沈秋實(shí),吉芳英*,魏嘉志,2,姜 蕾,張 倩,毛圓翔,劉草蔥
A2O缺氧池添加天然碳源玉米芯的脫氮特征
沈秋實(shí)1,吉芳英1*,魏嘉志1,2,姜 蕾1,張 倩1,毛圓翔1,劉草蔥1
(1.重慶大學(xué)環(huán)境與生態(tài)學(xué)院,重慶 400045;2.中國電建集團(tuán)成都勘測設(shè)計(jì)研究院有限公司,四川 成都 610072)
基于低碳源污水易硝化難反硝化的問題,構(gòu)建了在A2O缺氧池添加天然碳源玉米芯的中試系統(tǒng),采用物料衡算、反硝化速率測定和微生物群落分析等方法,研究了該系統(tǒng)的脫氮效能和反硝化體系特征.結(jié)果表明,TN去除率提升13%,出水從16.2降至10.0mg/L;同時不會造成出水氨氮和色度超標(biāo)的風(fēng)險(xiǎn).物料衡算表明,COD碳源的氧化消耗量和出水排放量降低,更多的碳源用于反硝化和污泥增殖,從而提升了氮素的去除量,其中反硝化的提升貢獻(xiàn)更大.缺氧池形成了懸浮污泥加生物膜的復(fù)合型脫氮體系:在污水自身碳源存在時,生物膜和懸浮污泥的反硝化速率分別為24.89和32.42mg/(L?h),可實(shí)現(xiàn)快速脫氮;當(dāng)自身碳源消耗殆盡,二者的反硝化速率分別是4.71和1.73mg/(L×h),單位生物量反硝化速率分別是1.58和59.1mg NO3--N/(g VSS×h),表明玉米芯主要被生物膜利用以維持反硝化進(jìn)行.該體系的主要反硝化菌屬為,此外在生物膜表面還富集了能夠附著生長的和,以及能夠降解玉米芯木質(zhì)素的等反硝化菌屬.
缺氧池;玉米芯;反硝化;物料衡算;生物群落
外加碳源是強(qiáng)化低碳源城鎮(zhèn)污水脫氮的常規(guī)選擇[1],常用的液體碳源(甲醇、葡萄糖、醋酸鈉等)投用量巨大、合成固體碳源(聚己內(nèi)酯、聚丁二酸丁二醇酯、聚乳酸等)價(jià)格高昂[2],對于大規(guī)模的城鎮(zhèn)污水處理廠,如何降低碳源投加成本是亟需解決的實(shí)際問題.天然植物類固體碳源,如玉米芯、秸稈等,廉價(jià)易得,是可利用的一類外加碳源.其中玉米芯因有效成分含量高,其釋碳供給的反硝化速率快,而受到關(guān)注[3].
根據(jù)玉米芯添加位置,目前的研究可分為添加在深度處理的生物濾池[4-6]及二級處理SBR生化池這兩類[7-10].雖然玉米芯填充在生物濾池中可有效降低出水TN,但碳源過度溶出,尾水仍需經(jīng)陶粒濾池進(jìn)一步去除有機(jī)物殘留.玉米芯添加在SBR反應(yīng)器中,可借助活性污泥吸附性和曝氣氧化過程降低玉米芯溶出有色物質(zhì)的出水殘留,但出水氨氮較投加前升高;此外還有研究[11-12]發(fā)現(xiàn)玉米芯全程浸泡于SBR,不僅缺氧攪拌時釋碳供給反硝化,還會在曝氣、沉淀和出水等階段釋碳,存在COD超標(biāo)現(xiàn)象.為了降低玉米芯SBR系統(tǒng)的出水COD和氨氮,需要增大曝氣的強(qiáng)度和時間才能實(shí)現(xiàn)[13],這樣雖然彌補(bǔ)了硝化效果,卻會加大外碳源的無效氧化及浪費(fèi),硝化效果的保障和碳源的有效利用這一矛盾有待解決.
針對低碳源污水處理易硝化的特點(diǎn),為了克服外碳源對硝化產(chǎn)生不利影響,本研究將天然固體碳源玉米芯添加在A2O缺氧池,期望通過外碳源對反硝化的空間靶向添加,使其與硝化過程時空隔離,從而解決前述研究中的問題,圍繞處理效果、物料衡算、速率分析和微生物群落組成,重點(diǎn)研究了該系統(tǒng)的脫氮效能及反硝化體系特征.
