• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chromosome-level genome assembly of the dotted gizzard shad (Konosirus punctatus) provides insights into its adaptive evolution

    2022-04-28 06:47:58Bing-JianLiu,KunZhang,Shu-FeiZhang
    Zoological Research 2022年2期

    Konosirus punctatusis an economically important marine fishery resource and is widely distributed from the Indian to Pacific oceans.It is a good non-model species for genetic studies on salinity and temperature adaptation.However, a high-quality reference genome has not yet been reported.Here, an 800.00 Mb high-quality chromosome-level genome with a contig N50 length of 2.14 Mb was assembled using Illumina, Pacific Biosciences, and Hi-C sequencing technology.The assembled sequences were anchored to 24 pseudochromosomes by the Hi-C data.In total, 24 298 protein-coding genes were predicted, 91.08% of which were successfully annotated with putative functions.Furthermore,587 putative genes were identified as being under positive selection.This new high-qualityK.punctatusreference genome provides a fundamental resource for a deeper understanding of temperature and salinity adaptation and species conservation.

    The dotted gizzard shad (K.punctatus) (Clupeiformes:Clupeidae) is widely distributed along the coastlines of the Indian and Pacific oceans (Song et al., 2017).As a euryhaline fish,K.punctatuscan survive in both fresh and seawater(Kuroda et al., 2002) and their spawning grounds and timing are highly related to water temperature and salinity (Kong et al., 2004).The spawning period generally peaks at water temperatures of 17–19 °C (Shan et al., 2020) and the species is known to migrate into brackish water for breeding (Gwak et al., 2015).Thus, specific salinity and water temperature ranges appear to be basic biological factors required for spawning inK.punctatus(Kong et al., 2004).These biological properties makeK.punctatusa valuable model for studying the molecular mechanisms underlying the evolution of salinity and temperature adaptation.Furthermore, the primary food sources ofK.punctatusare phytoplankton, zooplankton, and algae (Gao et al., 2016), and thusK.punctatusplays an important role in material circulation and energy flow in marine ecosystems.However, with the continuous development and utilization of the ocean, the destruction of marine ecosystems and biological resources has intensified, including enormous damage toK.punctatushabitat (Li et al., 2017; McCay et al.,2006).Konosirus punctatushas a strong regenerative ability and abundant resources, but the resources have sharply declined in recent years (Liu et al., 2020).In recent years,advances in genomic technology, especially third-generation sequencing, has presented a novel opportunity to explore the genetic basis of environmental adaptations.Therefore, highquality genomes and population resources are essential to understand the critical biological processes related to these adaptations.Thus, high-quality genome assembly will not only benefit the above research areas but also improve our understanding of the adaptive evolution ofK.punctatus.

    We collected a single fish from Zhoushan, Zhejiang Province, China (N29°32′42.60″, E122°26′54.97″) in October 2019.Muscle, eye, gonad, gill, liver, and spleen tissues were collected and preserved in liquid nitrogen before DNA and RNA extraction.Muscle tissue was used for DNA sequencing and all tissues were used for transcriptome sequencing.DNA was extracted from muscle tissue using the phenol/chloroform DNA extraction method.The quantity and quality of DNA were determined using a Qubit fluorometer (Thermo Fisher Scientific, USA) and Agilent 2 100 Bioanalyzer (AgilentTechnologies, USA).Total RNA was extracted from all tissues using TRIzol reagent (Invitrogen, USA).The NanoDrop ND-1 000 spectrophotometer (Labtech, USA) and 2 100 Bioanalyzer(Agilent Technologies) were used to check RNA quality.The Illumina NovaSeq 6 000 and PacBio Sequel II platforms were applied for genomic sequencing to generate short and long genomic reads, respectively.Paired-end libraries were constructed with an insert size of 300 bp according to the standard Illumina protocols.A 20 kb DNA SMRTbell sequencing library was sequenced with the PacBio Sequel platform.

