source meter under the illumination of a 100-mW/cm2AM 1.5-G condition.The scanning electron microscope (SEM) image was carried out on ZEISS SIGMA scanning electron microscopy.

    2.4. Theoretical calculations

    The DFT calculation was carried out using Quantum Espresso package.[26,27]The Perdew—Burke—Ernzerhof for solid (PBEsol) functional was applied for exchange correlation interactions.[28]The GBRV ultrasoft pseudopotentials were used for describing the electron—ion interactions.[29]A 2×2×2k-point grid was used, and the plane wave energy cutoff was 400 eV.

    The charge displacement curve (CDC) ΔQbetween the lowest triplet states and the ground states can be calculated by

    whereρLandρGdenote the electron density of the lowest triplet states and the ground states in the real space, respectively.

    3. Results and discussion

    To investigate the impact of the photo-induced electrons of the photosensitive layer on the ferroelectric polarization of BST, the DFT calculations are used to study the ferroelectric polarization of bulk BST with different electron doping concentration. The electron density increase in bulk BST can be regarded as the consequence of introducing the defect favoring the electrons,such as oxygen vacancy. The electron doping in bulk BST is fulfilled by increasing the amount of the total electrons with a compensation of the positive charges in the background. Figure 1(a)shows the variation of the polarization and the ferroelectric displacement under different electron doping concentrations. For the pure tetragonal BST without electron doping,the DFT calculation gives polarization of 29.50 μC/cm2,c/aratio of 1.012, and Ti—O displacement of 0.14 °A.With the increase of the electron doping concentrationn, the off-center displacement of Ti atom and the ferroelectric polarization decrease for the Coulomb screening effect,as shown in Fig. 1(b). When the electron doping concentrationnincreases to 1.2e/u.c.,a sharp decrease of the Ti—O displacement and the ferroelectric polarization will occur,which is attributed by the screening of the long-range Coulomb interaction caused by the electron accumulation. Interestingly,as further increasing of carrier concentration, the Ti—O displacement and the polarization still maintain asnreaches a relative high value of 8e/u.c.(0.09 °A and 2.16 μC/cm2). Experimentally,ion implantation or chemical doping can tune the concentration of Sr. The concentration of Sr can change the concentration of oxygen vacancy in Ba1-xSrxTiO3film, and finally affect electron doping concentrationi.e.,n. These results uncover the coexistence of the ferroelectric phase and the conductivity in bulk BST,indicating the possibility of the electron transfer in bulk ferroelectric BST.

    Firstly, we performed the XRD measurement to detect the ferroelectric crystal structure of BST film. In Fig. 2(a),the preferential orientation in〈101〉of the as-prepared BST film demonstrates a tetragonal ferroelectric phase with space groupP4mm(99),anda=b=3.977 °A andc=3.988 °A.The diffraction peaks of the simulated DFT model also matches well with the experiment result. To investigate the polarization response of BST film,we performed the ferroelectric hysteresis (P—E) loops measurement of BST film. As shown in Fig.2(b),the saturation polarization is 2.4 μC/cm2and the coercive field is 37.3 kV/cm. A four-probe method is utilized to study the conductivity of BST film, and an electric conductivity of 2.98×10-4S/cm is acquired. The conductivity of the as-fabricated BST film is at the same magnitude of the conductivity of TiO2film fabricated in the previous work.[30]Additionally, we carried out the TEM measurement to detect the spontaneous ferroelectric polarization of BST film. Figures 2(c)—2(e)show ferroelectric domains in different regions of BST, where the white dashed lines marked with numbers refer to the DWs. The electronic transmission of DWs is discussed in Fig.S3 in supporting information. Figures 2(g)and 2(h) show the fast Fourier transform (FFT) of region I (blue square)and region II(red square)in Fig.2(f), and figure 2(i)shows the summed FFT of regions I and II.In Fig.2(i),the evident split of diffraction points demonstrates two ferroelectric domains.[31,32]All these results reveal the spontaneous polarization of the as-fabricated BST film.

