金 鑫,劉夢(mèng)穩(wěn),謝新月,魏一雄,宋吉娜,金鵬康*,王曉昌
電凝聚臭氧化耦合工藝混凝劑水解形態(tài)分析——基于單/雙電極排布
金 鑫1,2,劉夢(mèng)穩(wěn)1,謝新月1,魏一雄1,宋吉娜1,金鵬康1,2*,王曉昌1
(1.西安建筑科技大學(xué)環(huán)境與市政工程學(xué)院,陜西 西安 710055;2.西安交通大學(xué)人居環(huán)境與建筑工程學(xué)院,陜西 西安 710049)
探究了不同初始pH值和不同電極布置條件下電凝聚臭氧化耦合工藝(E-HOC)中混凝劑的水解形態(tài)特征,同時(shí)進(jìn)行了效能分析.結(jié)果表明,初始pH值為5時(shí),E-HOC工藝具有更高的有機(jī)物去除效率,與單極排布的E-HOC工藝相比,雙極排布的E-HOC工藝的有機(jī)物去除效率提高了12.29%,能耗降低了1.74kWh/g,法拉第效率提高了2.37%.通過Ferron法和電噴霧電離質(zhì)譜(ESI-MS)法對(duì)體系中鋁形態(tài)進(jìn)行分析,在E-HOC工藝中,初始pH值為5和雙極排布方式均有利于優(yōu)勢(shì)水解形態(tài)的生成,促進(jìn)了聚合態(tài)水解物種的形成,從而在提升臭氧催化性能的同時(shí),提高了體系的混凝特性.
電絮凝(EC);電凝聚臭氧化耦合(E-HOC);雙極連接;水解物種
電絮凝法(EC)是在外加電源的作用下,利用可溶性陽極產(chǎn)生大量金屬陽離子,原位生成金屬混凝劑[1]的廢水處理技術(shù).當(dāng)污染物濃度較高時(shí)EC處理效果較差[2],因此通常將EC與其他處理工藝結(jié)合,從而提高處理效率.常見的EC耦合工藝包括電凝聚臭氧化耦合工藝、電絮凝-吸附工藝、電絮凝-超聲波工藝和電絮凝-脈沖工藝[2].電凝聚臭氧化耦合工藝(E-HOC)在處理含油廢水[3]、鋼鐵工業(yè)廢水[4]、垃圾滲濾液[5]和城市廢水[6]方面有較高的有機(jī)物去除效率,因臭氧和混凝劑之間存在協(xié)同反應(yīng)(SOC),促進(jìn)了·OH的產(chǎn)生[6].
電極排列對(duì)電化學(xué)過程的去除效率有很大影響[7-8].單極排列需要所有的極板均與外部電源接觸,它們的2個(gè)面具有相同的極性[9].在雙極布置中,只有極端電極連接到電源[10],除了極端電極之外,每一個(gè)電極一側(cè)充當(dāng)陽極,另一側(cè)充當(dāng)陰極[11],EC工藝中雙極模式比單極模式具有更高的有機(jī)物去除性能[7-8,10,12-13].雙極布置擁有較高的節(jié)能潛力[14],并且在實(shí)際應(yīng)用中易于維護(hù)[12].關(guān)于E-HOC用單極和雙極電極處理二級(jí)出水過程去除性能的研究較少.此外,混凝劑水解形態(tài)也對(duì)混凝效果起著至關(guān)重要的作用,單核鋁形態(tài)的Ala主要通過絡(luò)合沉淀作用去除有機(jī)物[15],高聚合態(tài)的Alb因其結(jié)構(gòu)分支較多以及表面具有較高的正電荷量,主要通過吸附架橋作用和電中和作用去除有機(jī)物,形成的Al(OH)3沉淀可以通過網(wǎng)捕卷掃作用去除有機(jī)物[16],所以還需要表征在不同電極連接配置中產(chǎn)生的水解混凝劑種類的差異.初始pH值會(huì)影響混凝劑的水解形態(tài)[17],初始pH值小于3時(shí),混凝劑在溶液中主要以Al3+形式存在,初始pH值為4~8時(shí)混凝劑水解以形成單體和多聚水解產(chǎn)物為主,例如Al13O4(OH)247+、Al(OH)3(s)等,初始pH值大于10時(shí)Al(OH)3(s)溶解轉(zhuǎn)化為Al (OH)4-[18];混凝劑水解物通過水合作用產(chǎn)生表面羥基,而臭氧可以與混凝劑水解物的表面羥基反應(yīng),產(chǎn)生·OH[19],因此,臭氧的加入可能會(huì)改變EC反應(yīng)過程中混凝劑的水解形態(tài),然而,這一現(xiàn)象仍未得到證實(shí).