新建一套A2O氧化溝中試系統(tǒng)(圖1),其主體由鋼板和混凝土澆筑,隔斷用PE板材.裝置尺寸數(shù)據(jù)見表1;采用豎流式二沉池,直徑0.98m,底部錐角60°,容積1.5m3.
圖1 裝置及碳源填充位置示意
中試系統(tǒng)污泥直接取自重慶某城鎮(zhèn)污水廠A2O生化池,初始濃度MLSS約3500mg/L,裝置進(jìn)水為實(shí)際城鎮(zhèn)生活污水,主要水質(zhì)指標(biāo)見表2.運(yùn)行時,由閥門開合度控制各回流泵流量和回流比;由電子繼電器和電磁流量計(jì)控制剩余污泥排放量及SRT;通過氣閥開合度控制空壓機(jī)流量,維持好氧池末端DO.運(yùn)行控制參數(shù)見表1.
表1 裝置尺寸及運(yùn)行參數(shù)
表2 中試裝置進(jìn)水水質(zhì)
天然碳源玉米芯的填充方式為:先將玉米芯剪切成直徑1~2cm,長度4cm的柱狀,干燥后裝入尼龍網(wǎng)袋內(nèi),每袋約3.1kg,共8袋約25kg(缺氧池體積填充比為5%);將裝好的網(wǎng)袋浸泡在盛有缺氧池混合液的塑料大桶內(nèi)掛膜24h,隨后綁在缺氧池內(nèi)的豎直鋼架上,使其完全浸沒在液面以下.
1.2.1 固體碳源釋碳特性 取10g烘干玉米芯破碎成2cm見方的塊狀并平分為兩組,其中一組浸泡在裝有缺氧池濃縮液的燒杯內(nèi)掛膜處理3h;隨后兩組分別轉(zhuǎn)移至裝有500mL去離子水的燒杯內(nèi)封口靜置,每12h取浸出液測定COD、NH4+-N和NO3--N,每24h測試浸出液的色度.
1.2.2 碳源添加對運(yùn)行效果的影響 以未添加碳源系統(tǒng)的穩(wěn)定運(yùn)行階段作為對照組R1;以添加碳源后系統(tǒng)的穩(wěn)定運(yùn)行階段作為實(shí)驗(yàn)組R2. 每日監(jiān)測進(jìn)出水COD、TN及氨氮,記錄污泥濃度(X和XV)及排泥量(ΔX),取穩(wěn)定階段缺氧池玉米芯,超聲剝離附著其上的生物膜,以單位質(zhì)量玉米芯所附著的污泥質(zhì)量表示生物膜生物量(XC).
1.2.3 污泥反硝化動力學(xué) 測定缺氧池生物膜污泥(M)和懸浮污泥(S)的反硝化速率:M組錐形瓶中放入一塊干重約為3.35g的掛膜玉米芯,加入實(shí)際污水和KNO3溶液定容至500mL;S組錐形瓶中加入缺氧池濃縮污泥、實(shí)際污水、KNO3溶液和少量玉米芯浸出液,定容至500mL;兩組的初始污泥濃度和碳氮濃度與實(shí)際缺氧池相同,C/N約為4、硝酸鹽濃度為26mg/L;分別加入幾滴丙烯基硫脲(Allylthiourea)抑制硝化反應(yīng)[14],隨后置于25℃恒溫?fù)u床中震蕩,定時取樣過濾測定硝酸鹽濃度.
COD:快速消解分光光度法,TN:堿性過硫酸鉀消解-紫外分光光度法,氨氮:納氏試劑分光光度法,污泥濃度和生物量:重量法,色度:稀釋倍數(shù)法,DO:便攜式溶解氧儀.
污泥樣本的DNA提取和高通量測序:分別取缺氧池懸浮污泥和掛膜玉米芯上剝離的生物膜污泥樣品,在4℃環(huán)境下離心棄除上清液,然后保存在-80℃冰箱中備用.使用FastDNA?SPIN Kit for Soil(MP Biomedicals, CA, USA)試劑盒提取樣品DNA,采用MiSeq PE300平臺對16S rDNA基因序列進(jìn)行測序,測序引物為338F_806R.群落多樣性分析在上海美吉生物i-sanger云平臺(上海,中國)進(jìn)行,通過與MiDAS基因庫(http://midasfieldguide.org/guide)對比篩選功能微生物.
