• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global patterns of fern species diversity:An evaluation of fern data in GBIF

    2022-04-25 07:31:32HongQianJianZhangMeiChenJiang
    植物多樣性 2022年2期

    Hong Qian,Jian Zhang,Mei-Chen Jiang

    aResearch and Collections Center,Illinois State Museum,1011 East Ash Street,Springfield,IL 62703,USA

    bZhejiang Tiantong Forest Ecosystem National Observation and Research Station,School of Ecological and Environmental Sciences,East China Normal University,200241 Shanghai,China

    ABSTRACT

    Despite that several studies have shown that data derived from species lists generated from distribution occurrence records in the Global Biodiversity Information Facility(GBIF)are not appropriate for those ecological and biogeographic studies that require high sampling completeness,because species lists derived from GBIF are generally very incomplete,Suissa et al.(2021)generated fern species lists based on data with GBIF for 100 km×100 km grid cells across the world,and used the data to determine fern diversity hotspots and species richness-climate relationships.We conduct an evaluation on the completeness of fern species lists derived from GBIF at the grid-cell scale and at a larger spatial scale,and determine whether fern data derived from GBIF are appropriate for studies on the relations of species composition and richness with climatic variables.We show that species sampling completeness of GBIF is low(<40%)for most of the grid cells examined,and such low sampling completeness can substantially bias the investigation of geographic and ecological patterns of species diversity and the identification of diversity hotspots.We conclude that fern species lists derived from GBIF are generally very incomplete across a wide range of spatial scales,and are not appropriate for studies that require data derived from species lists in high completeness.We present a map showing global patterns of fern species diversity based on complete or nearly complete regional fern species lists.

    Keywords:

    Climate

    Data bias

    Fern

    GBIF

    Species diversity

    Species list

    1.Introduction

    Ferns,which include about 12,000 species worldwide(Hassler,2004-2021),are one of the oldest and the most species-rich groups of vascular plants(Mabberley,2008;Qian et al.,2021a).Fern propagules are spores,which are small(usually<0.1 mm in equatorial axis and polar axis;Adsersen,1995),and are capable of dispersing thousands of kilometers by wind(Wolf et al.,2001).Ferns are generally distributed broadly,and fern distributions are thought to be more in equilibrium with climate than most other groups of vascular plants(Qian,2009).Fern species richness exhibits marked variation among areas across the globe(Weigand et al.,2020),which is thought to be driven by environmental factors(Kreft et al.,2010;Khine et al.,2019).Therefore,ferns are an ideal group of vascular plants for the study of geographic and ecological patterns and drivers of plant diversity at global and regional scales.

    In an article by Suissa et al.(2021),the authors analyzed species occurrence data downloaded from the Global Biodiversity Information Facility(GBIF)to address several questions.They converted the geo-referenced occurrences downloaded from GBIF to fern species lists for each of 100 km×100 km grid cells across the globe,explored geographic patterns of fern species richness and endemism,and tested for correlations between individual environmental variables and richness and speciation rate.The robustness of the conclusions of their study heavily depends on the quality of the data used in their study(i.e.the completeness of fern species list for each of the 100 km×100 km grid cells).

    While GBIF occurrence data are useful for biological conservation and some ecological and biogeographic studies,it may not be appropriate to use the data in those studies that depend on species lists derived from the GBIF data.This is because previous studies have shown that species lists derived from GBIF occurrence data are commonly very incomplete and the completeness of a species list varies non-randomly across the globe.For example,Yesson et al.(2007)found that GBIF included only 31%of global Fabaceae species richness while large parts of the world are data deficient.Beck et al.(2013)found that the GBIF data for European moths provided less information on species’geographic ranges and climatic niches than an independent data compilation based on museum collections and published literature.Qian et al.(2018)showed that the completeness of species lists of vascular plants derived from GBIF is only 13%for the Chinese counties examined in their study(8195 km2per county on average)and is only 37%for the Chinese provinces(342,749 km2per province on average).Qian et al.(2018)also showed that the relationships between species richness and climate can be substantially biased when species richness derived from GBIF is used in an analysis relating species richness to climatic variables.Recently,Qian et al.(2021b)showed that species lists of vascular plants derived GBIF for 100 km×100 km grid cells in Africa account for less than 37%of the species in their full species lists.

    Suissa et al.(2021)included only two third of the fern species worldwide in their study.Because the completeness of species lists derived from GBIF data decreases with decreasing spatial scale,as shown in Qian et al.(2018,2021b),the completeness of the fern species lists for the 100 km×100 km grid cells used in their study are likely very low,at least in some regions.Suissa et al.(2021)pointed out that“misidentified records or those with problematic localities can bias biodiversity analyses”,but they overlooked the problem of using substantially incomplete species lists in their study.To determine whether the conclusions of their study are valid,it is necessary to evaluate the quality of the data used in their study.Here,we report an evaluation on their data.