針對(duì)上述問題,本文通過構(gòu)建兩種電極排布方式的E-HOC工藝體系,探究不同工藝對(duì)污水廠二級(jí)出水溶解性有機(jī)物的處理效率,采用Ferron分析和電噴霧電離質(zhì)譜(ESI-MS)方法分析不同初始pH值下EC和E-HOC工藝的水解鋁物質(zhì)形態(tài),明確混凝劑水解產(chǎn)物的轉(zhuǎn)化規(guī)律,并對(duì)不同工藝進(jìn)行了能效分析.
實(shí)驗(yàn)用水來自西安市某污水處理廠二級(jí)出水(WWTP),該污水處理廠進(jìn)水主要來自服務(wù)區(qū)域內(nèi)的生產(chǎn)廢水和生活污水,處理規(guī)模為500,000m3/d,總水力停留時(shí)間(HRT)為20h,污泥齡為19d.該實(shí)驗(yàn)原水指標(biāo)如表1所示.
表1 污水處理廠二級(jí)出水水質(zhì)特征
1.2.1 實(shí)驗(yàn)方法 E-HOC實(shí)驗(yàn)在500mL的二級(jí)出水體系中進(jìn)行,實(shí)驗(yàn)開始前加入0.2mmol/L磷酸鹽緩沖液,然后使用(1+9)HNO3(1.43mol/L)和0.1mol/L NaOH溶液調(diào)節(jié)pH值在(5±0.2)、(7±0.2)和(9±0.2)附近,設(shè)置電流密度(10mA/cm2).通過臭氧發(fā)生裝置通入臭氧(臭氧的投加量為1.65mg O3/mg DOC),同時(shí)打開氧氣源臭氧發(fā)生器和直流電源,電絮凝和臭氧氧化等反應(yīng)同時(shí)發(fā)生,同時(shí)采用磁力攪拌器(德國IKA, color squid)對(duì)反應(yīng)器以100r/min進(jìn)行攪拌.探究E- HOC體系對(duì)二級(jí)出水的處理特性時(shí),反應(yīng)時(shí)間為15min,反應(yīng)結(jié)束后通過取樣管取樣,經(jīng)0.45μm的濾膜(上海新亞)過濾后測(cè)定DOC,測(cè)定結(jié)果均重復(fù)3遍.
圖1 單極和雙極電極連接下的臺(tái)式E-HOC系統(tǒng)示意
1.DC電源;2.反應(yīng)單元;3.不銹鋼電極;4.鋁電極;5.曝氣器;6.混合器;7.磁力攪拌;8.氧氣罐;9.臭氧發(fā)生器;10.玻璃轉(zhuǎn)子流量計(jì);11.KI吸收瓶
EC實(shí)驗(yàn)在與E-HOC實(shí)驗(yàn)相同的條件下進(jìn)行,不通臭氧.探究傳統(tǒng)EC實(shí)驗(yàn)對(duì)二級(jí)出水的處理特性時(shí),測(cè)試方法同上.
1.2.2 實(shí)驗(yàn)裝置 E-HOC實(shí)驗(yàn)裝置(單極/雙極)如圖1所示,反應(yīng)裝置為長(zhǎng)方體有機(jī)玻璃電解反應(yīng)器,長(zhǎng)為10cm,寬為7cm,高為12cm.實(shí)驗(yàn)所用極板材料為鋁(1060純鋁,含鋁量99.6%)和不銹鋼(316級(jí)) ,其有效表面積為84cm2[7cm×6cm×0.1cm (長(zhǎng)×寬×厚度)],電極完全浸沒于水中且平行放置,電極之間的間距為2cm.在實(shí)驗(yàn)開始前,對(duì)電極依次進(jìn)行砂紙打磨,1mol/L HCl溶液清洗10min,去離子水沖洗,烘干處理.臭氧的制備裝置如圖1所示,通過氧氣源臭氧發(fā)生器(濟(jì)南三康,SK-CFG-5P,產(chǎn)生臭氧濃度 25~35mg/L,功率120W)進(jìn)入氣體流量計(jì),保持200mL/ min的出口流量,通過曝氣頭均勻分布在反應(yīng)體系中,未反應(yīng)的剩余臭氧通入20%的KI吸收瓶.EC實(shí)驗(yàn)裝置(單極/雙極)在E-HOC實(shí)驗(yàn)的基礎(chǔ)上去除臭氧發(fā)生裝置,實(shí)驗(yàn)所用電源為穩(wěn)壓直流電源(無錫安耐斯,JP5200D),可供調(diào)節(jié)電流范圍為0~5A,電壓范圍為0~200V.
