• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OsABT,a Rice WD40 Domain-Containing Protein,Is Involved in Abiotic Stress Tolerance

    2022-04-30 01:22:08CHENEryongSHENBo
    Rice Science 2022年3期

    CHEN Eryong,SHEN Bo

    (1College of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou 311121,China;2Life School of Science and Technology,Henan Institute of Science and Technology,Xinxiang 453003,China)

    Abstract:Plant growth and crop productivity are severely affected by abiotic stress on a global scale.WD40 repeat-containing proteins play a significant role in the development and environmental adaptation of eukaryotes.In this study,OsABT,a stress response gene,was cloned from rice (Oryza sativa L.cv.Nipponbare).OsABT encodes a protein containing seven WD40 domains.Expression analysis revealed that the OsABT gene was first up-regulated and then down-regulated following treatment with abscisic acid (ABA) and NaCl,but was down-regulated when treated with PEG8000.Subcellular localization results showed that OsABT was located in the cytoplasm and nucleus of Arabidopsis roots.OsABT transgenic Arabidopsis showed significantly increased tolerance to ABA and salt stress during plant seedling development.However,the transgenic lines were more sensitive to drought stress.Moreover,OsABT can interact with OsABI2,a component of ABA signaling pathway.These results showed that OsABT plays a positive regulatory role in response to salt stress and a negative role in response to drought stress in Arabidopsis.

    Key words:abscisic acid;Arabidopsis;drought stress;rice;salt stress;WD40 domain-containing protein

    Various abiotic stresses can severely affect the growth,development and yield of crop plants (Mishra et al,2012).Drought stress is a major limiting factor in agricultural production,leading to a decline in crop yields worldwide (Shinozaki and Yamaguchi-Shinozaki,2007).Therefore,plants have evolved diverse biological defense mechanisms to improve water use efficiency under drought conditions,including accumulation of dehydrin,maintenance of root water absorption and reduction of transpiration rate through leaf stomata (Shinozaki and Yamaguchi-Shinozaki,2007;Gong et al,2015;Li et al,2015).Salt stress,another key factor,has become a serious issue limiting plant growth and crop yields.Plant species have undergone diverse changes from physiological adaptation to gene expression changes in response to salt stress.Salt stress-responsive genes are broadly divided into two types:effector genes that directly play a protective role in plant cells against salt stress,such as Na+/H+antiporters,and regulator genes that control gene expression or stress signal transduction,such as transcription factors and protein kinases (Zhu,2001;Chinnusamy et al,2006).

    WD40 proteins,also known as WD40 repeat-containing proteins,are junction proteins in eukaryotic proteomes.The WD40 domain provides a platform for mediating protein-protein or protein-DNA interactions,and it is involved in the scaffolding,assembly and regulation of active polyprotein complexes (Stirnimann et al,2010;Xu and Min,2011).There are multiple WD40 repeats in WD40 proteins,each of them contains 44-60 residue units as its main feature.This unit usually contains glycine-histidine (GH) dipeptide at N-terminus and tryptophan-aspartate (WD) dipeptide at C-terminus (van Nocker and Ludwig,2003).Moreover,each WD40 repeat includes a four-stranded anti-parallel β-sheet (Neer et al,1994).Generally,the WD40 domain typically exhibits 5-8 duplicates,mostly 7 duplicates,which form a stable β-propeller structure (Fül?p et al,1998;Juhász et al,2005).The WD40 proteins are implicated in diverse biological processes,such as signal transduction,transcriptional regulation,chromatin modification,damage response,ribosomal RNA biogenesis,cytoskeletal assembly,vesicle transport,cell cycle control and apoptosis (Neer et al,1994;Smith et al,1999;Wakasugi et al,2002;Xu and Min,2011).The WD40 proteins are also involved in plant stress tolerance.WDR5a,a WD40 protein ofArabidopsis,alters NOS-like activity,which plays a role in nitric oxide (NO) accumulation and stomatal closure under drought stress (Liu et al,2017).Another WD40 protein ofArabidopsis,HOS15,is involved in cold tolerance,and its mutant plants are hypersensitive to freezing temperatures (Zhu et al,2008).Transforming the wheat WD40 geneTaWD40DintoArabidopsisresults in transgenic plants with improved tolerance to abscisic acid (ABA),osmotic stress and salt stress (Kong et al,2015).In rice,SRWD,a WD40 protein subfamily,is predominately up-regulated under salt stress (Huang et al,2008).In light of the current research results,the various roles of WD40 proteins in plant stress tolerance are worthy of attention.

    ABA signaling terminator(ABT),a gene encoding anArabidopsisWD40 repeat protein,can disintegrate ABA signaling and is critical for seed germination and seedling organization (Wang et al,2020).TransgenicABTArabidopsisseeds have higher seed germination rate and seedling greening than wild type seeds when being sown on Murashige and Skoog (MS) medium containing ABA.In contrast,Arabidopsisseeds withABTgene knockout have an opposite phenotype.However,the role ofABTin drought stress is still unclear (Wang et al,2020).These results highlight the importance ofABTin ABA signaling,seed germination and seedling development,but its role in rice stress tolerance should be further studied.

    Despite growing evidence that WD40 proteins have function in abiotic stress tolerance in plants,research on the function of WD40 proteins in rice is still largely limited.Here,we identified OsABT,a rice WD40 protein,and elucidated its roles in plant stress tolerance.Our study found that theArabidopsistransgenic linesoverexpressingOsABTsignificantly increased tolerance to ABA and salt stresses,as well as sensitivity to drought stress.Moreover,the bimolecular fluorescent complimentary (BiFC) assay revealed that OsABT interacted with OsABI2,an important component in the ABA signaling pathway.Our results provided important insights in the role ofOsABTin ABA signaling pathway and its functions under diverse stresses,such as salt and drought stresses.