    Next, to study the charge transfer behavior at the BST/FAPbI3interface by different ferroelectric polarization,we conducted the charge displacement curve (CDC) and the integrated local density of states(IDOS)calculations. A poling along the direction from FAPbI3to BST is defined as the positive poling inducing positive polarization,on the contrary,the negative poling inducing negative polarization. Ti atoms move along the direction perpendicular to the BST/FAPbI3interface to simulate the ferroelectric polarization under different poling conditions. In Fig.3(a),as the CDC curves shown,the positive polarization drives the electrons transfer from the FAPbI3side to the BST side, while the negative polarization contributes to the opposite effect. From the perspective of electronic structure, as shown in Fig. 3(b), the BST/FAPbI3heterostructure tends to form a type-II band alignment,which proves that the electrons tend to transfer from the FAPbI3side to the BST side spontaneously. Noteworthily,figure 3(c)shows the band alignment of the BST/FAPbI3heterostructure under the positive polarization. The band slope facilitates the electron extraction and transfer from FAPbI3side to BST side.On the contrary,in Fig.3(d),the negative polarization results in the band slope reversal, impeding electron extraction, and transfer across the BST/FAPbI3interface. Hence, the BST film as the ETL can effectively tune the charge transfer, and thus improve the photovoltaic performance.

    Finally, we experimentally introduce the BST film into the PSC and investigate the ferroelectric polarization effect on interfacial charge transfer and the photovoltaic performance.We firstly investigate the PCE of the TiO2/BST device with or without positive poling. As shown in Fig. 4(a), the champion PCE of the TiO2/BST-based solar cell without positive poling (device structure: FTO/TiO2/BST/FAPbI3/Spiro-OMeTAD/Au)reaches 18.33%,with short-circuit current density(Jsc)of 23.34 mA/cm2,Vocof 1.04 V,and fill factor(FF)of 75.54%. The current density—voltage (J—V) curve of the forward scan shows a PCE of 17.87%, indicating no obvious hysteresis in the TiO2/BST-based device. For the TiO2/BSTbased solar cell with a +3.7 V/μm positive poling (see next paragraph for discussion about poling), the PCE,Voc,Jsc,FFall increased. In Fig. 4(b), the cross-sectional SEM image of the TiO2/BST-based perovskite solar cell is shown. The thickness of TiO2film and BST film is 90 nm and 195 nm,respectively.

    Fig.2. (a)The XRD of the experimentally fabricated Ba0.75Sr0.25TiO3 film,Ba0.77Sr0.23TiO3 standard PDF card,and the DFT calculation model. (b)The P—E loops of the BST film. (c)—(f)The TEM images of the BST film with domains and DWs indicated by white dashed lines. (g)—(i)FFTs of blue and red region in panel(f),and their summed one.

    Fig. 3. (a) The CDC of BST/FAPbI3 heterostructure under different poling conditions. The IDOS projected along the 〈001〉 direction of BST/FAPbI3 heterostructure with(b)no polarization,(c)positive polarization,and(d)negative polarization.

    Fig. 4. (a) The J—V curves (under reverse and forward scan) of the champion PCE of TiO2/BST-based PSC with and without positive poling. (b) The cross-sectional SEM image of the TiO2/BST-based solar cell. (c)The steady-state PL spectra and(d)the time-resolved PL decay spectra of the BST-based film(FTO/TiO2/BST/FAPbI3/Spiro)with or without positive poling. (e)The statistics PCE diagram of 15 TiO2/BST-based devices with and without positive poling. (f)The diagram of the stability measurement of unencapsulated TiO2/BST-based and TiO2-based devices in atmosphere environment with 45±5%humidity and room temperature for over 750 hours.