    In total, 89.92 Gb of clean data were generated by Illumina sequencing (Supplementary Table S1).Jellyfish v2.2.10 was used for K-mer analysis.K-mer analysis showed that the sample genome size was ~797 Mb but was 787 Mb after correction with a heterozygosity rate of 0.96% and repeat sequence ratio of 39.22% (Supplementary Table S2).In total,84.11 Gb of high-quality data were generated using the PacBio Sequel II platform.The PacBio long reads were used forde novogenome assembly with NextDenovo v2.3.1.Arrow in the GenomicConsensus package v2.3.3 was used to polish the genome using the PacBio long reads with MinCoverage.Two rounds of polishing using the Illumina short reads were then applied with Pilon v1.2.3.De-redundancy of the assembled genomes was performed using Purge_haplotigs v1.1.1.Finally, the PacBio sequencing data resulted in an 800 Mb assembly with a contig N50 of 23.07 Mb(Supplementary Table S3).Genome assembly completeness was evaluated using Benchmarking Universal Single-Copy Orthologs (BUSCO) v3.0.1 (Seppey et al., 2019) to search the genome in theActinopterygiidatabase, which included 4 584 single-copy orthologs.Based on BUSCO analysis of theK.punctatusgenome, the assembly contained 93.54% complete BUSCOs, 89.44% of which were complete and single copies and 4.10% of which were complete and duplicated(Supplementary Table S4).

    An Hi-C sequencing library was constructed to obtain a chromosome-level genome assembly.High-quality Hi-C reads were mapped to the polishedK.punctatusgenome using Bowtie v1.2.22.LACHESIS v1.03with default parameters was applied to perform genome assembly at the chromosome level using corrected contigs and valid Hi-C reads.Juicer v2.0 was used to construct species chromosome and genome-wide interaction maps to appraise the quality of genome assembly at the chromosome level.The Hi-C library generated 72.5 Gb of clean data (Supplementary Table S1).The quality of the sequenced data was evaluated, resulting in 469 685 574 clean reads and 68 764 334 007 bp of clean bases (Supplementary Table S5).Using LACHESIS, the assembled sequences were anchored to 24 pseudochromosomes (Figure 1A).Finally, theK.punctatusgenome assembly was 0.8 Gb with a contig N50 of 2.02 Mb and scaffold N50 of 32.23 Mb (Supplementary Tables S6, S7).For clarity, Figure 1B shows the distribution of gene density, repeat density, and GC density of the 24 pseudochromosomes of theK.punctatusgenome.BWA-MEM v0.7.10-r789 and BLASR v5.3.3 were used to evaluate the completeness and accuracy of the genome assembly.Based on evaluation of the genome assembly, we obtained 0.632%heterozygous single nucleotide polymorphisms (SNP) and 0.07% homozygous SNPs (Supplementary Table S8).In addition, the homozygous and heterozygous insertion-deletion(InDel) rates were 0.018% and 0.280%, respectively(Supplementary Table S8).Thus, the assembly showed a high rate of correct single bases.

    Figure 1 Genomic analyses of K.punctatus

    Homology comparison andde novoprediction were used to annotate the repetitive sequences of theK.punctatusgenome.RepeatMasker v4.0.7 and RepeatProteinMask v4.1.0 were used to search the genome sequences for known repeat elements based on the RepBase database.LTR_FINDER v1.0.2 and RepeatModeler v2.0 were used to establish thede novorepeat sequence library, and RepeatMasker v4.0.7 was used to predict genes.A total of 327.23 Mb of repeat sequences were detected, accounting for 40.88% of the assembled genome (Supplementary Table S9).In total,19.91% (159.37 Mb) of the repeat sequences were annotated using thede novomethod (Supplementary Table S9).Repetitive sequences primarily consisted of DNA transposable elements (151.38 MB; 18.91% assembly), long terminal repeat elements (72.75 Mb; 9.09%), and long interspersed elements(39.37 Mb, 4.92%) (Supplementary Table S10).Three strategies based on ab initio, homology, and RNA sequencing(RNA-seq) were applied to predict the protein-coding genes.AUGUSTUS v2.7 and GENSCAN v1.0 were used forab initiogene prediction.For homology-based prediction, protein sequences ofAnabas testudineus,Clupeaharengus,Amphiprionocellaris,Denticepsclupeoides, andAcanthochromis polyacanthuswere downloaded from the NCBI database and aligned to theK.punctatusgenome using tBLASTn (e-value=1e-5).GeneWise v2.4.0 was used to predict the exact gene structure of the corresponding genomic region in each blast.For transcriptome-based prediction,RNA-seq reads were directly mapped to the genome using TopHat v2.1.1.The mapped reads were subsequently assembled into gene models (Cufflinks-set) using CUFFLINKS v2.02.EvidenceModeler (EVM) v.1.1.1 was used to integrate the above three predicted gene sets into a non-redundant and more complete gene set.Finally, PASA v2.0.2 was applied to combine the transcriptome assembly results, correct the EVM annotation results, and add untranslated region (UTR),variable splicing, and other information to obtain a final gene set.In total, 24 298 protein-coding genes were predicted with an average gene length of 16 809 bp (Supplementary Table S11).Furthermore, 22 131 predicted genes (91.08%) were successfully annotated based on alignment with nucleotide,protein, and annotation databases (i.e., InterPro, NR,SwissProt, TrEMBL, KOG, GO, and KEGG) using BLAST+v2.2.28 (Supplementary Table S12).The annotations for noncoding RNA (ncRNA) included transfer RNA (tRNA),ribosomal RNA (rRNA), microRNA (miRNA), and small nuclear RNA (snRNA).tRNAscan-SE v1.3.1 was used to identify the tRNA sequence in the genome.As rRNA is highly conserved, the rRNA sequence of a closely related species was selected as the reference sequence, and rRNA in the genome was found via blast alignment with a threshold evalue<1e-10.The covariance model of the Rfam family and INFERNAL v1.1 were used to predict the miRNA and snRNA sequences in the genome.Finally, 338 miRNAs, 2 752 tRNAs,371 rRNAs, and 884 snRNAs were identified in the assembledgenome (Supplementary Table S13).