    RESULTS

    Identification and phylogenetic analysis of OsABT

    To identify theOsABTgene from rice (Oryza sativa),the protein sequence ofArabidopsisABT (At1g49450) was used as a query to BLAST the rice RNAseq database ofOryza sativaJaponica Group (https:// archive.gramene.org/).TheABTsequence with higher similarity index was cloned and sequenced,and the homologous gene in rice was later named asOsABT(Os03g0738700).OsABT contains 488 amino acid residues and shares 47.95% identity with AtABT (Fig.1-A).According to the results of domain analysis performed using the SMART program,the deduced amino acid sequence possesses seven highly conserved WD40 domains (Fig.1-B).The results indicated that OsABT belongs to the WD40 protein family.

    To understand the evolutionary relationships between OsABT and its homologs in different plant species,a BLASTP search was performed in the NCBI database.Then,a phylogenetic tree was constructed including OsABT,AtABT and 12 other homologous protein which sharing a high percentage of identity with OsABT.The phylogenetic tree showed that OsABT was clustered together with the proteins from monocots,but was far from the homologous proteins of dicots,especially from AtABT (Fig.1-C).These results suggested that the functions of OsABT and its homologs in monocots might be conserved,and that the functions of OsABT in rice might be different from those of AtABT inArabidopsis.

    OsABT gene structure and protein analysis

    From the database of Gramene (https://archive.gramene.org/),we found that the length ofOsABTis 2 175 bp,with the coding sequence of 1 470 bp,5′-UTR of 73 bp and 3′-UTR of 632 bp.To learn more about the gene,we analyzed the gene structure ofOsABTusing GSDS (http://gsds.cbi.pku.edu.cn/).TheOsABTgene sequence showed absence of intron,which was similar to theAtABTgene structure,although the lengths of their 5′-and 3′-UTRs were different (Fig.2-A).The results were consistent with the phylogenetic analysis results,showing similarities and differences in evolutionary process betweenOsABTandAtABT.

    To investigate the subcellular localization of the OsABT protein,theOsABTgene was fused with the green fluorescent protein (GFP) vector PEZR (K)-LC driven byCaMV35Spromoter,and transformed intoArabidopsisvia the floral-dip method (Clough and Bent,1998).GFP fluorescence was observed in the nucleus,peripheral membrane and cytoplasm ofArabidopsisroot cells expressing GFP-OsABT (Fig.2-B).These results suggested that the OsABT protein is distributed in multiple cellular locations.

    Expression pattern of OsABT gene

    AtABTis responsive to ABA and osmotic stress,as shown inArabidopsiseFP Brower (http://bbc.utoronto.ca.efp).However,there was no significant difference in phenotype betweenAtABTmutantArabidopsisand wild type (WT) plants under drought conditions (Wang et al,2020).To analyze whetherOsABTresponds to ABA and osmotic stress,we first intercepted the sequence of 1 947 bp upstream of the initiation codon ATG (Fig.S1),and then analyzed the promoter ofOsABTusing the New PLACE web (https://www.dna.affrc.go.jp/PLACE/?action=newplace).The results showed manycis-elements that respond to ABA and stress are in theOsABTpromoter,such as ABRELATERD1,MYB1AT,MYCCONSENSUSAT and DRECRTCOREAT (Table 1).Moreover,we aligned the promoters ofOsABTandAtABT,and the results revealed that they only shared 36.72% of identity (Fig.S2).These results suggested thatOsABTmight be a stress response gene,andOsABTandAtABThad different stress response patterns.

    Table 1.cis-elements that respond to abscisic acid (ABA) and stress in OsABT promoter.

    To analyze the expression patterns ofOsABT,rice seedlings of Nipponbare were treated with 150 mmol/L NaCl,50 μmol/L ABA or 10% PEG8000.The qRT-PCR results showed that the transcription level ofOsABTwas up-regulated,reaching a maximum level at 3 h after ABA treatment,and then gradually declined in the long-term treatment (Fig.3-A).The expression pattern ofOsABTunder the NaCl treatment was similar to that under the ABA treatment (Fig.3-B).In contrast,under the treatment with PEG8000,the transcription levelofOsABTwas down-regulated (Fig.3-C).These results suggested thatOsABTplays a vital role in drought and salt stresses,and that the function ofOsABTin stress responses is mediated by ABA.

    OsABT transgenic Arabidopsis confers tolerance to ABA during greening

    To investigate whetherOsABTis involved in ABA response,we cloned and transformedOsABTintoArabidopsis.Two homozygous35S::OsABTtransgenic lines (1-5 and 4-5) were chosen through RT-PCR and used for investigation of ABA response inArabidopsis(Fig.4-A).The seeds of Columbia-0 (Col-0) and two homozygousOsABTtransgenicArabidopsislines were sown on solid MS medium and MS medium containing ABA (1 μmol/L),and grown in a growth chamber.The greening rates of the three samples were calculated at 14 d after germination.The results showed that the greening rates were not different between the two transgenic lines and Col-0 grown on MS medium (Fig.4-B).On the contrary,the transgeniclines showed much better growth and higher greening rates than Col-0 under the ABA treatment (1 μmol/L) (Fig.4-B and -C),indicating thatOsABTis a negative regulator in the ABA signal transduction pathway.

    OsABT improves greening rate of transgenic OsABT Arabidopsis under salt stress

    To analyze whetherOsABTplays important roles in salt stress,the seeds of Col-0 and twoOsABTtransgenicArabidopsislines were sown on solid MS medium and MS medium containing NaCl (125 mmol/L).Four days later,the greening rates of the three samples were calculated.As shown in Fig.5-A,there was no significant difference between the two transgenic lines and Col-0 grown on MS medium.In contrast,under the NaCl treatment,the greening rates were significantly higher in the two transgeniclines than in Col-0 (Fig.5),suggesting thatOsABTpositively regulates plant resistance to salt stress.

    OsABT transgenic Arabidopsis lines are sensitive to drought stress

    To comprehend the molecular function ofOsABTin drought stress,Col-0 and the homozygous transgenic lines (1-5 and 4-5) were grown in four small pots and planted alternately.After transplanting for 2 weeks,all the seedlings were withheld water for 2 weeks and then rewatered.Upon watering,the transgenic lines showed higher sensitivity to drought stress and obviously lower survival rate than Col-0 (Fig.6),suggesting thatOsABTis a negative regulator under drought stress.