    2.Materials and methods

    Suissa et al.’s(2021)primary analyses were based on species lists at the spatial resolution of 100 km×100 km,but their study also invoked larger geographic areas,such as those regions that were used to characterize regional patterns and hotspots of species richness and endemism.Accordingly,we evaluate the completeness of fern species lists derived from the GBIF occurrence records reported in Suissa et al.(2021)for geographic areas at both regional scale and 100 km×100 km grid cell scale.

    At a regional scale,we extracted fern occurrence records from World Plants(WP;https://www.worldplants.de/)and Plants of the World online(POWO;http://www.plantsoftheworldonline.org/)for geographic units mostly defined in Brummitt(2001),which are geographic units at the level 3 in most cases,and are geographic units at the level 4 defined in Brummitt(2001)for several countries with large extents of latitude or longitude or both.These countries are:Argentina,Australia,Brazil,Canada,Chile,China,Mexico,Russia,South Africa,and USA.For Russia,geographic units located in Europe are political regions shown in Map 5 of Brummitt(2001),and geographic units located in Siberia and Russian Far East are those shown in figure 1 of Zhang et al.(2018).A total of 470 geographic regions,as shown in Fig.1,were used to document global fern distributions.Regional species lists derived from the data extracted from WP and POWO were supplemented by additional data sources,e.g.GBIF data for global fern occurrences reported in Suissa et al.(2021),Flora of China online(http://www.efloras.org/flora_page.aspx?flora_id=2),and PLANTS Database(https://plants.usda.gov/home).Of the 470 geographic regions,457 had at least one fern species,and were analyzed in this study.These regional species lists,which were considered as ‘complete’or‘nearly complete’species lists for the regions,were compared with those regional species lists derived solely from the GBIF occurrence records reported in Suissa et al.(2021).For a particular geographic region,we determined the completeness of the species list derived solely from the GBIF data by dividing the number of species in the GBIF-based species list by the number of species in the ‘complete’species list of the region,as described above.Botanical nomenclature for ferns from all the above-mentioned data sources was standardized according to Hassler(2004-2021),which was also used to standardize fern nomenclature in Suissa et al.(2021).

    Complete fern species lists for 100 km×100 km grid cells are generally not available,and cannot be generated for the vast majority of the global land surface due to lack of sufficient small-scale complete species lists.However,because the completeness of species lists of vascular plants for counties in USA are high,particularly for those counties which,or parts of which,have been botanized with an aim of compiling their complete species lists(appendix A of Qian et al.,2007),and because county-level species lists of vascular plants have been used to address species richness questions in previous studies(e.g.Stohlgren et al.,2003),we divided the contiguous USA(with 48 states)into 100 km×100 km grids and used county-level distributions available at the PLANTS Database(https://plants.usda.gov/home)and local(nature reserve or park)plant checklists published in Weiser et al.(2018)to generate fern species lists for 100 km×100 km grid cells in USA.Similarly,county-level plant distributions in China have been used to generate species lists for 100 km×100 km grid cells in China,which were used in studies on species richness patterns(e.g.Feng et al.,2016).We divided China into 100 km×100 km grid cells,and used county-level fern distributions and local(nature reserve and park)species lists available online(e.g.the National Specimen Information Infrastructure,www.nsii.org.cn/)or the literature(e.g.Qian et al.,2018)to generate fern species lists for 100 km×100 km grid cells in China.The approach that we used to generate species lists for grid cells based on county-level and local species lists has been commonly used in the literature(e.g.Feng et al.,2016).GBIF occurrence records reported in Suissa et al.(2021)were also used when we generated fern species lists for 100 km×100 km grid cells.For both China and USA,we only used those 100 km×100 km grid cells which have complete fern species lists for counties or localities within each of them,based on the county-level or local floras used in Qian et al.(2018)for China and Weiser et al.(2018)for USA.As a result,we included 267 grid cells in our analysis(115 in China,152 in USA).For both countries,a Mollweide(equal-area)projection was used to divide them into 100 km×100 km grid cells.Botanical nomenclature in each data set was standardized according to Hassler(2004-2021).