    Orthologous groups were constructed using ORTHOMCL v2.0.9 with default settings based on the filtered BLASTP results.Single-copy orthologous genes shared by all 11 species (i.e.,Larimichthyscrocea,Clupeaharengus,Denticeps clupeoides,Danio rerio,Astyanax mexicanus,Ictaluruspunctatus,Pangasianodonhypophthalmus,Onychostoma macrolepis,Triplophysa tibetana, andAmeiurus melas) were further aligned using MUSCLE v3.8.31.Based on comparative genomics, 21 276 gene families were identified,including 2 018 single-copy homologous gene families(Supplementary Table S14).In addition, 24 298 genes ofK.punctatuswere clustered into 16 782 gene families, including 1 409 unique gene families (Supplementary Table S14).jModelTest/ProTest was applied to select the optimal sequence substitution model.RAxML v8.2.12 was then applied to construct the phylogenetic tree of the 11 species using the maximum-likelihood (ML) approach.The MCMCTree tool in PAML v4.5 was used to calibrate the divergence dates for other nodes on the phylogenetic tree using single-copy orthologs obtained from the TimeTree database and seven reference divergence times.Results showed thatK.punctatusandClupea harenguswere clustered together, and the divergence time between the two species was 95 million years ago (Ma) (Figure 1C).

    Gene family expansion and contraction analyses were performed using statistical tests in CAFé v3.1.Based on the gene family groupings of the species, the branch-site model and likelihood ratio test (LRT) in CODEML in PAML v4.5 were used to estimate the non-synonymous to synonymous mutation (dN/dS) ratio.A total of 512 expanded gene families and 2 099 contracted gene families were identified in theK.punctatusgenome compared to the most recent common ancestor (Supplementary Table S15).A total of 587 positively selected genes (PSGs) were identified in theK.punctatusgenome (Supplementary Table S16).Several PSGs may play an important role in the adaptive evolution ofK.punctatus.Thus, further studies are needed to determine the putative roles of gene-related functions in adaptive evolution in these expanded, contracted, and PSG families.

    In this study, we assembled a high-quality chromosomelevel genome ofK.punctatus, only the second referencegenome in the family Clupeidae.This study provides valuable genomic data for further research on the molecular mechanisms underlying adaptation in broadly saline fish and the functional validation of candidate genes that contribute to environmental adaptation.

    DATA AVAILABILITY

    The whole genome project ofKonosirus punctatuswas deposited at NCBI/BioProject (PRJNA664835, PRJNA665107,PRJNA665552, PRJNA666237).The raw sequencing reads of DNA are available at SRA (Illumina raw reads: SRR12702103 and PacBio raw reads: SRR12827990), the raw sequencing reads of RNA are available at SRA (SRR12690112), and the raw sequencing reads of Hi-C are available at SRA(SRR12719226 and SRR12719225).The assembled genome was deposited at the National Genomic Data Center (https://bigd.big.ac.cn/gwh/) under accession No.GWHBFWL 00000000.The genome data were deposited in Figshare(https://figshare.com/s/46cf39eaa8bca2f04344).

    SUPPLEMENTARY DATA

    Supplementary data to this article can be found online.