    OsABT interacts with OsABI2

    WD40 proteins are usually regarded as a scaffolding platform for protein-protein interactions (Xu and Min,2011),and ABA is an important hormone for plant adaptation to abiotic stress (Hirayama and Shinozaki,2007).ABT is dependent on ABI2,which is a vital component in the ABA signaling transduction pathway to inhibit ABA signaling (Wang et al,2020).We speculated that OsABT interacted with OsABI2 in rice.To test this,full-length OsABT was fused within the N-terminus of yellow fluorescent protein (YFP) to generate OsABT-YFPN,and OsABI2 was fused to the C-terminus of YFP to generate OsABI2-YFPC.These constructs were co-induced into theleaf cellsofNicotiana benthamiana.As expected,there were strong YFP signals in both the cytoplasm and nucleus when OsABT-YFPNand OsABI2-YFPCwere co-induced intoleaf cellsofN.benthamiana(Fig.7).Nevertheless,no YFP signal was detected for OsABT-YFPNand YFPCor OsABI2-YFPCand YFPN(Fig.7),indicating that there is an interaction between OsABT and OsABI2 proteins.

    DISCUSSION

    OsABT is a typical protein of WD40 protein family in rice

    WD40 proteins comprise the largest protein family in eukaryotes (Stirnimann et al,2010),which are characterized by the presence of multiple repeats of~40 amino acids named ‘WD40 repeats’ at the carboxyl termini,and ends with the sequence WD (Neer et al,1994).Generally,the WD40 domains contain seven repeats that form a highly stable β-propeller structure,and a minimum of four WD40 repeats are needed to form a higher-order and functional structure (Sondek et al,1996;Chothia et al,1997).

    AtABT is a protein containing seven WD40 repeats inArabidopsis.In this study,we cloned the homologous gene ofAtABTin rice,namedOsABT.Protein sequence analysis revealed that OsABT possessed seven conserved WD40 repeats,the same as AtABT (Fig.1-A and -B).Phylogenetic analysis showed that OsABT had close evolutionary relationship with WD40 proteins inSorghum bicolor(Fig.1-C).These results indicated OsABT belongs to the WD40 protein family.The WD40 domain usually acts as a scaffold for protein-protein interactions and alter the process of molecular recognition (Xu and Min,2011).One well-studied example is a WD40-repeat protein HOS15 which can interact with histone H4 to regulate plant tolerance to cold stress (Zhu et al,2008).Here,BiFC analysis revealed that OsABT can interact with OsABI2 (Fig.7).This result provided another evidence to support that WD40 proteins are involved in protein interactions.

    OsABT is involved in response to abiotic stress in rice

    Although there are several studies on the functions of WD40 proteins,most of their functions in plants are still unclear.In recent years,many WD40 proteins have been found to participate in abiotic stress responses in the model plantArabidopsisand in crop plants.ArabidopsisWDR5a(WD40-REPEAT 5a) mutant,wdr5a,is more sensitive to drought stress than its WT plants,as they have reduced stomatal closure and decreased expression of drought-related genes (Liu et al,2017).WhenTaWD40D,a wheat WD40 protein,is exogenously overexpressed inArabidopsis,the transgenic plants show improved tolerance to ABA,salt and osmotic stresses during seed germination and seedling development.In addition,the increased tolerance of transgenic lines may be due to changes in the expression patterns of genes in salt overly sensitive (SOS) pathway,ABA-dependent pathway and ABA-independent pathway (Kong et al,2015).Furthermore,OsRACK1A,a WD40 protein in rice,negatively affects the salt tolerance phenotype in rice.OsRACK1A-suppressed transgenic rice can significantly accumulate more ABA and more transcripts of ABA-and stress-inducible genes compared with the WT plants (Zhang et al,2018).

    In this study,the expression ofOsABTinitially increased until reaching a peak,and then gradually decreased after 3 h of treatment with ABA or NaCl (Fig.3-A and -B).In contrast,the expression ofOsABTwas down-regulated after the PEG8000 treatment (Fig.3-C).These results indicated that theOsABTgene may be involved in salt and drought stresses.WhenOsABTwas transformedintoArabidopsis,the resulting transgenic lines had higher greening rates than Col-0 under the NaCl treatment (Fig.5).On the contrary,the transgenic lines had lower survival rates under drought conditions and were more sensitive to drought stress (Fig.6).These results indicated thatOsABThas a positive regulatory effect on salt stress and a negative regulatory effect on drought stress inArabidopsis.Under the drought conditions,bothArabidopsislines withAtABToverexpression orAtABTknockout have similar drought phenotype to Col-0 plants (Wang et al,2020).This result was inconsistent with our finding on the function ofOsABTin drought tolerance.There were two reasons whyOsABTandAtABThad different functions under drought stress.The first one may be that they shared low percentages of identity (47.95%) with each other,which resulted in different protein structures (Fig.1-A),and the other one may be that they shared low percentages of promoter identity (36.72%),which resulted in different expression patterns (Fig.S1).