    One of the key components of Suissa et al.’s(2021)study was to analyze species richness and hotspots in climate spaces,particularly in a temperature-precipitation space(e.g.their figure 5),using regression models.Although Qian et al.(2018)showed that the relationships between species richness and a given climatic variable can differ not only in strength but also in direction between the regression models based on data derived from complete species lists and those based on the data derived from GBIF for vascular plants,it is not clear whether this conclusion applies to ferns because the relationships between species richness and climatic variables differ substantially between pteridophytes,the vast majority of which are ferns,and seed plants(Kreft et al.,2010).Accordingly,we also assess whether using data derived from incomplete GBIF fern species lists in regression models would significantly affect the results on the relationships between species richness and climatic variables.Mean annual temperature,annual precipitation,minimum temperature of the coldest month,precipitation during the driest month,temperature seasonality,and precipitation seasonality represent the mean,extreme and variability of temperature and precipitation.Because these climatic variables are commonly included in studies on geographic and ecological patterns of plant diversity(e.g.Kooyman et al.,2012;Weigelt et al.,2015;Qian et al.,2017,2021),and some of them were also used to build climate spaces in Suissa et al.(2021),our analysis emphasized on these six climatic variables.We obtained climatic data for each 100 km×100 km grid cell from the WorldClim database(http://worldclim.org/version2),using data at the 30-arcsecond resolution.We used spatial regressions(simultaneous autoregressive(SAR)models)in our analyses,which accounted for spatial autocorrelation(Kissling and Carl,2008).We investigated the effect of data completeness on inference from the richness-climate relationship.We ran SAR models separately for the two data sets of each country(i.e.a data set derived from complete species lists(full data set),a date set derived solely from GBIF)and compared effect sizes(standardized regression coefficient)within models and R2values between models.Species richness was transformed by log10(x+1).Each climatic variable of a regression was standardized to have a mean of zero and a standard deviation of one.Spatial Analysis in Macroecology(www.ecoevol.ufg.br/sam)was used to conduct SAR.

    Fig.1.Comparison between fern species density(i.e.,species richness was divided by log10-transformed area in square kilometer)derived from GBIF alone and that derived from WP,POWO and additional sources for geographic regions(countries or sub-countries)across the world.(a)Species density based on GBIF,(b)species density based on WP,POWO and additional sources,(c)percentage of species richness derived from GBIF over species richness derived from WP,POWO and additional sources(i.e.,completeness(%)of fern species lists derived from GBIF).

    3.Results and discussion

    Suissa et al.(2021)report that their cleaned version of the GBIF data for ferns includes 7865 species.Their study intends to include only binomials(i.e.species-level taxa),as indicated in their Appendix S2,but because they mistakenly treated trinomials(infraspecific taxa;e.g.Asplenium affine var.mettenii)as binomials(species),some species were counted more than once in their study.For example,the species A.affine was counted four times in their study(i.e.A.affine,A.affine var.gilpinae,A.affine var.mettenii,A.affine var.pectin).With duplicate species names being removed,Suissa et al.‘s study actually included 7462 species,which included 62%of fern species in the world(Hassler,2004-2021).Our analyses reported here used the corrected version of Suissa et al.‘s data set.

    At the beginning of the Results section of Suissa et al.(2021),the authors state that“Species richness per grid cell ranged from 3 to 929 species.”This statement is incorrect,because many grid cells having 1-2 species,as shown in appendix S2 of Suissa et al.(2021),were ignored by the authors.Thus,Suissa et al.(2021)incorrectly presented their data in their figure 1.Because many grid cells,particularly those located in arid regions,truly have 1 or 2 fern species,these grid cells should be shown in their figure 1.We have updated their figure 1 by using a corrected version of Suissa et al.‘s data set,as mentioned above(i.e.combining trinomials with their respective binomials),and adding grid cells with 1 or 2 species on the map(Fig.S1).

    For the 457 geographic regions across the world,each of which has,on average,294,310 km2,the completeness of a fern species list derived from GBIF was,on average,only 51%of its full fern species list(Fig.1).About 54%of the geographic regions each have less than 60%of the completeness in their species lists derived from GBIF(Fig.S2).Regional fern species lists derived from GBIF are substantially incomplete for a large geographic extent from northern Africa eastward to eastern Asia(Fig.1c),including China and India,which are rich in fern diversity(Fig.1b).

    At the grid-cell scale(i.e.100 km×100 km),our analysis showed that fern species lists derived from GBIF included less than 20%of all the species in each grid cell for 92%of the 115 grid cells sampled from China(Fig.2).Only 2%of the species lists derived from GBIF for China each had more than 40%of all the fern species in the grid cells.The completeness of species lists derived from GBIF for grid cells in the USA was higher than that for China,but fern species lists derived from GBIF included less than 60%of the species in each of the majority(53%)of the 152 grid cells sampled from the USA(Fig.2).When complete fern species lists were considered,each grid cell had,on average,231 species in China and 29 species in USA,i.e.actual fern species richness per grid cell in China is eight times as high as in USA.However,when fern species lists derived from GBIF were considered,fern species richness per grid cell in China is nearly the same as that in the USA(18.8 versus 18.3 species).The completeness of species lists derived from GBIF was lowest for the most species-rich grid cells(Fig.S3).Clearly,geographic patterns and hotspots of fern species diversity determined according to the GBIF data are substantially biased.Our analysis showed that the completeness of species lists derived from GBIF tended to be lower in areas with richer floras(Fig.S1),suggesting that identifying diversity hotspots solely based on data in GBIF,as did in Suissa et al.(2021),is not reliable.

    Fig.2.Geographic variation in sampling completeness(%)of species richness(SR)in GBIF(a and b),and the relationship between the proportion of samples(grid cells)and sampling completeness of SR for ferns in the selected 267 grid cells(each being 100 km×100 km)in China(a and c)and USA(b and d).