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’ CONTRIBUTIONS

    B.J..L, K.Z., S.F.Z., and Y.F.L.conceived and designed the research.B.J.L., K.Z., S.F.Z., Y.F.L., J.S.L., Y.P., X.J., Y.P.W.,S.X.Z., L.G., L.Q.L., and Z.M.L.conducted the experiments,analyzed the data, and wrote the manuscript.All authors read and approved the final version of the manuscript.

    Bing-Jian Liu1,2,3, Kun Zhang1,3, Shu-Fei Zhang2,Yi-Fan Liu1,3, Jia-Sheng Li1,3, Ying Peng1,3, Xun Jin1,3,Yun-Peng Wang1,3, Si-Xu Zheng1,3, Li Gong1,3,Li-Qin Liu1,3, Zhen-Ming Lü1,3,*1National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization,Zhejiang Ocean University,Zhoushan,Zhejiang316022,China

    2Guangdong Provincial Key Laboratory of Fishery Ecology and Environment;South China Sea Fisheries Research Institute,Chinese Academy of Fisheries Sciences,Guangzhou,Guangdong510300,China

    3National Engineering Research Center for Facilitated Marine Aquaculture,Marine Science and Technology College,Zhejiang Ocean University,Zhoushan,Zhejiang316022,China

    *Corresponding author, E-mail: nblzmnb@163.com

    亚洲美女视频黄频| 国精品久久久久久国模美| 欧美精品一区二区大全| 国产精品.久久久| 熟女av电影| 看黄色毛片网站| 日韩视频在线欧美| 天堂网av新在线| 狠狠精品人妻久久久久久综合| 蜜桃亚洲精品一区二区三区| 国产69精品久久久久777片| 少妇人妻精品综合一区二区| 人妻少妇偷人精品九色| 成人漫画全彩无遮挡| 成人漫画全彩无遮挡| 免费观看的影片在线观看| 欧美成人一区二区免费高清观看| 午夜福利视频1000在线观看| 国产高清国产精品国产三级 | 国产成人精品婷婷| 亚洲精品日韩在线中文字幕| 少妇熟女欧美另类| 亚洲高清免费不卡视频| 下体分泌物呈黄色| 免费在线观看成人毛片| 国产 精品1| 韩国av在线不卡| 欧美成人精品欧美一级黄| 涩涩av久久男人的天堂| 久久久精品免费免费高清| 人妻一区二区av| 成人欧美大片| 欧美人与善性xxx| 人体艺术视频欧美日本| 永久网站在线| 亚洲精品视频女| 国产免费一级a男人的天堂| 制服丝袜香蕉在线| av天堂中文字幕网| 天堂中文最新版在线下载 | 亚洲欧美日韩另类电影网站 | 麻豆成人av视频| 男人舔奶头视频| 一边亲一边摸免费视频| 国产免费一区二区三区四区乱码| 中文字幕免费在线视频6| 特级一级黄色大片| 国产真实伦视频高清在线观看| 日韩强制内射视频| 免费黄色在线免费观看| 国产伦精品一区二区三区四那| 在线看a的网站| 最新中文字幕久久久久| 丝袜美腿在线中文| 狠狠精品人妻久久久久久综合| 