    ABA is a vital hormone for plant adaptation to stress.Many components in the ABA signaling pathway are involved in plant stress tolerance (Miller et al,2007;Cutler et al,2010;Hubbard et al,2010).PP2Cs (type 2C protein phosphatases),includingArabidopsisABI1,ABI2,HAB1,AtPP2CA and RAB18,are important components and negative regulators of ABA signal transduction (Leung et al,1997;Sheen,1998;Gosti et al,1999;Kuhn et al,2006).Previously,ZmPP2Coverexpression inArabidopsisresults in decreased tolerance of transgenic plants to salt and drought stresses.ABI2-dependent ABA signaling can control HrpN-induced drought tolerance inArabidopsis(Dong et al,2005).SOS2,a protein kinase and a key component of the SOS pathway,can physically interact with ABI2 (Rodriguez et al,1998;Qiu et al,2002;Ohta et al,2003).These results suggested thatABI2is a key factor for plant adaptation in response to salt and drought stresses.BiFC assay confirmed that ABT can interact with ABI2 (Wang et al,2020).Here,we also found a similar result that OsABT can interact with OsABI2 (Fig.7).Moreover,the transgenicOsABTArabidopsislines showed a higher resistant to salt stress than Col-0 plants (Fig.5).These results suggested thatOsABTregulates salt tolerance through the ABA and SOS signaling pathways mediated byOsABI2.TheOsABTtransgenicArabidopsislines were insensitive to ABA and sensitive to drought stress,compared with Col-0 plants (Figs.4-B,4-C and 6).Furthermore,ABT switches off the ABA signaling pathway by obstructing the interaction between PYR1/ PYL4 and ABI1/ABI2 (Wang et al,2020).All these results implied that OsABT inhibits the ABA signaling pathway and decreases plant responses to drought stress via interaction with OsABI2.Although we have analyzed the roles ofOsABTin abiotic stress conditions inArabidopsis,the roles and the regulatory mechanisms ofOsABTin rice under abiotic stress conditions still need further research.

    METHODS

    Plant materials and growth conditions

    Rice (O.sativaL.cv.Nipponbare) was used as an experimental material.Rice seeds were cultivated in Hoagland’s solution (Hoagland and Arnon,1950) in 96-well plates with cut bottom.Rice leaves were harvested at the 3-leaf stage for RNA and DNA extraction.The rice seedlings were grown in a growth room at temperatures of 28 °C day/25 °C night with a 16-h light/8-h dark photoperiod under 50% relative humidity (Kawasaki et al,2001).

    A.thalianaCol-0 was used.Col-0 seeds were surface-sterilized using 15% sodium hypochlorite,washed four times with sterile water,sown on solid MS medium and vernalized for 2 d at 4 °C in dark.Next,the MS plates were placed in a growth chamber.After 11 d,the Col-0 seedlings were transplanted into a mixture which contains two thirds nutrient soil and one third vermiculite,and grown at 22 °C in a growth room under a 16-h light/8-h dark photoperiod.One month later,the adultArabidopsisplants were used for transformation studies.

    To analyze the function ofOsABTin ABA and salt stresses,the seeds of Col-0 and homozygousOsABTtransgenicArabidopsiswere surface-sterilized,sown on solid MS medium or MS medium containing ABA (1 μmol/L) or NaCl (125 mmol/L),and vernalized in dark at 4 °C for 2 d.Next,the samples were moved to a growth chamber with a constant temperature of 22 °C under a 16-h light/8-h dark photoperiod.The greening rates were calculated after 14 d of culture on MS medium containing ABA,and after 5,6,7 and 8 d of culture on MS medium containing NaCl.

    For drought assay,the seeds of Col-0 and homozygousOsABTtransgenicArabidopsiswere sown on solid MS medium after surface-sterilization and moved to a growth chamber for 10 d.Next,the seedlings were transplanted into four small pots and alternately planted with four replicates.After transplantation for 2 weeks,the seedlings were grown with no water supply for 2 weeks.Next,the seedlings were rewatered and grown in a growth room at 22 °C under a 16-h light/8-h dark photoperiod.After 1 week of rewatering,the survival rates were calculated,and the phenotypes were recorded by taking photos.

    Vector construction and Arabidopsis transformation

    To generate35S::OsABTtransgenicArabidopsislines,full-lengthOsABTcoding sequence was amplified from rice using specific set of primers and cloned into a pMD18-T simple vector.The pMD18-T-OsABTvector was sequenced to test the correctness ofOsABTsequence at Wuhan GeneCreate Biological Engineering Co.,Ltd.(Wuhan,Hubei,China).The pMD18-T-OsABTvector with correctOsABTsequence was digested withSpeI andSacI (TaKaRa,Dalian,China),and the full-length coding sequence ofOsABTwas cloned into theSpeI andSacI sites of a p6MYC vector to generate p6MYC-OsABTconstruct.Then,the correctness of the p6MYC-OsABTwas identified by enzyme digestion withSpeI andSacI and sequencing.The correct recombinant vector p6MYC-OsABTwas used to obtain the transgenicArabidopsisofOsABT.The primers used for cloningOsABTwere OsABT-OV-F and OsABT-OV-R,as shown in Table S1.

    To obtain the transgenicOsABTArabidopsislines,theAgrobacteriumGV3101 containing the recombinant vector p6MYC-OsABTwas suspended,and then transformed into the buds ofArabidopsisusing the floral-dip method (Clough and Bent,1998).

    Phylogenetic and domain analyses,gene structure analysis,and protein sequence alignment

    TheOsABTsequence was obtained from Gramene (https:// archive.gramene.org/) BLAST program.OsABT homologous protein was searched in NCBI (http://www.ncbi.nlm.nih.gov/) using BLASTP.The neighbor-joining method was used for phylogenetic tree construction in the MEGA software (version 6.0).The SMART program (http://smart.embl-heidelberg.de/) was used to analyze conserved domains in the OsABT protein.

    To analyze the gene structure ofOsABT,the gene sequences ofOsABTandAtABTwere obtained and the gene structure was constructed via GSDS (http://gsds.cbi.pku.edu.cn/).To analyze the sequence identity between OsABT and AtABT,the protein sequences of OsABT and AtABT were aligned using DNAMAN 7.0.

    Subcellular localization analysis

    To analyze the subcellular localization of OsABT,the coding sequence ofOsABTwas amplified through PCR and then cloned into a binary vector PEZR (K)-LC betweenEcoRI andXbaI restriction sites.The construct was transformed intoA.thalianathrough the floral-dip method (Clough and Bent,1998),whereas the pEZR(K)-LC vector was used as a control.Fluorescence imaging was performed by a confocal laser scanning microscopy (Leica SP8;Leica Microsystems,Wetzlar,Germany).The primer set used for cloningOsABTconsisted of OsABT-GFP-F and OsABT-GFP-R,as shown in Table S1.