    This problem with Suissa et al.(2021)can be easily seen from their figure 1.For example,their figure 1 showed that most grid cells in Japan are among the grid cells with the highest fern species richness across the globe,and have much higher fern species richness than those grid cells located in the Hengduan Mountains and southeastern China.However,both regional floras in the literature and our data show that local and regional fern species richness in the Hengduan Mountains and southeastern China is much higher than that in Japan.For example,the five most speciesrich grid cells in Japan each has 190 to 218 fern species based on data from GBIF,but many grid cells in southeastern China each have 220 to 400 fern species in the data we analyzed,and these grid cells commonly each have few to none fern species in the GBIF data set analyzed by Suissa et al.(e.g.the grid cell whose centroid is located at 26.41°N and 117.38°E has 377 fern species but it has no species in the GBIF data reported in Suissa et al.).Such cases occur in many regions across the world.For example,the fern flora of India is rich,with over 1000 species(according to WP and POWO).However,few grid cells across the entire India south of the Himalayas have fern species in figure 1 of Suissa et al.(2021).We believe that the fern diversity hotspots identified by Suissa et al.(2021)largely reflect the availability of occurrence records in GBIF,rather than true fern diversity hotspots,and many true fern diversity hotspots,such as the Hengduan Mountains,southeastern China and tropical mountains in India,have not been identified in their study.

    Our analysis showed that using fern species lists derived from GBIF can substantially bias the relationships between species richness and climate not only in strength but also in direction(Table 1).For example,for grid cells in China,when species richness derived from complete species lists was used in a regression analysis with six climatic variables being included as independent variables,the model explained 65.5%of the variation in fern richness and annual precipitation was the strongest correlate of fern richness and was positively associated with fern richness(Table 1),which is consistent with findings reported in previous studies(e.g.Nagalingum et al.,2015).By contrast,when species richness in the model was replaced by that derived from the GBIF data reported in Suissa et al.(2021),the model explained only 34.2%of the variation in fern richness and annual precipitation was not only the weakest correlate of fern richness but also was negatively,rather than positively,associated with fern species richness(Table 1).Our analysis suggests that the results of the climate-based analyses reported in Suissa et al.(2021)are likely biased to a large degree.

    Table 1Results of multiple regressions of species richness with six climate variables for ferns in 100 km×100 km grid cells in China and USA.Rank refers to the order of absolute values of standardized regression coefficient(Coeff.),from largest to smallest,based on simultaneous autoregressive models.

    We conclude that fern species lists derived from GBIF are generally very incomplete across a wide range of spatial scales(at least<300,000 km2),and should not be used in studies that require data derived from complete or nearly complete species lists.This conclusion likely applies to data with GBIF for all taxonomic groups of organisms.

    Author contributions

    H.Q.designed research,analyzed data,and wrote the paper;J.Z.prepared data;M.J.generated maps;all authors participated in revising the paper.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgements

    We thank two reviewers for their helpful comments.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.pld.2021.10.001.