不卡视频在线观看欧美| 国产 一区精品| 欧美一区二区亚洲| 国产69精品久久久久777片| 97超碰精品成人国产| 精品人妻偷拍中文字幕| 久久久久久久午夜电影| 亚洲国产精品成人久久小说| 真实男女啪啪啪动态图| 亚洲国产高清在线一区二区三| 亚洲伊人久久精品综合| 免费观看性生交大片5| 成人鲁丝片一二三区免费| 日韩成人伦理影院| 日本与韩国留学比较| 日韩强制内射视频| 免费在线观看成人毛片| 亚洲国产精品999| 久久99精品国语久久久| 超碰av人人做人人爽久久| 日本黄色片子视频| 中国美白少妇内射xxxbb| 午夜福利在线在线| 深爱激情五月婷婷| 亚洲精品中文字幕在线视频 | 国产精品伦人一区二区| 不卡视频在线观看欧美| 免费播放大片免费观看视频在线观看| 欧美日韩视频高清一区二区三区二| 国产精品国产三级国产专区5o| 赤兔流量卡办理| 午夜日本视频在线| 噜噜噜噜噜久久久久久91| 少妇 在线观看| 亚洲丝袜综合中文字幕| 亚洲一区二区三区欧美精品 | 久久女婷五月综合色啪小说 | 18禁动态无遮挡网站| 国产精品99久久久久久久久| 日韩欧美精品v在线| 深爱激情五月婷婷| 特大巨黑吊av在线直播| 成人免费观看视频高清| 少妇被粗大猛烈的视频| 六月丁香七月| 又爽又黄a免费视频| 国产有黄有色有爽视频| 精品一区二区免费观看| 亚洲va在线va天堂va国产| 乱码一卡2卡4卡精品| 你懂的网址亚洲精品在线观看| 97超视频在线观看视频| 亚洲国产色片| 午夜免费男女啪啪视频观看| 亚洲av国产av综合av卡| 午夜免费鲁丝| 久久久久久久国产电影| 亚洲成人av在线免费| 成人国产麻豆网| 国产视频首页在线观看| 欧美精品一区二区大全| 亚洲人成网站在线观看播放| 免费大片黄手机在线观看| av网站免费在线观看视频| 精品国产三级普通话版| 少妇的逼好多水| 亚洲精品国产成人久久av| 男女国产视频网站| 少妇人妻精品综合一区二区| 伊人久久精品亚洲午夜| 一区二区av电影网| 免费观看的影片在线观看| 国产淫语在线视频| 亚洲精品亚洲一区二区| av在线天堂中文字幕| 蜜桃亚洲精品一区二区三区| 欧美日韩综合久久久久久| 国产成人免费观看mmmm| 一本久久精品| 美女被艹到高潮喷水动态| 日日啪夜夜撸| av在线播放精品| 午夜精品国产一区二区电影 | 我的女老师完整版在线观看| 好男人在线观看高清免费视频| 99久久精品一区二区三区| 麻豆成人午夜福利视频| 久久久久久久国产电影| 免费av不卡在线播放| 国产伦精品一区二区三区视频9| 欧美xxxx黑人xx丫x性爽| 丝袜喷水一区| 亚洲精品视频女| 国产精品爽爽va在线观看网站| 麻豆精品久久久久久蜜桃| 伊人久久精品亚洲午夜| 五月伊人婷婷丁香| 亚洲欧美清纯卡通| 日韩电影二区| 午夜日本视频在线| 69av精品久久久久久| av在线app专区| 中文天堂在线官网| 我要看日韩黄色一级片| 中文字幕亚洲精品专区| 成人亚洲欧美一区二区av| 18禁裸乳无遮挡动漫免费视频 | 亚洲真实伦在线观看| 国精品久久久久久国模美| 99热这里只有精品一区| 国内精品美女久久久久久| a级毛片免费高清观看在线播放| 超碰97精品在线观看| 亚洲最大成人中文| 最近最新中文字幕免费大全7| 美女cb高潮喷水在线观看| 秋霞伦理黄片| 欧美日韩精品成人综合77777| 一区二区三区免费毛片| 精品一区二区三卡| 亚洲欧美精品专区久久| 亚洲精品影视一区二区三区av| 国产一区有黄有色的免费视频| 男女啪啪激烈高潮av片| 欧美激情在线99| 国产亚洲av片在线观看秒播厂| 日韩一本色道免费dvd| 天美传媒精品一区二区| 老女人水多毛片| 久久久久久九九精品二区国产| 综合色丁香网| 一级爰片在线观看| 黄片无遮挡物在线观看| 能在线免费看毛片的网站| 男女那种视频在线观看| 只有这里有精品99| 美女内射精品一级片tv| 夜夜爽夜夜爽视频| 日本黄大片高清| 亚洲怡红院男人天堂| 五月天丁香电影| 人人妻人人爽人人添夜夜欢视频 | 肉色欧美久久久久久久蜜桃 | 国产精品一区二区在线观看99| 国产精品一及| 三级国产精品片| 国产精品.