    RNA extraction,RT-PCR and qRT-PCR analyses

    Total RNA was extracted from transgenic and control plantlet leaves using TRIzol reagent according to the manufacturer’s instructions (Invitrogen,Shanghai,China).To detectOsABToverexpression inArabidopsis,we synthesized first-strand cDNA using the total RNA extracted from transgenic and Col-0 plants.2× Es Taq master mix (Dye) (CWBIO,China) was used for PCR amplification.The sequences of specific primers OsABT-F and OsABT-R are shown in Table S1.RT-PCR was performed using a heated lid thermal cycler (Bio-Rad,USA) under the following conditions:pre-denaturation at 94 °C for 4 min,denaturation at 94 °C for 30 s,annealing at 56 °C for 30 s,and extension at 72 °C for 60 s,for 28 cycles.AtUBQ10(At4g05320) was used as an internal control.The primers used were based on those described by Chen et al (2017).

    To investigate the transcript patterns ofOsABTunder the ABA,salt and drought stress conditions.The rice seedlings were treated with 50 μmol/L ABA,150 mmol/L NaCl or 10 g/mL PEG8000.The rice roots were collected at the time point of 0 (control),1,3,6,12 and 24 h after treatment and frozen in liquid nitrogen immediately for RNA isolation.cDNAs were synthesized from the total RNA extracted from the rice roots.qRT-PCR was performed using a SYBR?premix Ex Taq? (Tli RNaseH Plus) (TaKaRa,Dalian,China) in an ABI Prism 7000 system (Thermo Fisher Scientific,USA).Each PCR was conducted with three biological and technical replicates.OseEF-1αwas used as an internal reference.The standardized 2-ΔΔCTmethod was used to normalize the obtained results.The primer sets used for qRT-PCR are given in Table S2.

    BiFC assay

    The binary vectors used for BiFC assay were pEarleyagate201-YN and pEarleygate202-YC vectors,in accordance with Wang et al (2015).TheOsABTcoding sequence was cloned into pEarleyagte201-YN to obtain OsABT-YFPN,whereas the coding sequence ofOsABI2was cloned into pEarleygate202-YC to yield OsABI2-YFPC.The reconstructed vectors were transformed intoA.tumefaciensstrain GV3101 and introduced intoN.benthamianaepidermal cells.At 3 d after injection,YFP fluorescence was imaged through a confocal laser scanned microscopy (Leica SP8;Leica Microsystems,Wetzlar,Germany).

    ACKNOWLEDGEMENTS

    This study was supported by the Major Program of the Zhejiang Province for Food Crop Breeding (Grant No.2016C02050-6) and the Key Program of Hangzhou Agricultural Scientific Research (Grant No.20191203B08).We also thank LI Xia and WANG Zhijuan from Huazhong Agricultural University,for their help in experimental ideas and methods.

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science;http://www.ricescience.org.

    Fig.S1.Promoter sequence ofOsABT.

    Fig.S2.Multiple sequence alignment ofOsABTandAtABTpromoters.

    Table S1.Primers used in this study.

    Table S2.qRT-PCR primers used for analyzing expression patterns ofOsABTunder ABA,salt and drought stresses.