    久久精品国产a三级三级三级| 一级毛片精品| 欧美在线黄色| 亚洲精品久久午夜乱码| 狠狠狠狠99中文字幕| 丝袜在线中文字幕| 又紧又爽又黄一区二区| 男女高潮啪啪啪动态图| 亚洲成国产人片在线观看| 亚洲av欧美aⅴ国产| 日本黄色日本黄色录像| 在线视频色国产色| 97人妻天天添夜夜摸| 日本vs欧美在线观看视频| 黄频高清免费视频| 狠狠狠狠99中文字幕| 少妇粗大呻吟视频| 91九色精品人成在线观看| 久久久久精品国产欧美久久久| 69精品国产乱码久久久| 99国产综合亚洲精品| 欧美黑人精品巨大| 悠悠久久av| 国产成+人综合+亚洲专区| 欧美日韩亚洲国产一区二区在线观看 | 久久亚洲真实| 涩涩av久久男人的天堂| 人妻久久中文字幕网| 午夜福利在线观看吧| 亚洲精品中文字幕在线视频| 欧美成人免费av一区二区三区 | 日韩熟女老妇一区二区性免费视频| 国产男靠女视频免费网站| 一本大道久久a久久精品| 欧美日韩一级在线毛片| 欧美日韩亚洲综合一区二区三区_| 久久国产乱子伦精品免费另类| 国产无遮挡羞羞视频在线观看| 男男h啪啪无遮挡| 亚洲综合色网址| 一进一出抽搐动态| 精品福利永久在线观看| 国产不卡av网站在线观看| 久久人人97超碰香蕉20202| 成人特级黄色片久久久久久久| 亚洲国产精品合色在线| 窝窝影院91人妻| 欧美精品av麻豆av| 正在播放国产对白刺激| 国产在线精品亚洲第一网站| 人人澡人人妻人| 色综合婷婷激情| 精品少妇久久久久久888优播| 亚洲中文日韩欧美视频| 夜夜躁狠狠躁天天躁| 国产成人精品久久二区二区免费| 超碰成人久久| 国产在视频线精品| 欧美久久黑人一区二区| 麻豆国产av国片精品| 夜夜爽天天搞| 男女之事视频高清在线观看| www.999成人在线观看| 欧美老熟妇乱子伦牲交| 精品一区二区三卡| av中文乱码字幕在线| 麻豆乱淫一区二区| 精品福利观看| 一级毛片精品| 亚洲精品国产色婷婷电影| 国产精品秋霞免费鲁丝片| 一级,二级,三级黄色视频| 高清毛片免费观看视频网站 | 国产精品偷伦视频观看了| 亚洲欧美一区二区三区黑人| 久久精品国产清高在天天线| 人人妻,人人澡人人爽秒播| 咕卡用的链子| 久久精品91无色码中文字幕| 中文字幕人妻丝袜一区二区| 黄网站色视频无遮挡免费观看| √禁漫天堂资源中文www| 亚洲一卡2卡3卡4卡5卡精品中文| 91麻豆精品激情在线观看国产 | 精品国内亚洲2022精品成人 | 日日爽夜夜爽网站| aaaaa片日本免费| 亚洲精品乱久久久久久| av片东京热男人的天堂| 法律面前人人平等表现在哪些方面| 99精品久久久久人妻精品| 久久精品国产亚洲av高清一级| 一夜夜www| 亚洲一区二区三区欧美精品| 一级,二级,三级黄色视频| 亚洲av欧美aⅴ国产| 人成视频在线观看免费观看| 欧美在线一区亚洲| 欧美精品一区二区免费开放| 亚洲一区二区三区欧美精品| 久久精品成人免费网站| 亚洲精华国产精华精| 亚洲av日韩在线播放| 欧美乱妇无乱码| 少妇的丰满在线观看| 午夜久久久在线观看| 午夜成年电影在线免费观看| 亚洲色图 男人天堂 中文字幕| 久久中文字幕人妻熟女| 午夜福利在线免费观看网站| 国产精品.久久久| 中文字幕人妻丝袜一区二区| 久久国产乱子伦精品免费另类| 欧美 日韩 精品 国产| 久久国产精品影院| 少妇猛男粗大的猛烈进出视频| 色综合婷婷激情| 国产精品久久电影中文字幕 | 亚洲精品乱久久久久久| 视频区图区小说| 国产成人影院久久av| 青草久久国产| a在线观看视频网站| 久久这里只有精品19| 久久久国产一区二区| 啦啦啦视频在线资源免费观看| 午夜激情av网站| 久久久国产欧美日韩av| 91成人精品电影| 久久天堂一区二区三区四区| 午夜免费成人在线视频| 精品国产亚洲在线| 日本五十路高清| 国产亚洲精品第一综合不卡| 午夜福利一区二区在线看| 精品国产一区二区三区久久久樱花| 男人的好看免费观看在线视频 | 久久人人爽av亚洲精品天堂| 9色porny在线观看| www.