中試系統(tǒng)COD來源包含進(jìn)水(Cinf)和玉米芯釋放(Ccorn),去向包括出水(Ceff)、剩余污泥有機(jī)質(zhì)中包含的(CS)、反硝化消耗的(CDN)和氧化作用消耗的COD(CO);系統(tǒng)進(jìn)水的氮(Ninf)一部分隨出水流出(Neff),一部分被同化在剩余污泥有機(jī)質(zhì)排除系統(tǒng)(NS),還有一部分被反硝化去除(NDN).剩余污泥有機(jī)質(zhì)以C5H7O2N計(jì),其COD含量為1.487g COD/g VSS, N含量為0.124g N/g VSS.
Cinf+Ccorn=Ceff+CS+CDN+CO(1)
Ninf=Neff+NS+NDN(2)
其中,
CDN+2.86′NDN(3)
CS=1.487′D′(4)
NS=1.124′D′(5)
如圖2所示,玉米芯掛膜不會改變氮素釋放,浸出液中的氮素以NH4+-N為主,NO3--N未檢出,且浸出液的NH4+-N濃度在24h內(nèi)快速升高,隨后穩(wěn)定在4.5mg/L左右;玉米芯掛膜前后浸出液的COD/N分別為133和164,不會增加系統(tǒng)的氮負(fù)荷,氨氮浸出量較進(jìn)水可忽略不計(jì).掛膜前后浸出液的色度值都最終穩(wěn)定在32,掛膜處理會加快色度值達(dá)到峰值.不同的是,掛膜會提高浸出液的COD峰值,掛膜前后的兩組玉米芯均在前24h快速釋碳,且96h后趨于穩(wěn)定,峰值分別為603和745mg/L.以掛膜玉米芯的平均釋碳速率18.6mg/(g玉米芯·d)和25kg添加量計(jì)算,在缺氧池添加玉米芯可補(bǔ)給465g COD/d.
A2O缺氧池添加天然碳源玉米芯前后污染物COD、NH4+-N和TN的去除效果如圖3所示.
COD去除情況:玉米芯添加前(R1)出水COD濃度為(27.3±1.77)mg/L,平均去除率86.6%;添加后(R2)出水COD為(21.0±1.81)mg/L,平均去除率提高到89.1%;均達(dá)到《城鎮(zhèn)污水處理廠污染物排放標(biāo)準(zhǔn)》(GB18919-2002)中的一級A標(biāo)準(zhǔn)[15].單因素方差分析結(jié)果表明,R1和R2進(jìn)水COD無顯著性差異(>0.05),而R2的出水COD顯著低于R1(<0.001),即在A2O缺氧池添加玉米芯不但未造成出水COD提高,還會降低出水COD.
NH4+-N去除情況:添加前(R1)出水NH4+-N濃度為(0.59±0.07)mg/L,平均去除率為98.5%;添加后(R2)出水NH4+-N濃度為(0.62±0.07)mg/L,平均去除率降至98.4%;盡管氨氮去除率略有降低,而數(shù)據(jù)分析表明,兩組出水濃度值并無顯著差異(>0.05),這表明在A2O缺氧池添加玉米芯不會顯著影響硝化效果.
TN去除效果:添加前(R1)出水TN濃度為(16.2± 0.85)mg/L,平均去除率為65.8%;添加后(R2)出水TN濃度為(9.95±0.56)mg/L,平均去除率提升至78.6%;在A2O缺氧池添加玉米芯對反硝化效果的提升效果顯著,實(shí)現(xiàn)了出水TN達(dá)到GB18919-2002的一級A標(biāo)準(zhǔn).
表3 玉米芯添加前后(R1和R2)的污泥及其他指標(biāo)
結(jié)合系統(tǒng)運(yùn)行期間的污泥和其他指標(biāo)(表3)可知,A2O缺氧池添加玉米芯后,系統(tǒng)的污泥平均濃度從3493提高到3958mg/L,同時污泥比值也從0.52提升至0.55,生物量和污泥活性的提升顯然十分有利于提高系統(tǒng)的污染物去除效果.此外,借助活性污泥的吸附性和好氧池的曝氣氧化,添加玉米芯后并未出現(xiàn)出水色度超標(biāo)的現(xiàn)象.對于TN的提升,研究發(fā)現(xiàn)除了生物量優(yōu)勢外,添加玉米芯后缺氧池DO較添加前更低,這表明在缺氧池添加玉米芯創(chuàng)造出更優(yōu)良的反硝化環(huán)境.通過核算,Huang等[10]在SBR中每升污水的玉米芯添加量約為1.33g,實(shí)現(xiàn)出水TN從16~17mg/L降至10mg/L,而本研究的添加量約為0.52g/L便實(shí)現(xiàn)相同的TN提質(zhì)效果,即說明對缺氧區(qū)(段)的靶向添加能夠有效提升玉米芯碳源利用率、降低外碳源添加量.