1.3.1 水質(zhì)指標(biāo)測(cè)定 溶解性有機(jī)碳(DOC)采用日本島津TOCVCPH分析儀進(jìn)行測(cè)定,測(cè)定前樣品須經(jīng)0.45μm濾膜過濾,隨后用硫酸酸化至pHM<3,再用氮?dú)獯得?min;濁度使用便攜式HANNA HI93703-1型濁度儀測(cè)定;UV254及色度采用紫外分光光度計(jì)進(jìn)行測(cè)定,測(cè)定前水樣經(jīng)0.45μm濾膜過濾,使用1cm石英比色皿,分別在波長(zhǎng)為254和350nm處測(cè)定.
1.3.2 Ferron逐時(shí)絡(luò)合比色法 取5.5mL Ferron試劑[20]于50mL比色管中,加入5mL樣品,迅速用去離子水稀釋至50mL,搖勻,在362nm處測(cè)定吸光度.1min時(shí)測(cè)得的溶液吸光度值代表單核水解產(chǎn)物(Ala);120min時(shí)測(cè)得的吸光度值代表Ala和低聚合態(tài)水解產(chǎn)物(Alb)[21];通過公式AlT=Ala+Alb+Alc計(jì)算高聚合態(tài)水解產(chǎn)物(Alc)含量.
1.3.3 總鋁測(cè)定(ICP-MS法) 總鋁(AlT)采用電感耦合等離子體質(zhì)譜儀(ICP-MS)進(jìn)行測(cè)定.該儀器型號(hào)為ELAN DRC-e,由美國Perkin Elmer SCIEX公司生產(chǎn),所有樣品經(jīng)過濾后用HNO3酸化至pH=2后進(jìn)行測(cè)定.
1.3.4 電噴霧質(zhì)譜(ESI-MS)分析 本實(shí)驗(yàn)用配備電噴霧離子源的微質(zhì)量混合四極飛行時(shí)間質(zhì)譜儀(2695XEmicro,Waters,USA)記錄ESI-MS質(zhì)譜,所有ESI測(cè)量均在陽離子模式下進(jìn)行.在ESI-MS測(cè)量之前,將所有樣品過濾以除去Al沉淀,溶液中僅保留溶解的物質(zhì).將溶液以5μL/min的流速引入光譜儀.所有數(shù)據(jù)均已標(biāo)準(zhǔn)化為強(qiáng)度250.
1.3.5 法拉第效率計(jì)算 電解過程中產(chǎn)生的鋁的法拉第效率(FE)用來描述電化學(xué)反應(yīng)系統(tǒng)中的電荷轉(zhuǎn)移效率,衡量體系的電絮凝性能和極板鈍化情況,計(jì)算公式[22]為:
式中: F為法拉第常數(shù),96485C/mol;為實(shí)驗(yàn)觀察到的生成Al的質(zhì)量,g;為電流強(qiáng)度,A;為電解時(shí)間,s;為生成Al的摩爾質(zhì)量,g/mol;為電極處反應(yīng)中轉(zhuǎn)移的電子數(shù),= 3個(gè)/mol鋁.
1.3.6 能量消耗計(jì)算 能量消耗(sp)用于分析能效,能效定義為降解水中一克污染物所需的電能,單位為kWh/g,計(jì)算公式為[23]:
式中:為槽電壓,V;為施加電流,A;為電解時(shí)間,h;為污染物分解量,g.