    The steady-state PL and time-resolved PL decay were carried out to investigate the influence of ferroelectric polarization on charge transfer dynamics. Figure 4(c)shows the steady-state PL spectra of the BST-based film(FTO/TiO2/BST/FAPbI3/Spiro) with or without positive poling. According to the coercive field(37.3 kV/cm)of the BST film (Fig. 2(b)), we applied a positive poling (+3.7 V/μm)on the FTO/TiO2/BST film for 30 min to change the spontaneous polarization of BST into a positive polarization which is more favorable to electron extraction from FAPbI3layer to BST layer. As a result, the BST-based film with positive poling shows an obvious PL intensity decrease, indicating an enhanced electron transfer from FAPbI3layer to BST layer.In Fig.4(d), the time-resolved PL decay is also in agreement with the steady-state PL. The PL decay lifetime of the BSTbased films without and with positive poling are 35 ns and 29 ns,respectively. The PL quenching of the BST-based film with positive poling is faster than the BST-based film without positive poling. The shortened PL lifetime of the BST-based film with positive poling suggests an enhanced electron transfer from FAPbI3layer to BST layer. These results experimentally demonstrate that the ferroelectric polarization can tune the electron transfer between the BST/FAPbI3interface.

    Figure 4(e) shows the statistics PCE diagram of 15 TiO2/BST-based devices with and without positive poling.The average PCE increased from 17.97% to 18.89% after adding a +3.7-V/μm positive poling. After optimizing the fabrication of FAPbI3film, the stability of FAPbI3film increased and the corresponding FAPbI3-based device efficiency maintains 80%of the original one after 30 days(Fig.4(f)). An unencapsulated TiO2/BST-based and TiO2-based device with initial PCE of 18.33% and 16.89% are stored in atmosphere environment with 45±5% humidity and room temperature.The device photovoltaic performance comparison about TiO2-based,TiO2/BST-based(with and without positive poling)solar cells is discussed in Fig.S4 in supporting-information.

    4. Conclusions

    In conclusion,we theoretically investigate the varying Ti off-center displacement,c/aratio and polarization of BST under different electron doping concentration. Coexistence of the conductivity and the ferroelectricity is found in BST.The TEM results demonstrate the ferroelectric domains in BST.The CDC and the IDOS further prove the tunable interfacial charge transfer. We introduce the ferroelectric BST film into the TiO2-based PSCs and acquire the PCE of 18.33% without positive poling, and a positive poling will increase the PCE to 19.05%. The interfacial charge transfer and the photovoltaic performance of the TiO2/BST/FAPbI3-based PSCs can be tuned by poling. The PL results demonstrate the tunable charge transfer across the BST/FAPbI3interface. The coexistence of ferroelectricity and conductivity in ferroelectric BST broadens the application of lead-free ferroelectric BST in perovskite optoelectronic devices.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 51972266, 51672214, and 11904286) and the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2022JZ-01).