    国产精品一区二区免费欧美| 精品不卡国产一区二区三区| 久久人人精品亚洲av| 97超视频在线观看视频| 久久精品91无色码中文字幕| 国产av一区在线观看免费| 国产午夜精品论理片| 久久久久久九九精品二区国产| 高清日韩中文字幕在线| 俺也久久电影网| 亚洲av电影不卡..在线观看| 老司机在亚洲福利影院| 国产伦精品一区二区三区视频9 | 国内精品久久久久久久电影| 精品久久久久久久久久久久久| 无限看片的www在线观看| 三级国产精品欧美在线观看| 亚洲熟妇中文字幕五十中出| 久久性视频一级片| 欧洲精品卡2卡3卡4卡5卡区| 老司机深夜福利视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 99国产极品粉嫩在线观看| av天堂在线播放| 亚洲av成人av| 99在线视频只有这里精品首页| 亚洲天堂国产精品一区在线| 成人国产综合亚洲| 久久久成人免费电影| 日本a在线网址| e午夜精品久久久久久久| 免费人成在线观看视频色| 三级男女做爰猛烈吃奶摸视频| 国产一区二区在线观看日韩 | 中文在线观看免费www的网站| 色老头精品视频在线观看| 2021天堂中文幕一二区在线观| 麻豆国产97在线/欧美| tocl精华| 可以在线观看毛片的网站| 国产极品精品免费视频能看的| 九九久久精品国产亚洲av麻豆| 日韩av在线大香蕉| 日本在线视频免费播放| 国产精品亚洲一级av第二区| 欧美黑人欧美精品刺激| av女优亚洲男人天堂| 熟女少妇亚洲综合色aaa.| 亚洲一区二区三区不卡视频| 亚洲精品日韩av片在线观看 | 怎么达到女性高潮| 一区二区三区高清视频在线| 丰满乱子伦码专区| e午夜精品久久久久久久| 亚洲无线观看免费| 2021天堂中文幕一二区在线观| 淫秽高清视频在线观看| x7x7x7水蜜桃| 内射极品少妇av片p| 人人妻人人澡欧美一区二区| 我要搜黄色片| 老司机福利观看| 日韩精品中文字幕看吧| 久久婷婷人人爽人人干人人爱| 一个人观看的视频www高清免费观看| 国产精品久久久久久久久免 | 国产亚洲精品久久久久久毛片| 国产蜜桃级精品一区二区三区| 亚洲精华国产精华精| 亚洲精品乱码久久久v下载方式 | 成年免费大片在线观看| 亚洲欧美日韩东京热| 亚洲国产精品sss在线观看| 51午夜福利影视在线观看| 成年免费大片在线观看| 搞女人的毛片| 身体一侧抽搐| av国产免费在线观看| 天堂动漫精品| 色综合亚洲欧美另类图片| 精品国产三级普通话版| 天堂√8在线中文| 国产精品日韩av在线免费观看| 久久精品影院6| 色综合站精品国产| 久久久久久国产a免费观看| 国产精品久久久久久人妻精品电影| 男女视频在线观看网站免费| 超碰av人人做人人爽久久 | 99久久成人亚洲精品观看| 无限看片的www在线观看| 国产高潮美女av| 免费av毛片视频| 欧美日韩中文字幕国产精品一区二区三区| 国产高清有码在线观看视频| 一进一出抽搐动态| 校园春色视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 9191精品国产免费久久| 麻豆成人av在线观看| 日本免费一区二区三区高清不卡| 美女大奶头视频| 久久精品国产亚洲av香蕉五月| 国产精品女同一区二区软件 | 91久久精品电影网| 成人av一区二区三区在线看| 村上凉子中文字幕在线| www.色视频.com| 五月玫瑰六月丁香| 日本一二三区视频观看| 欧美一级毛片孕妇| e午夜精品久久久久久久| av福利片在线观看| 久久国产乱子伦精品免费另类| 高清日韩中文字幕在线| 18美女黄网站色大片免费观看| 日本撒尿小便嘘嘘汇集6| 一本精品99久久精品77| 色老头精品视频在线观看| 精品人妻1区二区| 国产精品三级大全| 嫁个100分男人电影在线观看| 色av中文字幕| 亚洲色图av天堂| 日韩欧美一区二区三区在线观看| 久久精品91蜜桃| 日韩欧美 国产精品| 美女黄网站色视频| 中亚洲国语对白在线视频| 国产成人啪精品午夜网站| 国产精品亚洲美女久久久| 精品人妻偷拍中文字幕| 久久久久久大精品| 美女cb高潮喷水在线观看| 精品久久久久久久久久久久久| 免费av不卡在线播放| 美女免费视频网站| 69av精品久久久久久| 欧美一级毛片孕妇| 免费无遮挡裸体视频| 午夜福利18| 欧美性猛交╳xxx乱大交人| 别揉我奶头~嗯~啊~动态视频| 日本在线视频免费播放| 欧美精品啪啪一区二区三区| 久久久久亚洲av毛片大全| 有码 亚洲区| 午夜老司机福利剧场| 欧美一级毛片孕妇| 窝窝影院91人妻| 欧美最新免费一区二区三区 | 亚洲天堂国产精品一区在线| 精品不卡国产一区二区三区| 午夜免费观看网址| 亚洲精华国产精华精| 法律面前人人平等表现在哪些方面| 在线十欧美十亚洲十日本专区| av天堂在线播放| 露出奶头的视频| 亚洲最大成人手机在线| 亚洲天堂国产精品一区在线| 女同久久另类99精品国产91| 神马国产精品三级电影在线观看| 男女做爰动态图高潮gif福利片| 香蕉丝袜av| 精品熟女少妇八av免费久了| 怎么达到女性高潮| 亚洲国产高清在线一区二区三| 久久婷婷人人爽人人干人人爱| 亚洲欧美一区二区三区黑人| 一区二区三区免费毛片| 村上凉子中文字幕在线| 最新中文字幕久久久久| 哪里可以看免费的av片| 69人妻影院| 国产日本99.