久久久| 一边亲一边摸免费视频| 国产91av在线免费观看| 欧美精品人与动牲交sv欧美| 少妇猛男粗大的猛烈进出视频 | 偷拍熟女少妇极品色| 国产在线一区二区三区精| 天天躁夜夜躁狠狠久久av| 欧美zozozo另类| 黄色欧美视频在线观看| 黄片wwwwww| 在线 av 中文字幕| 人人妻人人爽人人添夜夜欢视频 | 国产免费福利视频在线观看| 国产高清有码在线观看视频| 男女无遮挡免费网站观看| 亚洲熟女精品中文字幕| 亚洲最大成人手机在线| 亚洲,欧美,日韩| 一本色道久久久久久精品综合| 日韩一区二区三区影片| 一级毛片黄色毛片免费观看视频| 综合色丁香网| 成人一区二区视频在线观看| 国产伦精品一区二区三区视频9| 狂野欧美激情性bbbbbb| 精品国产一区二区三区久久久樱花 | 国产成人精品福利久久| 亚洲内射少妇av| 中文字幕制服av| 亚洲精品aⅴ在线观看| 午夜福利视频精品| 麻豆成人av视频| 国产国拍精品亚洲av在线观看| 国产欧美日韩一区二区三区在线 | 中文字幕免费在线视频6| 中文字幕av成人在线电影| 18禁在线无遮挡免费观看视频| 小蜜桃在线观看免费完整版高清| 各种免费的搞黄视频| 91精品国产九色| 在线观看av片永久免费下载| 亚洲va在线va天堂va国产| 搞女人的毛片| 亚洲精品国产色婷婷电影| videos熟女内射| 欧美日韩视频精品一区| 久久精品夜色国产| 国产免费福利视频在线观看| 好男人视频免费观看在线| kizo精华| 啦啦啦在线观看免费高清www| 国产v大片淫在线免费观看| 在线观看av片永久免费下载| 禁无遮挡网站| h日本视频在线播放| 中国国产av一级| 国产免费又黄又爽又色| 草草在线视频免费看| 日本黄色片子视频| 男女边摸边吃奶| 性色avwww在线观看| 在线精品无人区一区二区三 | 国产中年淑女户外野战色| 美女脱内裤让男人舔精品视频| 黄色怎么调成土黄色| 成年女人在线观看亚洲视频 | 80岁老熟妇乱子伦牲交| 亚洲av免费在线观看| 狂野欧美激情性bbbbbb| 精品少妇黑人巨大在线播放| 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 午夜日本视频在线| 久久97久久精品| 在线观看人妻少妇| 亚洲av成人精品一二三区| 97热精品久久久久久| 夜夜爽夜夜爽视频| 18禁裸乳无遮挡动漫免费视频 | 高清av免费在线| 高清在线视频一区二区三区| 日本色播在线视频| a级毛色黄片| 永久免费av网站大全| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲乱码少妇综合久久| 日本色播在线视频| 国产亚洲一区二区精品| 日韩人妻高清精品专区| 午夜福利视频1000在线观看| 久久久久久久久久人人人人人人| 国产成人免费无遮挡视频| 免费av观看视频| 99久久中文字幕三级久久日本| 亚洲成人久久爱视频| 你懂的网址亚洲精品在线观看| 色播亚洲综合网| 欧美老熟妇乱子伦牲交| 97在线视频观看| 国产免费又黄又爽又色| 亚洲一级一片aⅴ在线观看| 在线免费十八禁| 天天一区二区日本电影三级| av在线天堂中文字幕| 亚洲国产成人一精品久久久| 国产精品一区二区性色av| 亚洲婷婷狠狠爱综合网| 色5月婷婷丁香| 国产亚洲91精品色在线| 精品一区在线观看国产| 涩涩av久久男人的天堂| 日日撸夜夜添| 亚洲精品一区蜜桃| 91午夜精品亚洲一区二区三区| 国语对白做爰xxxⅹ性视频网站| 美女cb高潮喷水在线观看| 秋霞伦理黄片| 国产成人精品婷婷| 亚洲久久久久久中文字幕| 亚洲欧美日韩无卡精品| 简卡轻食公司| 看十八女毛片水多多多| 一二三四中文在线观看免费高清| 国产亚洲av片在线观看秒播厂| 亚洲天堂av无毛| 国产精品国产三级国产专区5o| 黄色配什么色好看| 校园人妻丝袜中文字幕| 国产成人午夜福利电影在线观看| 99久久精品热视频| 亚洲美女搞黄在线观看| 黄色配什么色好看| 