    猜你喜歡
    張強(qiáng)孫家王明
    LARGE TIME BEHAVIOR OF THE 1D ISENTROPIC NAVIER-STOKES-POISSON SYSTEM*
    Higher Derivative Estimates for a Linear Elliptic Equation
    走過(guò)318
    “看不見”的王明華
    海峽姐妹(2019年3期)2019-06-18 10:37:22
    鳥巢大作戰(zhàn)
    大鐘驚魂
    玩轉(zhuǎn)正陽(yáng)門
    藏到夢(mèng)里
    王夭一先勝?gòu)垙?qiáng)
    棋藝(2016年4期)2016-09-20 05:41:04
    SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT?
    videossex国产| av在线播放精品| 黄色配什么色好看| 久久久久久久亚洲中文字幕| 涩涩av久久男人的天堂| 国产精品伦人一区二区| 成年人午夜在线观看视频| 欧美激情在线99| 欧美精品国产亚洲| 亚洲天堂av无毛| 久久99精品国语久久久| 你懂的网址亚洲精品在线观看| 欧美人与善性xxx| 国产伦精品一区二区三区四那| 亚洲天堂国产精品一区在线| 亚洲成人久久爱视频| 国语对白做爰xxxⅹ性视频网站| 在线观看三级黄色| 偷拍熟女少妇极品色| 蜜桃久久精品国产亚洲av| 99热6这里只有精品| 最近手机中文字幕大全| videossex国产| 成人无遮挡网站| 中国国产av一级| 色哟哟·www| 日韩大片免费观看网站| 国产极品天堂在线| 婷婷色麻豆天堂久久| 亚洲欧美一区二区三区黑人 | 国国产精品蜜臀av免费| 亚洲欧洲国产日韩| 深夜a级毛片| 99re6热这里在线精品视频| 一级爰片在线观看| 亚洲av免费高清在线观看| 亚洲av电影在线观看一区二区三区 | 水蜜桃什么品种好| 啦啦啦中文免费视频观看日本| 久久久精品欧美日韩精品| 日韩强制内射视频| 久久久精品欧美日韩精品| 国产精品三级大全| 国产av不卡久久| 自拍欧美九色日韩亚洲蝌蚪91 | 一级毛片我不卡| 不卡视频在线观看欧美| 麻豆精品久久久久久蜜桃| 午夜免费鲁丝| 国产精品国产三级专区第一集| 男的添女的下面高潮视频| 亚洲欧美精品自产自拍| 国产高潮美女av| 国产永久视频网站| 91午夜精品亚洲一区二区三区| 亚洲一区二区三区欧美精品 | 男插女下体视频免费在线播放| 最后的刺客免费高清国语| 日韩欧美精品免费久久| 亚洲四区av| 久久国内精品自在自线图片| 国产亚洲精品久久久com| 国产精品嫩草影院av在线观看| 国产亚洲av嫩草精品影院| 国产精品久久久久久精品电影小说 | 亚洲欧美日韩无卡精品| 成人黄色视频免费在线看| 日本午夜av视频| 精华霜和精华液先用哪个| 亚洲av国产av综合av卡| 久久热精品热| 国产黄色免费在线视频| 中文字幕av成人在线电影| 午夜福利网站1000一区二区三区| 人妻夜夜爽99麻豆av| 国产高潮美女av| 欧美亚洲 丝袜 人妻 在线| 成人毛片a级毛片在线播放| 1000部很黄的大片| 日本免费在线观看一区| 三级男女做爰猛烈吃奶摸视频| 欧美高清性xxxxhd video| 亚洲婷婷狠狠爱综合网| 国产精品嫩草影院av在线观看| 少妇熟女欧美另类| 99久久人妻综合| 成人欧美大片| 亚洲国产日韩一区二区| 精品熟女少妇av免费看| freevideosex欧美| 搡女人真爽免费视频火全软件| 麻豆国产97在线/欧美| 69av精品久久久久久| 国产淫片久久久久久久久| 极品教师在线视频| 久久这里有精品视频免费| 91久久精品电影网| 免费不卡的大黄色大毛片视频在线观看| 国产高清有码在线观看视频| 成年av动漫网址| 亚洲最大成人中文| 男女边摸边吃奶| 美女xxoo啪啪120秒动态图| 