熟女人妻精品国产| 美女扒开内裤让男人捅视频| 色尼玛亚洲综合影院| 老司机福利观看| 久久精品亚洲av国产电影网| 国产色视频综合| 男人操女人黄网站| 操出白浆在线播放| 亚洲人成电影观看| av超薄肉色丝袜交足视频| 一夜夜www| 国产91精品成人一区二区三区| 国产高清视频在线播放一区| 丰满饥渴人妻一区二区三| 18禁黄网站禁片午夜丰满| 91av网站免费观看| 90打野战视频偷拍视频| 宅男免费午夜| 日本五十路高清| 国产精品综合久久久久久久免费 | 亚洲精品久久午夜乱码| 久久精品成人免费网站| 国产欧美日韩精品亚洲av| 欧美日韩瑟瑟在线播放| 在线观看日韩欧美| 在线看a的网站| 一二三四社区在线视频社区8| 欧美精品高潮呻吟av久久| 午夜精品国产一区二区电影| 少妇猛男粗大的猛烈进出视频| 精品高清国产在线一区| 亚洲精品av麻豆狂野| 欧美色视频一区免费| 国产亚洲欧美在线一区二区| 大型黄色视频在线免费观看| 亚洲午夜精品一区,二区,三区| 亚洲欧洲精品一区二区精品久久久| 视频区图区小说| 波多野结衣一区麻豆| 精品国产一区二区久久| 最近最新中文字幕大全免费视频| 午夜福利在线免费观看网站| 日韩欧美三级三区| 1024香蕉在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 黑人欧美特级aaaaaa片| 很黄的视频免费| 国产国语露脸激情在线看| 一级作爱视频免费观看| 中文欧美无线码| 亚洲人成电影免费在线| 中文字幕人妻熟女乱码| 99久久国产精品久久久| 99久久综合精品五月天人人| 亚洲第一欧美日韩一区二区三区| 中文字幕色久视频| 成人18禁在线播放| 欧美中文综合在线视频| www.熟女人妻精品国产| 国产在线精品亚洲第一网站| 法律面前人人平等表现在哪些方面| av网站在线播放免费| 99久久国产精品久久久| 国产精品久久视频播放| 久久久国产精品麻豆| 亚洲第一青青草原| 国产日韩欧美亚洲二区| 国产欧美日韩一区二区三区在线| 日韩欧美国产一区二区入口| 国产日韩欧美亚洲二区| 久久久国产欧美日韩av| 久久久国产欧美日韩av| 久久天堂一区二区三区四区| 久久久久精品人妻al黑| 日韩欧美三级三区| 女人久久www免费人成看片| 深夜精品福利| 久久中文字幕人妻熟女| 久久中文字幕人妻熟女| 精品久久久久久久毛片微露脸| 精品免费久久久久久久清纯 | 国产男女内射视频| 久久久久久亚洲精品国产蜜桃av| 国产亚洲欧美98| 精品一区二区三区四区五区乱码| 欧美成狂野欧美在线观看| 99热国产这里只有精品6| 性少妇av在线| 校园春色视频在线观看| 国产精品一区二区在线不卡| 高清在线国产一区| 99久久综合精品五月天人人| 中文字幕最新亚洲高清| 啦啦啦视频在线资源免费观看| 亚洲专区字幕在线| 欧美性长视频在线观看| 国产亚洲精品久久久久久毛片 | 久久99一区二区三区| av网站免费在线观看视频| 久久九九热精品免费| 亚洲一卡2卡3卡4卡5卡精品中文| 很黄的视频免费| 丰满迷人的少妇在线观看| 搡老熟女国产l中国老女人| 国产精品98久久久久久宅男小说| 女同久久另类99精品国产91| 国产精品综合久久久久久久免费 | 99re在线观看精品视频| 1024香蕉在线观看| 精品久久久久久久毛片微露脸| 精品福利永久在线观看| 女警被强在线播放| 最近最新中文字幕大全电影3 | 男女之事视频高清在线观看| 母亲3免费完整高清在线观看| 99精品久久久久人妻精品| 国产精品美女特级片免费视频播放器 | 无限看片的www在线观看| 一本综合久久免费| 高清欧美精品videossex| 国产高清videossex| 欧美成人免费av一区二区三区 | 精品卡一卡二卡四卡免费| 亚洲一区中文字幕在线| 十八禁高潮呻吟视频| 国产午夜精品久久久久久| 免费看十八禁软件| 亚洲综合色网址| 丝袜美足系列| 欧美日韩黄片免| 无遮挡黄片免费观看| 女性生殖器流出的白浆| 日韩视频一区二区在线观看| 久久亚洲真实| 国产成人一区二区三区免费视频网站| 国产男女内射视频| 久久国产精品影院| 日本精品一区二区三区蜜桃| 国产黄色免费在线视频| 亚洲avbb在线观看| 午夜日韩欧美国产| 午夜91福利影院| 国产真人三级小视频在线观看| 满18在线观看网站| 久久草成人影院| 无限看片的www在线观看| 国产在线观看jvid| 人人妻人人澡人人爽人人夜夜| 后天国语完整版免费观看| 日韩欧美在线二视频 | 亚洲视频免费观看视频| 人人妻人人澡人人爽人人夜夜| 亚洲av日韩在线播放| 国产aⅴ精品一区二区三区波| 好男人电影高清在线观看| 国产精品 国内视频| 精品欧美一区二区三区在线| 人人澡人人妻人| 国产免费男女视频| 999久久久精品免费观看国产| 亚洲片人在线观看| 99re6热这里在线精品视频| 大香蕉久久成人网| 美女扒开内裤让男人捅视频| 亚洲专区字幕在线| 99国产极品粉嫩在线观看| 色94色欧美一区二区| 国产欧美日韩一区二区精品| 免费av中文字幕在线| 