91久久精品国产一区二区成人| 人妻一区二区av| 一级毛片 在线播放| 免费黄网站久久成人精品| 中国美白少妇内射xxxbb| 精品一区在线观看国产| a级一级毛片免费在线观看| 精品国产乱码久久久久久小说| 久久99热6这里只有精品| 九草在线视频观看| 日日摸夜夜添夜夜爱| 欧美激情国产日韩精品一区| 亚洲自偷自拍三级| 国产探花在线观看一区二区| 午夜激情久久久久久久| 欧美成人精品欧美一级黄| 欧美日韩视频精品一区| 下体分泌物呈黄色| 男女啪啪激烈高潮av片| 一级黄片播放器| 成人亚洲精品一区在线观看 | 亚洲欧美成人综合另类久久久| 蜜桃亚洲精品一区二区三区| 人妻夜夜爽99麻豆av| 一本一本综合久久| 在线看a的网站| 日日摸夜夜添夜夜爱| 国产欧美亚洲国产| 激情五月婷婷亚洲| 国产又色又爽无遮挡免| 精品一区在线观看国产| 夜夜爽夜夜爽视频| 国产亚洲午夜精品一区二区久久 | 亚洲精品自拍成人| 国产黄色视频一区二区在线观看| 18+在线观看网站| 国产亚洲最大av| 久久久精品免费免费高清| 国产精品av视频在线免费观看| 中文字幕制服av| 男女下面进入的视频免费午夜| 国产淫片久久久久久久久| 国产免费福利视频在线观看| 免费大片18禁| 一级毛片aaaaaa免费看小| 国产黄a三级三级三级人| 大又大粗又爽又黄少妇毛片口| 美女主播在线视频| av线在线观看网站| av播播在线观看一区| a级毛色黄片| 亚洲欧美精品专区久久| 99久国产av精品国产电影| av.在线天堂| 插阴视频在线观看视频| 九草在线视频观看| 97热精品久久久久久| 日韩欧美一区视频在线观看 | 日日啪夜夜撸| 欧美丝袜亚洲另类| 日本免费在线观看一区| 色婷婷久久久亚洲欧美| 22中文网久久字幕| 亚洲国产最新在线播放| 国产老妇女一区| 国产免费一区二区三区四区乱码| 免费大片黄手机在线观看| 一二三四中文在线观看免费高清| a级一级毛片免费在线观看| 高清av免费在线| 精品久久久久久久人妻蜜臀av| 3wmmmm亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲一级一片aⅴ在线观看| 男人狂女人下面高潮的视频| 精品国产乱码久久久久久小说| 少妇裸体淫交视频免费看高清| 一区二区三区免费毛片| 精华霜和精华液先用哪个| 国产午夜福利久久久久久| 又粗又硬又长又爽又黄的视频| 大片电影免费在线观看免费| 99热这里只有精品一区| 久久久欧美国产精品| 欧美精品人与动牲交sv欧美| 国产精品一及| 久久午夜福利片| 欧美xxxx性猛交bbbb| 午夜视频国产福利| 五月伊人婷婷丁香| 午夜亚洲福利在线播放| 色婷婷久久久亚洲欧美| 黄色一级大片看看| 久久久久久久精品精品| 国产综合懂色| 亚洲欧美成人综合另类久久久| 一区二区三区四区激情视频| kizo精华| 国产爱豆传媒在线观看| 国产精品嫩草影院av在线观看| 成人综合一区亚洲| 中国三级夫妇交换| 久久精品夜色国产| 亚洲精品一二三| 国产一区亚洲一区在线观看| 美女高潮的动态| 午夜福利在线在线| 日本爱情动作片www.在线观看| tube8黄色片| 大香蕉久久网| 99九九线精品视频在线观看视频| 国产成人a区在线观看| 大话2 男鬼变身卡| 综合色av麻豆| 九九爱精品视频在线观看| 天堂网av新在线| 国内揄拍国产精品人妻在线| 99久久精品国产国产毛片| 亚洲国产高清在线一区二区三| 一级毛片我不卡| 在线播放无遮挡| 国产欧美另类精品又又久久亚洲欧美| 91在线精品国自产拍蜜月| 久久人人爽人人片av| 国产精品人妻久久久久久| 只有这里有精品99| 天天躁日日操中文字幕| 伦理电影大哥的女人| 18禁在线播放成人免费| 啦啦啦啦在线视频资源| freevideosex欧美| 51国产日韩欧美| 成人免费观看视频高清| 最近中文字幕高清免费大全6| 秋霞在线观看毛片| 国产精品99久久久久久久久| 18禁在线播放成人免费| 成年av动漫网址| 婷婷色综合大香蕉| 久久久久精品性色| 99re6热这里在线精品视频| 