女人被狂操c到高潮| 日韩国内少妇激情av| 日本午夜av视频| 一区二区三区四区激情视频| 极品教师在线视频| 国产精品一区二区在线观看99| 久久精品国产自在天天线| 69人妻影院| 亚洲精品成人av观看孕妇| 午夜视频国产福利| 日韩av不卡免费在线播放| 国产一区二区亚洲精品在线观看| 精品人妻熟女av久视频| 国产午夜精品一二区理论片| 亚洲精品乱码久久久久久按摩| 国国产精品蜜臀av免费| 亚洲精品第二区| 日韩成人伦理影院| av免费观看日本| 亚洲色图综合在线观看| 亚洲av不卡在线观看| 亚洲,欧美,日韩| 国产精品一区二区性色av| 免费人成在线观看视频色| 18禁裸乳无遮挡免费网站照片| 国产 精品1| 熟妇人妻不卡中文字幕| 日韩国内少妇激情av| 日韩av不卡免费在线播放| 99久久精品热视频| 欧美日韩视频高清一区二区三区二| 中文乱码字字幕精品一区二区三区| 国产精品伦人一区二区| 国产在线一区二区三区精| 尤物成人国产欧美一区二区三区| 成人亚洲欧美一区二区av| 国产一区亚洲一区在线观看| 亚洲欧美日韩另类电影网站 | 成人美女网站在线观看视频| 国产黄色免费在线视频| 久久6这里有精品| 99热这里只有是精品在线观看| 日韩,欧美,国产一区二区三区| 精品久久久久久电影网| 久久久久九九精品影院| 少妇的逼水好多| 少妇人妻一区二区三区视频| 大片免费播放器 马上看| 国产免费又黄又爽又色| 免费看a级黄色片| 欧美激情在线99| 真实男女啪啪啪动态图| 久久久午夜欧美精品| 最近中文字幕高清免费大全6| 又爽又黄a免费视频| 国内精品美女久久久久久| 亚洲av电影在线观看一区二区三区 | 制服丝袜香蕉在线| 久久人人爽av亚洲精品天堂 | 看十八女毛片水多多多| 黑人高潮一二区| 久久精品夜色国产| 伦理电影大哥的女人| av又黄又爽大尺度在线免费看| 少妇熟女欧美另类| 亚洲成人av在线免费| 九色成人免费人妻av| 久久99热6这里只有精品| 国产黄片美女视频| 欧美国产精品一级二级三级 | 少妇 在线观看| 成人高潮视频无遮挡免费网站| 99久久中文字幕三级久久日本| 国产人妻一区二区三区在| 国产精品不卡视频一区二区| 精品国产乱码久久久久久小说| av国产久精品久网站免费入址| 青春草视频在线免费观看| 自拍偷自拍亚洲精品老妇| 嫩草影院入口| 亚洲丝袜综合中文字幕| 国内揄拍国产精品人妻在线| 亚洲国产精品成人久久小说| 特级一级黄色大片| 亚洲av免费在线观看| 国产精品国产三级国产专区5o| 99久久九九国产精品国产免费| 国产男人的电影天堂91| 亚洲国产成人一精品久久久| 成人毛片60女人毛片免费| 黄色怎么调成土黄色| 国产综合懂色| 欧美日韩视频精品一区| 亚洲四区av| 麻豆成人av视频| 99久久精品热视频| 秋霞在线观看毛片| 99视频精品全部免费 在线| 激情五月婷婷亚洲| 亚洲av在线观看美女高潮| 日韩av不卡免费在线播放| 卡戴珊不雅视频在线播放| 免费人成在线观看视频色| 日本午夜av视频| 日韩亚洲欧美综合| 欧美激情久久久久久爽电影| 激情五月婷婷亚洲| 久久久a久久爽久久v久久| 蜜臀久久99精品久久宅男| 成人无遮挡网站| 欧美日韩国产mv在线观看视频 | 亚洲经典国产精华液单| 在线观看国产h片| av黄色大香蕉| 亚洲一区二区三区欧美精品 | 亚洲激情五月婷婷啪啪| 久久久久九九精品影院| 国产成人一区二区在线| 国产av不卡久久| 中文字幕制服av| 国产有黄有色有爽视频| 国产精品人妻久久久影院| 麻豆成人午夜福利视频| 亚洲天堂国产精品一区在线| 网址你懂的国产日韩在线| 国产 一区精品| 亚洲国产精品成人综合色| 直男gayav资源| 精品国产一区二区三区久久久樱花 | 三级男女做爰猛烈吃奶摸视频| 亚洲成人av在线免费| 国产成人精品久久久久久| 久久久久久久午夜电影| 在线亚洲精品国产二区图片欧美 | 日日啪夜夜撸| 七月丁香在线播放| 