圖2中電流密度為10mA/cm2時(shí),不同初始pH 值下雙極模式較單極模式對(duì)DOC、UV254和色度具有更高的去除效率.在最佳操作條件下(pH=5),雙極電絮凝工藝(BEC)對(duì)DOC、UV254和色度的平均去除率分別為11.68%、54.13%和50.00%,雙極電凝聚臭氧化耦合工藝(BE-HOC)對(duì)DOC、UV254和色度的平均去除率分別為43.67%、90.83%和88.88%,均高于相同工況下的單極體系.這與Hu等[24]的研究結(jié)果一致,雙極工藝能為電化學(xué)反應(yīng)提供更大的有機(jī)污染物與電極接觸面積,同時(shí)也使混凝劑更均勻地分布在溶液中,從而強(qiáng)化了有機(jī)物的去除.雙極模式具有更好的去除效果還可能與這一模式下極板鈍化較弱有關(guān)[25].由圖3可以看到,BEC工藝的法拉第效率高于單極電絮凝工藝(MEC),同樣BE-HOC工藝的法拉第效率也高于單極電凝聚臭氧化耦合工藝(ME-HOC),雙極排布具有更高的法拉第效率,說明雙極模式可以緩解極板鈍化,產(chǎn)生了更多的鋁物質(zhì),在電解過程中擁有更高的電流效率.
圖3 初始pH=5時(shí)不同工藝的總鋁含量和法拉第效率
由圖2還可以看出,雙極工藝的出水濁度低于單極工藝,這可能是因?yàn)閱螛O工藝形成的絮體較小,懸浮于溶液中導(dǎo)致出水濁度較高,而雙極工藝形成較大的絮體,易于沉降.同時(shí)發(fā)現(xiàn)E-HOC工藝的出水濁度明顯低于EC工藝,說明臭氧的加入促進(jìn)了較小絮體凝聚為較大絮體.
從圖2還可以看出,與初始pH=7和9相比,EC工藝和E-HOC工藝,在pH=5時(shí)對(duì)二級(jí)出水具有更好的處理效果,這可能是因?yàn)槿跛嵝詶l件阻礙了氫氧根離子在陽極的氧化,而隨著堿度的增加,溶液中的氫氧根離子數(shù)量增加,繼而在陽極被氧化,減少了Al3+的生成[26-27].此外,EC工藝的DOC平均去除效率低于20%,低于E-HOC工藝對(duì)DOC的平均去除率,這與Jin等[28]的研究結(jié)果一致,E-HOC工藝中存在臭氧和混凝劑之間的協(xié)同反應(yīng)(SOC),強(qiáng)化了·OH的生成,使E-HOC工藝較EC工藝具有更好的有機(jī)物去除能力.
2.2.1 Ferron分析 混凝劑水解形態(tài)會(huì)影響電絮凝工藝的去除性能,為了解E-HOC工藝的水解形態(tài)特征,使用Ferron分析的方法分析了Al物種形態(tài)分布如圖4所示,在不同初始pH值條件下,所有體系中混凝劑的水解形態(tài)分布均由單體(Ala)向聚合態(tài)(Alb)轉(zhuǎn)變,最終發(fā)展為Alc.所有體系中單體和聚合水解形態(tài)的含量在1min時(shí)達(dá)到最大值,然后隨著水解時(shí)間的增加而下降.單體與聚合態(tài)水解產(chǎn)物的變化趨勢(shì)相類似,而Alc一直隨著水解時(shí)間的增加而增加.分別對(duì)比反應(yīng)1min時(shí),單/雙極排布下EC工藝和E-HOC工藝中Al形態(tài)變化,發(fā)現(xiàn)雙極排布時(shí)兩種工藝均較單極排布具有更高含量的Alb,BEC、BE-HOC工藝較其對(duì)應(yīng)的單極工藝中Alb的含量分別提高了8.65%、14.41% (pH=5),8.45%、6.21% (pH=7),0.08%、7.00% (pH=9),說明無論是EC體系還是E-HOC體系,雙電極排布方式都促進(jìn)了Alb的生成.這一結(jié)果與Hu等[24]的研究結(jié)果一致,即使用雙極電極的EC工藝比使用單極電極的EC工藝具有更高的Alb含量.此外,圖4還可以看出pH=5時(shí)4種工藝都較pH=7和pH=9時(shí)在反應(yīng)1min后具有更高的Alb含量.而臭氧的加入使E-HOC體系具有更多的Alb,BE-HOC體系中的Alb含量最高.