一级毛片黄色毛片免费观看视频| 97热精品久久久久久| 18+在线观看网站| 成人特级av手机在线观看| 欧美 日韩 精品 国产| 欧美日韩在线观看h| 亚洲va在线va天堂va国产| 黄色日韩在线| 男女国产视频网站| 亚洲欧美中文字幕日韩二区| 久久鲁丝午夜福利片| 天美传媒精品一区二区| 97精品久久久久久久久久精品| 岛国毛片在线播放| 一级片'在线观看视频| 性色av一级| 欧美xxⅹ黑人| 国产亚洲精品久久久com| 日韩电影二区| 爱豆传媒免费全集在线观看| 涩涩av久久男人的天堂| 国产午夜精品久久久久久一区二区三区| 亚洲人与动物交配视频| 欧美区成人在线视频| 欧美xxxx黑人xx丫x性爽| 久久这里有精品视频免费| xxx大片免费视频| 久久精品国产a三级三级三级| 午夜福利在线在线| 国产中年淑女户外野战色| 精品酒店卫生间| 女人十人毛片免费观看3o分钟| 精品一区二区三卡| 国产成人福利小说| 久久这里有精品视频免费| 麻豆国产97在线/欧美| 久久这里有精品视频免费| 男女边吃奶边做爰视频| 精品久久久久久久人妻蜜臀av| 久久久精品94久久精品| kizo精华| 观看美女的网站| 国产欧美亚洲国产| 卡戴珊不雅视频在线播放| 亚洲av二区三区四区| 美女内射精品一级片tv| 色网站视频免费| 久久国内精品自在自线图片| 在线看a的网站| 国产成人aa在线观看| 亚洲精品日韩在线中文字幕| 青春草国产在线视频| 亚洲天堂av无毛| 熟妇人妻不卡中文字幕| 少妇人妻久久综合中文| 国产在线一区二区三区精| 一本色道久久久久久精品综合| 精品一区二区三卡| av一本久久久久| kizo精华| 青春草亚洲视频在线观看| 在线精品无人区一区二区三 | 在线观看一区二区三区| 99久久人妻综合| 少妇人妻久久综合中文| 在线观看一区二区三区激情| 3wmmmm亚洲av在线观看| 亚洲av在线观看美女高潮| 99久久中文字幕三级久久日本| 欧美一级a爱片免费观看看| 夫妻午夜视频| 在线播放无遮挡| 男女国产视频网站| 国产伦在线观看视频一区| 嫩草影院新地址| 亚洲色图av天堂| 一区二区三区免费毛片| 亚洲欧美一区二区三区黑人 | 亚洲av免费高清在线观看| 国内少妇人妻偷人精品xxx网站| 午夜激情福利司机影院| 国产免费福利视频在线观看| 大香蕉97超碰在线| 久久热精品热| 麻豆成人午夜福利视频| 亚洲av中文av极速乱| 日韩一区二区三区影片| 一级毛片黄色毛片免费观看视频| 99久国产av精品国产电影| 亚洲欧美日韩东京热| 大片免费播放器 马上看| 久久99热6这里只有精品| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| 精华霜和精华液先用哪个| 亚洲精品乱码久久久v下载方式| 国产免费一级a男人的天堂| 三级国产精品片| eeuss影院久久| 久久精品久久久久久久性| 深夜a级毛片| 久久久久精品性色| 亚洲自拍偷在线| 亚洲av不卡在线观看| 日本与韩国留学比较| 久久精品国产a三级三级三级| 在线a可以看的网站| 久久人人爽av亚洲精品天堂 | 狠狠精品人妻久久久久久综合| 亚洲自拍偷在线| 精品亚洲乱码少妇综合久久| 在线观看三级黄色| 真实男女啪啪啪动态图| 国产精品三级大全| 久久久久久久亚洲中文字幕| 狂野欧美激情性xxxx在线观看| 日韩国内少妇激情av| 色视频在线一区二区三区| 黄色一级大片看看| 狂野欧美激情性xxxx在线观看| 大又大粗又爽又黄少妇毛片口| 久久久精品欧美日韩精品| av线在线观看网站| 99热网站在线观看| 建设人人有责人人尽责人人享有的 | 日韩大片免费观看网站| 夜夜爽夜夜爽视频| 国国产精品蜜臀av免费| 午夜视频国产福利| 国精品久久久久久国模美| 国产熟女欧美一区二区| 一个人观看的视频www高清免费观看| 肉色欧美久久久久久久蜜桃 | 国产伦在线观看视频一区| 在线观看免费高清a一片| 久久精品国产亚洲av涩爱| av卡一久久| 日日摸夜夜添夜夜添av毛片| 日韩av免费高清视频| 在线精品无人区一区二区三 |