99久国产av精品国产电影| 黄色欧美视频在线观看| 成年女人看的毛片在线观看| 亚洲国产欧美人成| 麻豆精品久久久久久蜜桃| 亚洲欧美日韩东京热| 免费av毛片视频| 大香蕉97超碰在线| 99久久精品一区二区三区| 国产精品国产三级专区第一集| av在线播放精品| videos熟女内射| 国产高潮美女av| 少妇裸体淫交视频免费看高清| 欧美成人午夜免费资源| 免费观看在线日韩| 国产国拍精品亚洲av在线观看| a级毛色黄片| 日韩,欧美,国产一区二区三区| 亚洲国产av新网站| 99久国产av精品国产电影| 欧美变态另类bdsm刘玥| 亚洲自拍偷在线| 天天躁日日操中文字幕| 黄色视频在线播放观看不卡| 午夜精品一区二区三区免费看| 交换朋友夫妻互换小说| 一级毛片久久久久久久久女| 久久久久久久大尺度免费视频| 欧美最新免费一区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲成人久久爱视频| 久久久欧美国产精品| 亚洲成人中文字幕在线播放| 禁无遮挡网站| 久久久欧美国产精品| 少妇人妻一区二区三区视频| 亚洲婷婷狠狠爱综合网| 精品一区二区三卡| 男女啪啪激烈高潮av片| 我要看日韩黄色一级片| 欧美高清性xxxxhd video| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久 | 午夜福利高清视频| 亚洲精品国产色婷婷电影| 水蜜桃什么品种好| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| 亚洲最大成人手机在线| 国产欧美日韩精品一区二区| 亚洲精品乱码久久久久久按摩| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| 插逼视频在线观看| 欧美精品国产亚洲| 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 久久久成人免费电影| 日本一二三区视频观看| av专区在线播放| 亚洲成人精品中文字幕电影| 久久久久久久精品精品| 别揉我奶头 嗯啊视频| 亚洲第一区二区三区不卡| 久久久久久久午夜电影| 建设人人有责人人尽责人人享有的 | xxx大片免费视频| 亚洲综合精品二区| 久久精品熟女亚洲av麻豆精品| 午夜日本视频在线| 久久99热这里只频精品6学生| 欧美高清性xxxxhd video| 精品熟女少妇av免费看| 成人特级av手机在线观看| 亚洲欧美日韩另类电影网站 | 九九爱精品视频在线观看| 夜夜看夜夜爽夜夜摸| 一级毛片电影观看| 欧美日韩亚洲高清精品| 亚洲av二区三区四区| 大码成人一级视频| 国产亚洲一区二区精品| av福利片在线观看| 国产亚洲午夜精品一区二区久久 | 日本-黄色视频高清免费观看| 国产成人福利小说| 别揉我奶头 嗯啊视频| 国产高潮美女av| av国产精品久久久久影院| 成年女人在线观看亚洲视频 | 精品一区二区三区视频在线| 久久久久久久久久成人| 免费av毛片视频| 精品人妻熟女av久视频| 精品少妇黑人巨大在线播放| 久久99热这里只有精品18| 麻豆成人午夜福利视频| 高清视频免费观看一区二区| 久久久成人免费电影| 国产人妻一区二区三区在| 人妻一区二区av| 搡女人真爽免费视频火全软件| 日韩免费高清中文字幕av| 久热这里只有精品99| 欧美最新免费一区二区三区| 国产欧美另类精品又又久久亚洲欧美| av女优亚洲男人天堂| 尾随美女入室| 久久精品国产自在天天线| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线观看播放| 国产黄频视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产探花在线观看一区二区| 日产精品乱码卡一卡2卡三| 嫩草影院入口| 一级爰片在线观看| 