Alb的含量與Al13(Al13O4(OH)247+)有關(guān),而Al13因具有高的正電荷、較強(qiáng)的架橋能力和在混凝過程中較為穩(wěn)定的特點(diǎn)被認(rèn)為是混凝中的優(yōu)質(zhì)水解形態(tài)[29-30],雙極模式下大量Al13的存在,使混凝效率得到了提高.同時(shí),表面羥基是臭氧催化氧化的活性位點(diǎn),能夠有效的催化臭氧產(chǎn)生·OH,而Alb具有更高比例的表面羥基含量,因此,Alb的強(qiáng)化生成也提高了體系的氧化能力,所以BE-HOC的有機(jī)物去除效率高于ME-HOC工藝,同時(shí),pH=5時(shí),E-HOC體系比pH=7和9時(shí)具有更好的處理效果.
2.2.2 ESI-MS分析 為進(jìn)一步了解不同工藝混凝劑水解形態(tài)特征,采用ESI-MS分析方法對(duì)比不同初始pH值下EC工藝和E-HOC工藝的Al形態(tài)變化,如圖5所示.根據(jù)ESI-MS表征結(jié)果,將鋁形態(tài)分為4類:低聚合鋁(Al3-Al5)、中等聚合鋁(Al6-Al10)、高聚合鋁(Al11-Al20)及Alu(未測(cè)出部分,如Al(OH)3或Al(OH)4-),所有鋁形態(tài)的峰強(qiáng)度之和作為總鋁離子數(shù)量(AlT).AlT與[(Al3-Al5)+(Al6-Al10)+(Al11- Al20)]的差值為Alu[31],通過對(duì)不同鋁形態(tài)對(duì)應(yīng)離子峰的相對(duì)強(qiáng)度定量計(jì)算得到鋁形態(tài)的分布如圖6.
由圖5可以看出,不同初始pH值的EC和E-HOC工藝,單極排布工藝的主要鋁形態(tài)為Al5、Al6、Al7、Al8、Al10等低、中等聚合形態(tài),雙極排布工藝的主要鋁形態(tài)則是Al12、Al13、Al15、Al17、Al18等高等聚合態(tài).實(shí)驗(yàn)結(jié)果表明,在EC和E-HOC工藝中,雙極排布較單極排布具有更豐富的鋁形態(tài),出現(xiàn)Al15、Al17和Al18等高聚合態(tài),表明雙極排布能促使Al形態(tài)由低聚合態(tài)向高聚合態(tài)轉(zhuǎn)化.同時(shí),由圖6水解形態(tài)分布表可以看出初始pH=5時(shí)較pH=7和9時(shí)具有更多的中等聚合鋁形態(tài),這一結(jié)果與Ferron分析結(jié)果一致,弱酸條件下更有利于Alb的生成,使這一條件下具有更高的有機(jī)物去除效率.
如圖6所示,在EC和E-HOC工藝中,雙極條件導(dǎo)致中等聚合物(Al6-Al10)的比例降低,而大聚合物(Al11-Al21)和未檢測(cè)部分(Alu)的比例增加,這可能源于雙極連接加速了水解聚合反應(yīng).而Ghosh等[14]證實(shí),雙極連接的溶液pH值高于單極連接,因此,在雙極體系中水解和聚合過程被加速.與EC工藝相比, E-HOC工藝的Al11-Al21和Alu含量增多,Al6-Al10含量降低,這表明臭氧的加入有利于更高聚合鋁物種的形成.臭氧在靜電力和氫鍵作用力的驅(qū)動(dòng)下與混凝劑水解產(chǎn)物表面的質(zhì)子化羥基相互作用釋放·O3H、·O2H和·OH以形成表面羥基,而后表面羥基(Al-OH)與表面質(zhì)子化羥基(Al-OH2)結(jié)合生成-OH·OH2橋鍵,釋放H2O后形成羥基橋(Al-OH-Al),這一聚合過程不斷重復(fù),生成高聚合態(tài)水解產(chǎn)物[32].因此臭氧的引入促進(jìn)了混凝劑水解產(chǎn)物間的聚合,增強(qiáng)了E-HOC體系的混凝與臭氧催化作用.