99国产精品一区二区三区| 精品亚洲成a人片在线观看| 免费高清在线观看日韩| 亚洲欧美激情综合另类| 香蕉久久夜色| 久久久国产欧美日韩av| 91成年电影在线观看| 老司机午夜十八禁免费视频| 看片在线看免费视频| ponron亚洲| 亚洲国产精品sss在线观看 | 一级a爱视频在线免费观看| 国产精品久久久人人做人人爽| 男女下面插进去视频免费观看| 久久久国产成人免费| 9色porny在线观看| 国产野战对白在线观看| 久久影院123| 亚洲欧美日韩另类电影网站| 老汉色∧v一级毛片| 久久狼人影院| 欧美日韩中文字幕国产精品一区二区三区 | 999精品在线视频| 午夜福利乱码中文字幕| 精品福利永久在线观看| √禁漫天堂资源中文www| 亚洲精品国产区一区二| 99热只有精品国产| 国产熟女午夜一区二区三区| 王馨瑶露胸无遮挡在线观看| av线在线观看网站| 国内毛片毛片毛片毛片毛片| 欧美日韩一级在线毛片| 中文字幕最新亚洲高清| 午夜激情av网站| 免费看a级黄色片| 久久国产精品大桥未久av| 国产精品久久久久久人妻精品电影| 欧美丝袜亚洲另类 | 女人爽到高潮嗷嗷叫在线视频| 丰满饥渴人妻一区二区三| 亚洲精品一二三| 老鸭窝网址在线观看| 亚洲免费av在线视频| 国产免费男女视频| 久久精品国产a三级三级三级| 欧美激情极品国产一区二区三区| 老鸭窝网址在线观看| 国产精品欧美亚洲77777| 老熟妇乱子伦视频在线观看| 亚洲av美国av| 成人黄色视频免费在线看| 久久久久精品国产欧美久久久| 久久国产精品影院| 91麻豆精品激情在线观看国产 | 久久精品国产清高在天天线| 香蕉国产在线看| 少妇猛男粗大的猛烈进出视频| 大型黄色视频在线免费观看| 精品人妻熟女毛片av久久网站| 麻豆国产av国片精品| 欧美精品啪啪一区二区三区| 黄色女人牲交| 男人的好看免费观看在线视频 | 91麻豆精品激情在线观看国产 | 国产精品亚洲av一区麻豆| 一级a爱视频在线免费观看| 亚洲精品一二三| 欧美精品一区二区免费开放| 色尼玛亚洲综合影院| 亚洲五月色婷婷综合| 午夜福利乱码中文字幕| 欧美激情极品国产一区二区三区| 久久99一区二区三区| av片东京热男人的天堂| 中文字幕高清在线视频| 99国产极品粉嫩在线观看| 亚洲熟妇中文字幕五十中出 | 欧美激情极品国产一区二区三区| 天天添夜夜摸| 老司机午夜十八禁免费视频| 久久精品亚洲熟妇少妇任你| 精品人妻在线不人妻| 国产精品成人在线| 免费一级毛片在线播放高清视频 | 性少妇av在线| 免费日韩欧美在线观看| 好男人电影高清在线观看| 亚洲av美国av| 大香蕉久久成人网| 久久久久久亚洲精品国产蜜桃av| 国产乱人伦免费视频| 99在线人妻在线中文字幕 | 三上悠亚av全集在线观看| 天堂中文最新版在线下载| 国产片内射在线| 精品一区二区三区视频在线观看免费 | 色尼玛亚洲综合影院| 少妇粗大呻吟视频| 久久人妻福利社区极品人妻图片| 亚洲精品国产一区二区精华液| 精品国产亚洲在线| 国产一区二区三区在线臀色熟女 | 一级作爱视频免费观看| 亚洲自偷自拍图片 自拍| 欧美精品高潮呻吟av久久| 两性夫妻黄色片| 女人爽到高潮嗷嗷叫在线视频| 国产主播在线观看一区二区| 久久久久久久久久久久大奶| 脱女人内裤的视频| 精品亚洲成a人片在线观看| 中亚洲国语对白在线视频| 精品久久久久久久久久免费视频 | 人妻久久中文字幕网| 老汉色∧v一级毛片| 午夜亚洲福利在线播放| 丰满人妻熟妇乱又伦精品不卡| 午夜两性在线视频| 老司机影院毛片| 精品熟女少妇八av免费久了| 一级毛片女人18水好多| 悠悠久久av| 亚洲一码二码三码区别大吗| 国产精品电影一区二区三区 | 亚洲精华国产精华精| 亚洲专区字幕在线| 欧美黑人欧美精品刺激| 1024香蕉在线观看| 视频区图区小说| 九色亚洲精品在线播放| 一二三四社区在线视频社区8| 如日韩欧美国产精品一区二区三区| 亚洲精品av麻豆狂野| 涩涩av久久男人的天堂| 天堂中文最新版在线下载| 人人妻人人添人人爽欧美一区卜| 新久久久久国产一级毛片| 夜夜爽天天搞| 午夜免费鲁丝| 亚洲国产看品久久| 操出白浆在线播放| 欧美日韩精品网址| 欧美日韩乱码在线| 亚洲在线自拍视频| 无遮挡黄片免费观看| 99riav亚洲国产免费| 日韩免费高清中文字幕av| 午夜福利一区二区在线看| 99精品久久久久人妻精品| 美女国产高潮福利片在线看| 美女高潮到喷水免费观看| 美女扒开内裤让男人捅视频| 日韩制服丝袜自拍偷拍| 亚洲人成电影观看| 欧美性长视频在线观看| 