黄片无遮挡物在线观看| 久久午夜福利片| av专区在线播放| 日本午夜av视频| 高清欧美精品videossex| 中国美白少妇内射xxxbb| 国产精品av视频在线免费观看| 麻豆成人午夜福利视频| 内射极品少妇av片p| 美女国产视频在线观看| 精品人妻熟女av久视频| 久久精品国产亚洲av涩爱| 九九久久精品国产亚洲av麻豆| 久久久久精品性色| 国产欧美亚洲国产| 国产成年人精品一区二区| 人妻系列 视频| 久久久久久久久久久免费av| 日韩av免费高清视频| 国产69精品久久久久777片| 国产欧美亚洲国产| 日韩av免费高清视频| 欧美成人精品欧美一级黄| 亚洲av日韩在线播放| 我要看日韩黄色一级片| 国产亚洲av片在线观看秒播厂| 免费高清在线观看视频在线观看| 欧美成人a在线观看| 成人欧美大片| 哪个播放器可以免费观看大片| 成人无遮挡网站| 又黄又爽又刺激的免费视频.| av在线观看视频网站免费| 性色avwww在线观看| 国产成人午夜福利电影在线观看| 久久国产乱子免费精品| 国产免费一区二区三区四区乱码| 人妻 亚洲 视频| 国产精品久久久久久精品电影| 最近2019中文字幕mv第一页| 少妇高潮的动态图| 国产黄a三级三级三级人| 特大巨黑吊av在线直播| 国内精品美女久久久久久| 国产高清有码在线观看视频| 秋霞伦理黄片| 五月伊人婷婷丁香| 成年人午夜在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 国产片特级美女逼逼视频| 免费看光身美女| 一级片'在线观看视频| 欧美极品一区二区三区四区| 午夜福利网站1000一区二区三区| 黄色怎么调成土黄色| 亚洲人成网站高清观看| 亚洲欧美一区二区三区黑人 | 在线免费观看不下载黄p国产| 国产男女超爽视频在线观看| 久久影院123| 国产亚洲av片在线观看秒播厂| 亚洲精品自拍成人| 大片免费播放器 马上看| 99久久精品一区二区三区| 精品国产三级普通话版| 最近的中文字幕免费完整| 久久久久久久久久久免费av| 日韩av免费高清视频| 欧美高清性xxxxhd video| 亚洲av中文av极速乱| 午夜福利视频1000在线观看| 内射极品少妇av片p| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品乱久久久久久| 美女视频免费永久观看网站| av在线蜜桃| 观看美女的网站| 国产探花在线观看一区二区| 亚洲天堂av无毛| 欧美xxxx黑人xx丫x性爽| 国产片特级美女逼逼视频| 91狼人影院| 亚洲怡红院男人天堂| 99热全是精品| 熟女电影av网| 美女xxoo啪啪120秒动态图| 日韩视频在线欧美| 久久久午夜欧美精品| 91精品伊人久久大香线蕉| 80岁老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 免费黄色在线免费观看| 午夜福利在线观看免费完整高清在| 久久精品综合一区二区三区| 香蕉精品网在线| 婷婷色麻豆天堂久久| 丰满少妇做爰视频| 国产伦在线观看视频一区| 又粗又硬又长又爽又黄的视频| 欧美日韩亚洲高清精品| 日韩欧美 国产精品| 欧美成人一区二区免费高清观看| 国产午夜精品一二区理论片| 亚洲欧美成人综合另类久久久| 免费看av在线观看网站| 制服丝袜香蕉在线| 最近中文字幕高清免费大全6| 日韩欧美一区视频在线观看 | 内地一区二区视频在线| 久久久午夜欧美精品| 精品久久久精品久久久| 日韩,欧美,国产一区二区三区| 欧美少妇被猛烈插入视频| 亚洲图色成人| 男女啪啪激烈高潮av片| 久久国内精品自在自线图片| 免费大片黄手机在线观看| 日本猛色少妇xxxxx猛交久久| 直男gayav资源| 亚洲熟女精品中文字幕| 亚洲欧美中文字幕日韩二区| 欧美潮喷喷水| 我的女老师完整版在线观看| 97精品久久久久久久久久精品| 99视频精品全部免费 在线| 91精品伊人久久大香线蕉| 