雙極體系對(duì)有機(jī)物的強(qiáng)化去除依托于雙極條件下的兩方面特質(zhì),首先雙極體系較單極體系擁有更高的pH值環(huán)境,加速了體系中混凝劑的水解聚合過程,促使了中等聚合物向高聚合物的轉(zhuǎn)化,更加豐富的鋁形態(tài)出現(xiàn)提高了體系的混凝作用,強(qiáng)化了有機(jī)物的去除;其次,雙極體系中陽極鈍化現(xiàn)象減緩,電流效率高,鋁做犧牲陽極產(chǎn)生了較單極體系更多的鋁物質(zhì),這些鋁物質(zhì)繼而在雙極條件下進(jìn)行更加迅速的水解聚合反應(yīng),生成高聚合態(tài)水解產(chǎn)物,強(qiáng)化有機(jī)物的去除.
臭氧的加入有利于加速混凝劑的水解聚合過程,同時(shí),臭氧與混凝劑水解物的表面羥基反應(yīng),產(chǎn)生·OH,在BE-HOC體系中,臭氧與雙極的協(xié)同作用,加速了體系中高聚合態(tài)物種的形成和·OH的生成,提高了體系的混凝與臭氧催化作用,強(qiáng)化了有機(jī)物的去除.
由公式(2)計(jì)算得到不同極板排布下EC和E-HOC工藝的能耗如圖7所示.由圖7可知,初始pH=5時(shí)4種工藝具有較低的能耗,這是因?yàn)樵陉枠O界面,低 pH 值環(huán)境抑制了極板表面層的形成[22],減弱了鈍化現(xiàn)象,隨著pH值升高,金屬氧化物在陽極沉淀的可能性增大,使鈍化現(xiàn)象嚴(yán)重,阻礙了極板上鋁的溶解,增加了能量消耗[25].同時(shí)雙極排布工藝較單極排布工藝也具有較低的能耗,初始pH=5時(shí)BEC工藝的能量消耗為2.14kWh/g低于MEC工藝的10.45kWh/g,同樣BE-HOC工藝的能量消耗8.10kWh/g也低于ME-HOC工藝的9.84kWh/g,而E-HOC工藝由于外加臭氧使其能耗高于同樣工況下的EC工藝.上述研究表明,雙極模式減弱了極板的鈍化,并且雙極模式能夠產(chǎn)生更加豐富的混凝劑水解形態(tài),具有更加迅速的水解聚合過程,提高了體系的混凝與催化能力,使得體系在相同的反應(yīng)時(shí)間內(nèi)具有更高的有機(jī)物去除率.
圖7 EC和E-HOC工藝的能耗
3.1 電極的排布方式對(duì)E-HOC工藝的有機(jī)物去除效率具有顯著的影響,雙極模式比單極模式具有更高的有機(jī)物去除效率,在最佳反應(yīng)條件下(pH=5), BE-HOC工藝對(duì)DOC和UV254的去除效率達(dá)43.67%和90.83%,分別比ME-HOC工藝提高了12.29%和18.35%.
3.2 Ferron逐時(shí)絡(luò)合比色法和電噴霧質(zhì)譜法(ESI-MS)的分析結(jié)果表明,雙極排布提升了體系中聚合態(tài)水解產(chǎn)物含量,同時(shí)臭氧的加入可加速混凝劑的水解聚合作用,進(jìn)一步促進(jìn)了聚合態(tài)水解產(chǎn)物的形成,同時(shí)提高了體系的混凝和臭氧催化效果.
3.3 各工藝的雙極排布能耗均低于相應(yīng)的單極排布,初始pH值為5時(shí)的工藝能耗顯著低于初始pH值為7和9.同時(shí)雙極排布的法拉第效率高于單極排布,雙極排布能夠減弱極板鈍化,具有更高的總鋁含量和電流效率.
[1] Ratna Kumar P, Chaudhari S, Khilar K C, et al. Removal of arsenic from water by electrocoagulation [J]. Chemosphere, 2004,55(9):1245- 1252.
[2] Al-Qodah Z, Tawalbeh M, Al-Shannag M, et al. Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: A state-of-the-art review [J]. Science of The Total Environment, 2020,744:140806.
[3] Khalifa O, Banat F, Srinivasakannan C, et al. Ozonation-assisted electro-membrane hybrid reactor for oily wastewater treatment: A methodological approach and synergy effects [J]. Journal of Cleaner Production, 2021,289:125764.
[4] Das P P, Anweshan, Mondal P, et al. Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater [J]. Chemosphere, 2021,263:128370.
[5] Ghahrchi M, Rezaee A. Electrocatalytic ozonation process supplemented by EDTA-Fe complex for improving the mature landfill leachate treatment [J]. Chemosphere, 2021,263:127858.