免费观看| 人妻丰满熟妇av一区二区三区| h日本视频在线播放| 欧美av亚洲av综合av国产av| 嫩草影院精品99| 中文字幕精品亚洲无线码一区| 国产激情欧美一区二区| 夜夜看夜夜爽夜夜摸| av欧美777| 日本a在线网址| 国产亚洲欧美98| 亚洲国产日韩欧美精品在线观看 | 91在线精品国自产拍蜜月 | 人人妻人人澡欧美一区二区| 嫩草影院精品99| 好男人在线观看高清免费视频| 国内精品久久久久精免费| 国产麻豆成人av免费视频| 亚洲五月婷婷丁香| 国产色婷婷99| 男人舔奶头视频| 观看美女的网站| 两人在一起打扑克的视频| 在线播放无遮挡| 在线观看av片永久免费下载| 亚洲av日韩精品久久久久久密| 亚洲人与动物交配视频| 国产精品99久久久久久久久| 国产主播在线观看一区二区| 18禁裸乳无遮挡免费网站照片| 国产又黄又爽又无遮挡在线| 久久久久久人人人人人| 国内毛片毛片毛片毛片毛片| 久久久久性生活片| netflix在线观看网站| 一区二区三区高清视频在线| 99热只有精品国产| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 天天一区二区日本电影三级| 最好的美女福利视频网| 噜噜噜噜噜久久久久久91| 青草久久国产| 国产高清videossex| h日本视频在线播放| 国产伦精品一区二区三区视频9 | 日日干狠狠操夜夜爽| 首页视频小说图片口味搜索| 搞女人的毛片| 欧美在线黄色| 夜夜爽天天搞| 中文在线观看免费www的网站| 午夜两性在线视频| 88av欧美| 国产精品嫩草影院av在线观看 | 99久久精品热视频| 最近在线观看免费完整版| 中文字幕高清在线视频| 神马国产精品三级电影在线观看| 黄片大片在线免费观看| 国产熟女xx| 国产精品免费一区二区三区在线| www国产在线视频色| 国产老妇女一区| 制服丝袜大香蕉在线| 99热这里只有是精品50| 国产精品久久久久久精品电影| 亚洲成a人片在线一区二区| 亚洲av二区三区四区| 久久久久久久午夜电影| 日本一本二区三区精品| 搡女人真爽免费视频火全软件 | 9191精品国产免费久久| 国产免费av片在线观看野外av| 老司机午夜十八禁免费视频| 免费在线观看影片大全网站| 免费观看的影片在线观看| 国产精品99久久久久久久久| 国产一区二区在线av高清观看| 国产精品永久免费网站| 精华霜和精华液先用哪个| 精品一区二区三区视频在线 | 国产淫片久久久久久久久 | 久久精品人妻少妇| 久久午夜亚洲精品久久| 又紧又爽又黄一区二区| 亚洲av一区综合| 国内精品久久久久精免费| 日本 av在线| 美女 人体艺术 gogo| 日本成人三级电影网站| 天美传媒精品一区二区| 国产亚洲精品av在线| 日韩欧美三级三区| 亚洲天堂国产精品一区在线| 国产精品久久久人人做人人爽| 欧美丝袜亚洲另类 | 国产精品99久久99久久久不卡| 成年女人永久免费观看视频| 国内精品久久久久精免费| 热99在线观看视频| 亚洲欧美激情综合另类| 日韩免费av在线播放| 母亲3免费完整高清在线观看| 亚洲av中文字字幕乱码综合| 波多野结衣高清作品| 亚洲av电影不卡..在线观看| 亚洲欧美日韩无卡精品| 国产欧美日韩一区二区精品| 99久久九九国产精品国产免费| 亚洲精品粉嫩美女一区| 最近最新中文字幕大全电影3| 午夜福利在线在线| 熟女人妻精品中文字幕| 国产99白浆流出| 国产精品久久久久久人妻精品电影| 看黄色毛片网站| 国产私拍福利视频在线观看| 欧美色欧美亚洲另类二区| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区成人 | 男女做爰动态图高潮gif福利片| 国产日本99.免费观看| 欧美日韩黄片免| 老鸭窝网址在线观看| 搡老熟女国产l中国老女人| 美女高潮喷水抽搐中文字幕| 亚洲人成网站在线播| 神马国产精品三级电影在线观看| 麻豆国产av国片精品| 三级男女做爰猛烈吃奶摸视频| 日本免费a在线| 中文字幕av在线有码专区| 岛国视频午夜一区免费看| 精品久久久久久成人av| 在线视频色国产色| 老司机午夜十八禁免费视频| 91字幕亚洲| 中国美女看黄片| 亚洲国产精品合色在线| 国产一区二区三区在线臀色熟女| 国产精品一区二区免费欧美| 国产精品av视频在线免费观看| aaaaa片日本免费| 免费在线观看影片大全网站| 精品欧美国产一区二区三| 亚洲色图av天堂| 51午夜福利影视在线观看| 中文字幕av在线有码专区| 99精品欧美一区二区三区四区| 校园春色视频在线观看| 欧美av亚洲av综合av国产av| 国产69精品久久久久777片| 三级国产精品欧美在线观看| 成年人黄色毛片网站| 国产精品98久久久久久宅男小说| 久久6这里有精品| 在线观看舔阴道视频| 久久久久久国产a免费观看| 黑人欧美特级aaaaaa片| 欧美黄色片欧美黄色片| 99热这里只有是精品50| 久久久久久久久久黄片| 99久久成人亚洲精品观看| 在线观看一区二区三区| 成人亚洲精品av一区二区| 美女免费视频网站| 欧美日韩亚洲国产一区二区在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲第一欧美日韩一区二区三区| 国产一区在线观看成人免费| 欧美成人免费av一区二区三区| 少妇人妻一区二区三区视频| 亚洲第一欧美日韩一区二区三区| 国产不卡一卡二| 狂野欧美激情性xxxx| 精品人妻1区二区| 免费在线观看成人毛片| 午夜福利在线在线| 成人鲁丝片一二三区免费| 欧美日本亚洲视频在线播放| 成年女人毛片免费观看观看9| 亚洲美女黄片视频| 欧美3d第一页| 精品久久久久久,| 两人在一起打扑克的视频| 97碰自拍视频| 免费在线观看成人毛片| 免费看a级黄色片| 美女 人体艺术 gogo| 国产爱豆传媒在线观看| 久99久视频精品免费| 999久久久精品免费观看国产| 午夜福利在线观看吧| 白带黄色成豆腐渣| 日韩av在线大香蕉| 日韩精品中文字幕看吧| 国产精品久久久久久人妻精品电影| 亚洲va日本ⅴa欧美va伊人久久| 制服丝袜大香蕉在线| 啦啦啦观看免费观看视频高清| 欧美av亚洲av综合av国产av| 亚洲成av人片免费观看| 欧美zozozo另类| 九色国产91popny在线| 亚洲真实伦在线观看| 亚洲成av人片免费观看| 老司机在亚洲福利影院| 国产精品爽爽va在线观看网站| 夜夜夜夜夜久久久久| 亚洲中文字幕日韩| 搡老妇女老女人老熟妇| 窝窝影院91人妻| 亚洲成人精品中文字幕电影| 日本一二三区视频观看| 免费看光身美女| 成年女人永久免费观看视频| 国产精品久久电影中文字幕| 国产三级中文精品| 中国美女看黄片| 婷婷亚洲欧美| 亚洲狠狠婷婷综合久久图片| 国产又黄又爽又无遮挡在线| 在线观看一区二区三区| 精品一区二区三区视频在线 | 亚洲国产欧美人成| 男女那种视频在线观看| 日韩欧美一区二区三区在线观看| 欧美丝袜亚洲另类 | 少妇的逼水好多| 美女免费视频网站| 国产真实乱freesex| 九九在线视频观看精品| a级毛片a级免费在线| 制服人妻中文乱码| 欧美bdsm另类| 老司机午夜十八禁免费视频| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 舔av片在线| 久久国产精品人妻蜜桃| 国产野战对白在线观看| 熟女人妻精品中文字幕| 国产99白浆流出| 午夜福利视频1000在线观看| 白带黄色成豆腐渣| 日日干狠狠操夜夜爽| 搡老熟女国产l中国老女人| 欧美性猛交黑人性爽| 国产又黄又爽又无遮挡在线| 亚洲av成人不卡在线观看播放网| 日韩欧美精品免费久久 | 亚洲,欧美精品.