91精品一卡2卡3卡4卡| 麻豆国产97在线/欧美| 精品亚洲乱码少妇综合久久| 深夜a级毛片| 久久久久性生活片| 亚洲欧美精品自产自拍| 激情 狠狠 欧美| 日韩一区二区视频免费看| 男女国产视频网站| 亚洲精品乱码久久久v下载方式| 亚洲精品久久久久久婷婷小说| 亚洲欧美一区二区三区国产| 黄色日韩在线| 国产精品女同一区二区软件| 看黄色毛片网站| 国产亚洲91精品色在线| 日日啪夜夜爽| 3wmmmm亚洲av在线观看| 亚洲欧美日韩另类电影网站 | 亚洲人成网站高清观看| 国产精品秋霞免费鲁丝片| 久热久热在线精品观看| 永久免费av网站大全| 男人和女人高潮做爰伦理| 老司机影院毛片| 在线观看免费高清a一片| 色5月婷婷丁香| 国产精品人妻久久久影院| 国产 一区 欧美 日韩| 亚洲成人中文字幕在线播放| 99热6这里只有精品| 日韩一本色道免费dvd| 日韩免费高清中文字幕av| 国产成人freesex在线| 精品少妇久久久久久888优播| 熟女av电影| 亚洲精品国产成人久久av| 欧美潮喷喷水| 18禁裸乳无遮挡动漫免费视频 | 日韩中字成人| 精品人妻熟女av久视频| 成人毛片60女人毛片免费| 禁无遮挡网站| 亚洲电影在线观看av| 18禁在线无遮挡免费观看视频| 国产一区二区三区综合在线观看 | 麻豆久久精品国产亚洲av| 视频中文字幕在线观看| 欧美人与善性xxx| 亚洲av一区综合| 国产精品99久久久久久久久| 狂野欧美激情性xxxx在线观看| 夜夜爽夜夜爽视频| 男女边吃奶边做爰视频| 久久久久久久国产电影| 国产精品国产三级专区第一集| 国产精品久久久久久精品电影小说 | 精品99又大又爽又粗少妇毛片| 午夜福利在线在线| 在线免费观看不下载黄p国产| 日本-黄色视频高清免费观看| 亚洲国产最新在线播放| 国产熟女欧美一区二区| 欧美成人一区二区免费高清观看| 精品酒店卫生间| 欧美zozozo另类| 18+在线观看网站| 国产视频首页在线观看| 18+在线观看网站| 舔av片在线| 欧美激情国产日韩精品一区| 免费大片18禁| 欧美+日韩+精品| 九色成人免费人妻av| 免费人成在线观看视频色| 国产一区二区亚洲精品在线观看| 联通29元200g的流量卡| 国产男人的电影天堂91| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 日韩一区二区视频免费看| 欧美另类一区| 赤兔流量卡办理| 欧美国产精品一级二级三级 | 国产精品久久久久久av不卡| 精品酒店卫生间| 亚洲精品影视一区二区三区av| 一个人看的www免费观看视频| 亚洲综合精品二区| 国产有黄有色有爽视频| 亚洲国产最新在线播放| 免费观看在线日韩| 99久国产av精品国产电影| 制服丝袜香蕉在线| 51国产日韩欧美| 日韩一本色道免费dvd| 热re99久久精品国产66热6| 国产精品无大码| 欧美3d第一页| 日韩精品有码人妻一区| 欧美极品一区二区三区四区| 美女国产视频在线观看| 免费黄频网站在线观看国产| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久亚洲中文字幕| 国产男人的电影天堂91| 看黄色毛片网站| 亚洲国产欧美人成| 国产成人一区二区在线| 啦啦啦中文免费视频观看日本| 岛国毛片在线播放| 春色校园在线视频观看| 在线看a的网站| 欧美xxxx性猛交bbbb| 国产亚洲5aaaaa淫片| 色视频www国产| 国产午夜精品久久久久久一区二区三区| 亚洲av不卡在线观看| 少妇人妻 视频| 亚洲久久久久久中文字幕| 一级毛片 在线播放| 亚洲av成人精品一区久久| 国产av不卡久久| 欧美变态另类bdsm刘玥| 激情五月婷婷亚洲| 特级一级黄色大片| 免费观看性生交大片5| 国产白丝娇喘喷水9色精品| 好男人视频免费观看在线| 成年女人看的毛片在线观看| 少妇 在线观看| 国产一区二区三区av在线|