[6] Jin X, Liu Y, Wang Y, et al. Towards a comparison between the hybrid ozonation-coagulation (HOC) process using Al- and Fe-based coagulants: Performance and mechanism [J]. Chemosphere, 2020,253: 126625.
[7] Abdessamad N, Akrout H, Hamdaoui G, et al. Evaluation of the efficiency of monopolar and bipolar BDD electrodes for electrochemical oxidation of anthraquinone textile synthetic effluent for reuse [J]. Chemosphere, 2013,93(7):1309-1316.
[8] Modirshahla N, Behnajady M A, Mohammadi-Aghdam S. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation [J]. Journal of Hazardous Materials, 2008,154(1): 778-786.
[9] Kobya M, Ulu F, Gebologlu U, et al. Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe–Al electrodes [J]. Separation and Purification Technology, 2011,77(3):283-293.
[10] Golder A K, Samanta A N, Ray S. Removal of Cr3+by electrocoagulation with multiple electrodes: Bipolar and monopolar configurations [J]. Journal of Hazardous Materials, 2007,141(3):653- 661.
[11] Koparal A S, ??ütveren ü B. Removal of nitrate from water by electroreduction and electrocoagulation [J]. Journal of Hazardous Materials, 2002,89(1):83-94.
[12] Asselin M, Drogui P, Benmoussa H, et al. Effectiveness of electrocoagulation process in removing organic compounds from slaughterhouse wastewater using monopolar and bipolar electrolytic cells [J]. Chemosphere, 2008,72(11):1727-1733.
[13] Mameri N, Yeddou A R, Lounici H, et al. Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes [J]. Water Research, 1998, 32(5):1604-1612.
[14] Ghosh D, Medhi C R, Purkait M K. Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections [J]. Chemosphere, 2008,73(9):1393-1400.
[15] 趙華章,楊宏偉,蔣展鵬,等.混凝沉淀過程中鋁系混凝劑的形態(tài)轉(zhuǎn)化規(guī)律 [J]. 中國環(huán)境科學(xué), 2005,(2):183-187.
Zhao H Z, Yang H W, Jiang Z P, et al. Transformation rule of aluminum form of Al-based coagulants in coagulation and sedimentation process [J]. China Environmental Science, 2005,(2): 183-187.
[16] 劉海龍,趙 霞,焦茹媛,等.聚合鋁的水解形態(tài)對(duì)混凝過程中磷分布轉(zhuǎn)化的影響 [J]. 環(huán)境科學(xué), 2011,32(1):102-107.
Liu H L, Zhao X, Jiao R Y, et alEffects of polymer aluminum hydrolysis on phosphorus distribution in coagulation [J]. Environmental Science, 2011,32(1):102-107.
[17] Omwene P I, Kobya M. Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study [J]. Process Safety and Environmental Protection, 2018,116:34-51.
[18] Georgantas D A, Grigoropoulou H P. Orthophosphate and metaphosphate ion removal from aqueous solution using alum and aluminum hydroxide [J]. Journal of Colloid and Interface Science, 2007,315(1):70-79.
[19] Jin X, Jin P, Hou R, et al. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant [J]. Journal of Hazardous Materials, 2017,327: 216-224.
[20] 王東升,湯鴻霄,欒兆坤.顆粒物懸浮體系中聚合鋁凝聚絮凝形態(tài)表征(Ⅰ):Al-Feron法的應(yīng)用研究 [J]. 環(huán)境科學(xué), 1999,(5):4-8.
Wang D S, Tang H X, Luan Z K. Characterization of coagulation- flocculation species in the particle system(Ⅰ):the application of ferron method. Environmental Science, 1999,(5):4-8.
[21] 高寶玉,岳欽艷,王占生,等.聚硅氯化鋁(PASC)的形態(tài)分布及轉(zhuǎn)化規(guī)律——Ⅰ.Al-Ferron逐時(shí)絡(luò)合比色法研究PASC溶液中鋁的形態(tài)分布及轉(zhuǎn)化規(guī)律 [J]. 環(huán)境化學(xué), 2000,(1):1-7.
Gao B Y, Yue Q Y, Wang Z S, et al. Study on the species distribution and transformation of polyaluminum silicate chloride(PASC)——I. The species distribution and transformation of PASC determined by Al-Ferron complexation timed spectrophotometric method [J]. Environmental Chemistry, 2000,(1):1-7.