国产精品九九99| 国产高清国产精品国产三级| tube8黄色片| 欧美人与性动交α欧美精品济南到| 岛国在线观看网站| 国产精品一区二区在线观看99| 久久人妻av系列| 丁香欧美五月| 免费在线观看黄色视频的| 国产精品免费视频内射| 丝袜美腿诱惑在线| 50天的宝宝边吃奶边哭怎么回事| 国产真人三级小视频在线观看| 女警被强在线播放| av免费在线观看网站| 美女高潮到喷水免费观看| 多毛熟女@视频| 自线自在国产av| 久久精品亚洲av国产电影网| 女人爽到高潮嗷嗷叫在线视频| 国产精品二区激情视频| 成人三级做爰电影| av天堂在线播放| 在线观看免费午夜福利视频| 国产亚洲精品久久久久久毛片 | 亚洲成国产人片在线观看| 国产欧美日韩一区二区三区在线| a级毛片在线看网站| 高清欧美精品videossex| 欧美激情 高清一区二区三区| 中文字幕人妻熟女乱码| 美女国产高潮福利片在线看| 国产一区二区激情短视频| 亚洲精品国产色婷婷电影| 免费看a级黄色片| 麻豆国产av国片精品| 在线观看66精品国产| 中文字幕另类日韩欧美亚洲嫩草| 99国产精品99久久久久| 91大片在线观看| 女人高潮潮喷娇喘18禁视频| 在线观看免费日韩欧美大片| 女同久久另类99精品国产91| 精品福利永久在线观看| 久久精品亚洲精品国产色婷小说| 色94色欧美一区二区| av国产精品久久久久影院| 在线免费观看的www视频| 亚洲综合色网址| 日本五十路高清| 精品国产一区二区久久| 老汉色∧v一级毛片| 99riav亚洲国产免费| 在线十欧美十亚洲十日本专区| 精品久久久久久久毛片微露脸| 一级毛片精品| 亚洲av美国av| 成人18禁高潮啪啪吃奶动态图| 在线观看一区二区三区激情| 国产亚洲欧美98| 亚洲成人免费av在线播放| 在线av久久热| 国产xxxxx性猛交| 法律面前人人平等表现在哪些方面| 久热这里只有精品99| 美女扒开内裤让男人捅视频| 国产成人系列免费观看| 国产国语露脸激情在线看| 国产精品影院久久| 两人在一起打扑克的视频| 日本五十路高清| 色婷婷av一区二区三区视频| 久久精品国产a三级三级三级| 中文欧美无线码| 欧美亚洲日本最大视频资源| 久9热在线精品视频| 一进一出抽搐gif免费好疼 | 18在线观看网站| 欧美日韩精品网址| 亚洲国产精品一区二区三区在线| 久久精品国产综合久久久| 久久国产精品大桥未久av| 亚洲情色 制服丝袜| 国产淫语在线视频| 成人三级做爰电影| 亚洲第一av免费看| 777米奇影视久久| 亚洲片人在线观看| 91大片在线观看| 岛国毛片在线播放| 亚洲成人手机| 亚洲九九香蕉| 亚洲午夜精品一区,二区,三区| 色精品久久人妻99蜜桃| 精品国产亚洲在线| 精品熟女少妇八av免费久了| 韩国精品一区二区三区| 色婷婷av一区二区三区视频| 天天影视国产精品| 正在播放国产对白刺激| 日本精品一区二区三区蜜桃| 国产激情欧美一区二区| 免费高清在线观看日韩| 757午夜福利合集在线观看| 免费看十八禁软件| 黄色成人免费大全| 欧美乱妇无乱码| 日韩欧美国产一区二区入口| aaaaa片日本免费| 国产一区有黄有色的免费视频| 免费久久久久久久精品成人欧美视频| av视频免费观看在线观看| 人人澡人人妻人| 色94色欧美一区二区| 在线国产一区二区在线| 男女之事视频高清在线观看| 免费日韩欧美在线观看| 视频在线观看一区二区三区| 国产精品久久久久久精品古装| 日本wwww免费看| 天天影视国产精品| 国产人伦9x9x在线观看| 亚洲av美国av| 最近最新中文字幕大全电影3 | 国产精品乱码一区二三区的特点 | 99国产精品99久久久久| 大香蕉久久网| 一区二区三区国产精品乱码| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频 | 最近最新中文字幕大全电影3 | 亚洲av成人不卡在线观看播放网| 热99re8久久精品国产| 欧美+亚洲+日韩+国产| 国产成人一区二区三区免费视频网站| 大型黄色视频在线免费观看| 精品国产一区二区久久| 丝瓜视频免费看黄片| 三级毛片av免费| av天堂在线播放| 免费在线观看亚洲国产| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 欧美亚洲日本最大视频资源| 亚洲熟女精品中文字幕| 免费在线观看影片大全网站| 成人黄色视频免费在线看| 免费在线观看影片大全网站| 在线观看日韩欧美| 精品少妇一区二区三区视频日本电影| 国产精品久久视频播放|