| 一本久久中文字幕| 亚洲欧美日韩东京热| 成人特级av手机在线观看| 欧美大码av| 男人舔女人下体高潮全视频| 少妇人妻精品综合一区二区 | 夜夜夜夜夜久久久久| 久久久久久人人人人人| 国模一区二区三区四区视频| 国产精品99久久久久久久久| 长腿黑丝高跟| 国产精品永久免费网站| 美女大奶头视频| 免费在线观看成人毛片| av天堂在线播放| 精品午夜福利视频在线观看一区| www.色视频.com| 人妻丰满熟妇av一区二区三区| 久久久国产精品麻豆| 欧美日韩国产亚洲二区| 老熟妇乱子伦视频在线观看| 欧美成狂野欧美在线观看| 久久精品人妻少妇| 精品日产1卡2卡| 久久婷婷人人爽人人干人人爱| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 亚洲国产精品合色在线| 亚洲成av人片免费观看| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 国产不卡一卡二| 国产aⅴ精品一区二区三区波| 波多野结衣高清作品| 9191精品国产免费久久| 欧美黑人巨大hd| 国产一区二区三区视频了| 亚洲人与动物交配视频| 日韩 欧美 亚洲 中文字幕| 国产又黄又爽又无遮挡在线| 午夜福利免费观看在线| 亚洲色图av天堂| 久久午夜亚洲精品久久| 午夜影院日韩av| 日本三级黄在线观看| 十八禁网站免费在线| 在线观看舔阴道视频| 男女视频在线观看网站免费| 日韩欧美 国产精品| 成人鲁丝片一二三区免费| 国产伦精品一区二区三区视频9 | 丰满人妻一区二区三区视频av | 天堂动漫精品| 欧美+日韩+精品| 在线观看午夜福利视频| 波多野结衣高清无吗| 精品99又大又爽又粗少妇毛片 | 日本 av在线| 高潮久久久久久久久久久不卡| 黄色视频,在线免费观看| 一个人看的www免费观看视频| 最近在线观看免费完整版| 亚洲自拍偷在线| 亚洲精品乱码久久久v下载方式 | 国产毛片a区久久久久| 性色avwww在线观看| ponron亚洲| 又爽又黄无遮挡网站| 国产精品久久久人人做人人爽| 日日摸夜夜添夜夜添小说| 制服丝袜大香蕉在线| 精品不卡国产一区二区三区| 一级黄片播放器| 搡女人真爽免费视频火全软件 | 88av欧美| 国产免费男女视频| 国模一区二区三区四区视频| 此物有八面人人有两片| 国内久久婷婷六月综合欲色啪| 成年女人永久免费观看视频| 白带黄色成豆腐渣| 亚洲成人久久爱视频| 午夜福利欧美成人| 亚洲不卡免费看| 成年女人永久免费观看视频| 手机成人av网站| 成人av在线播放网站| 国产男靠女视频免费网站| 黄色丝袜av网址大全| 综合色av麻豆| 岛国在线观看网站| 一本一本综合久久| 一级a爱片免费观看的视频| 亚洲人成网站高清观看| 极品教师在线免费播放| 国产精品久久久久久久电影 | eeuss影院久久| 男女那种视频在线观看| 日韩欧美免费精品| 99视频精品全部免费 在线| 亚洲欧美激情综合另类| 国产私拍福利视频在线观看| 欧美日韩国产亚洲二区| 青草久久国产| 91av网一区二区| 观看免费一级毛片| 亚洲av一区综合| 国产99白浆流出| www国产在线视频色| 五月玫瑰六月丁香| 亚洲最大成人中文| 成人性生交大片免费视频hd| 国产主播在线观看一区二区| 一区二区三区国产精品乱码| 国模一区二区三区四区视频| 婷婷精品国产亚洲av在线| 女人被狂操c到高潮| 国产高清视频在线观看网站| 欧美日韩瑟瑟在线播放| 熟女人妻精品中文字幕| 久久99热这里只有精品18| 国产激情偷乱视频一区二区| 精品久久久久久久末码| 亚洲精品亚洲一区二区| 午夜久久久久精精品| 国内毛片毛片毛片毛片毛片| 欧美日韩黄片免| 色av中文字幕| 久久香蕉国产精品| 少妇高潮的动态图| 国产精品美女特级片免费视频播放器| 两个人的视频大全免费| 色av中文字幕| 欧美性猛交黑人性爽| 在线观看免费视频日本深夜| 女人被狂操c到高潮| 一二三四社区在线视频社区8| 欧美激情久久久久久爽电影| bbb黄色大片| 午夜a级毛片| 欧美高清成人免费视频www| 高清毛片免费观看视频网站| 2021天堂中文幕一二区在线观| 久久久久久久亚洲中文字幕 | 婷婷丁香在线五月| 琪琪午夜伦伦电影理论片6080| 国产黄片美女视频| 国产日本99.免费观看| 88av欧美| 少妇高潮的动态图| 国产中年淑女户外野战色| 黄片小视频在线播放| 日本熟妇午夜| bbb黄色大片| 宅男免费午夜| 国内精品一区二区在线观看| 狂野欧美白嫩少妇大欣赏| 九九久久精品国产亚洲av麻豆| 欧美乱码精品一区二区三区| 禁无遮挡网站| 午夜a级毛片| 亚洲国产日韩欧美精品在线观看 | 国产午夜精品久久久久久一区二区三区 | 欧美黄色淫秽网站| 美女高潮喷水抽搐中文字幕| 又黄又爽又免费观看的视频| 精品无人区乱码1区二区| 88av欧美| 国语自产精品视频在线第100页| 国产中年淑女户外野战色| 88av欧美| 国产乱人伦免费视频| 夜夜夜夜夜久久久久| 变态另类丝袜制服| h日本视频在线播放| 美女高潮的动态| 少妇的逼好多水| 女同久久另类99精品国产91| 国产69精品久久久久777片| 国产成人福利小说| 黄色成人免费大全| 国产成人欧美在线观看| 国产亚洲欧美在线一区二区| 日本熟妇午夜| 三级毛片av免费| 欧美黑人欧美精品刺激| 国产黄片美女视频|