[22] Ingelsson M, Yasri N, Roberts E P L. Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation—a review [J]. Water Research, 2020,187:116433.
[23] Jonoush Z A, Rezaee A, Ghaffarinejad A. Electrocatalytic nitrate reduction using Fe0/Fe3O4nanoparticles immobilized on nickel foam: Selectivity and energy consumption studies [J]. Journal of Cleaner Production, 2020,242:118569.
[24] Hu C, Wang S, Sun J, et al. An effective method for improving electrocoagulation process: Optimization of Al13polymer formation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016,489:234-240.
[25] Mechelhoff M, Kelsall G H, Graham N J D. Electrochemical behaviour of aluminium in electrocoagulation processes [J]. Chemical Engineering Science, 2013,95:301-312.
[26] Mouedhen G, Feki M, Wery M D P, et al. Behavior of aluminum electrodes in electrocoagulation process [J]. Journal of Hazardous Materials, 2008,150(1):124-135.
[27] Picard T, Cathalifaud-Feuillade G, Mazet M, et al. Cathodic dissolution in the electrocoagulation process using aluminium electrodes [J]. Journal of environmental monitoring: JEM, 2000,2(1): 77-80.
[28] Jin X, Xie X, Liu Y, et al. The role of synergistic effects between ozone and coagulants (SOC) in the electro-hybrid ozonation- coagulation process [J]. Water Research, 2020,177:115800.
[29] Lin J-L, Chin C-J M, Huang C, et al. Coagulation behavior of Al13aggregates [J]. Water Research, 2008,42(16):4281-4290.
[30] 胡承志,劉會(huì)娟,曲久輝.Al13形態(tài)在混凝中的作用機(jī)制 [J]. 環(huán)境科學(xué), 2006,(12):2467-2471.
Hu C Z, Liu H J, Qu J H. Coagulation behavior of Al13species [J]. Environmental Science, 2006,(12):2467-2471.
[31] 宋吉娜.腐殖酸質(zhì)子化基團(tuán)與鋁離子在水中的遷變及凝聚行為表征 [D]. 西安:西安建筑科技大學(xué), 2018.
Song J N. The proton migration and coagulation characteristics between the protonated groups of humic acid and aluminum ions [D]. Xi'an: Xi'an University of Architecture and Technology, 2018.
[32] Yu W-Z, Gregory J, Graham N. Regrowth of broken hydroxide flocs: Effect of added fluoride [J]. Environmental Science & Technology, 2016,50(4):1828-1833.
Analysis of coagulant hydrolysed species in the electro-hybrid ozonation-coagulation process—Based on monopolar/bipolar electrode arrangement.
JIN Xin1,2, LIU Meng-wen1, XIE Xin-yue1, WEI Yi-xiong1, SONG Ji-na1, JIN Peng-kang1,2*, WANG Xiao-chang1
(1.School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi’an 710055, China;2.School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China)., 2022,42(4):1643~1651
In this paper, the hydrolysed coagulant species in the electro-hybrid ozonation-coagulation process (E-HOC) were analysed at different initial pH and different electrode arrangement conditions, and the removal efficacy was investigated. The results showed that a higher organic matter removal efficiency was exhibited at initial pH 5in the E-HOC process. Compared with the E-HOC process with monopolar connections, the organic matter removal efficiency of the bipolar arrangement is improved by 12.29%, energy consumption is reduced by 1.74kWh/g, and Faradaic efficiency is improved by 2.37%. Ferron analysis and electrospray ionization mass spectrometry (ESI-MS) were used to analyze the hydrolysed Al species of the system. In the E-HOC process, weak acid conditions (initial pH 5) and bipolar arrangement can lead to the enhanced polymeric species generation, which improved both the coagulation and catalytic ozonation ability in the E-HOC system.
electrocoagulation (EC);electro-hybrid ozonation-coagulation process (E-HOC); bipolar connection; hydrolysed species
X703.1
A
1000-6923(2022)04-1643-09
金 鑫(1987-),男,陜西興平人,副教授,博士,主要研究方向?yàn)槲蹚U水深度處理與資源化利用.發(fā)表論文30余篇.
2021-09-23
國家自然科學(xué)基金資助項(xiàng)目(52070151,51908177);陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021ZDLSF05-06)
*責(zé)任作者, 教授, pkjin@xjtu.edu.cn