添加玉米芯外碳源強(qiáng)化了反硝化脫氮效果,系統(tǒng)的COD和TN變化過程改變.基于前述的運(yùn)行效果,對系統(tǒng)的碳氮平衡進(jìn)行了分析,玉米芯添加前后的碳氮物料衡算結(jié)果如圖4所示.
玉米芯添加前(R1)的進(jìn)水COD為9843g/d,其中13.1%未被利用隨出水流出,21.5%通過微生物同化固定在活性污泥中隨剩余污泥排出,33.6%作為反硝化碳源被消耗,其余31.6%被氧化消耗;玉米芯添加后(R2)進(jìn)水自身COD碳源為9320g/d,玉米芯補(bǔ)充COD碳源465g/d,共計(jì)9785g/d,其中10.3%未利用隨出水排出,污泥增殖消耗26.3%,反硝化消耗40.0%,其余23.4%被氧化消耗.從COD碳源的消耗比例可以看出,玉米芯的添加有效降低了出水和氧化消耗的排放及無效利用,更大比例的碳源流向反硝化和污泥增殖這兩個有助于提升脫氮效果的用途.這些結(jié)果與出水COD濃度降低和剩余污泥產(chǎn)量提高的現(xiàn)象一致.
進(jìn)水TN通過污泥增殖和反硝化作用去除,相應(yīng)的除去出水所占的比例,即為TN的去除率.結(jié)果表明,添加玉米芯前,TN去除率為65.8%,其中污泥增殖去除TN的比例為15.0%,反硝化去除TN占50.8%;添加后TN去除率為78.6%,污泥增殖和反硝化對去除TN的貢獻(xiàn)分別為17.4%和61.2%.在缺氧池添加玉米芯后,污泥增殖和反硝化的脫氮比例均有提高,其中反硝化作用的提升更大.
如圖5所示,無論是懸浮污泥還是生物膜的反硝化速率均呈現(xiàn)兩個階段,且第一階段比第二階段快.第一階段懸浮污泥和生物膜的反硝化速率分別為32.42和24.89mg/(L×h),此階段進(jìn)水碳源充足,兩種污泥均能夠進(jìn)行快速的反硝化;而污水自身碳源消耗殆盡后,僅有代謝較慢的纖維素碳源可供利用,導(dǎo)致第二階段兩者的反硝化速率降至1.73和4.71mg/(L×h).根據(jù)表3可知,燒杯中懸浮污泥和生物膜生物量分別為1091.5和79.73mg VSS,懸浮污泥遠(yuǎn)遠(yuǎn)大于生物膜,而反硝化速率在同一數(shù)量級,因而生物膜具有更大的單位生物量反硝化速率(比速率),這可能是因?yàn)樯锬ぞ哂懈弑壤姆聪趸⑸?對于第二階段,懸浮污泥和生物膜僅利用玉米芯碳源時的比速率(單位生物量的反硝化速率)分別為1.58和59.1mg NO3--N/(g VSS×h),這表明懸浮污泥不能有效利用玉米芯,而生物膜可能富集了降解玉米芯的微生物使其能夠持續(xù)反硝化.
圖5 不同污泥的反硝化速率
Fig.5 Denitrification rates of different sludge
與合成碳源相比,玉米芯生物膜的反硝化速率略低于聚己內(nèi)酯(PCL)的7.7和聚丁二酸丁二醇酯(PBS)的9.3mg/(L×h)[16],然而合成碳源多密集堆積在濾池中使用,其單位質(zhì)量碳源反硝化速率僅為0.03~0.24mg/(g PCL×h)和0.0098~0.058mg/(g PBS×h)[17],遠(yuǎn)低于玉米芯的0.71mg/(g·h).這便是利用二級缺氧池的生物量優(yōu)勢彌補(bǔ)了天然碳源反硝化速率較低的不足.綜上,將玉米芯添加在A2O缺氧池形成了能夠快速持續(xù)反硝化的復(fù)合型污泥體系.
圖6和7分別為懸浮污泥(S)、生物膜污泥(M)在門和屬兩個水平的微生物群落相對豐度. Proteobacteria(變形菌門)、Chloroflexi(綠彎菌門)和Bacteroidota(擬桿菌門)是優(yōu)勢菌門.其中,變形菌門含有多個反硝化菌屬[18],在兩組樣品中的豐度分別是28.5%和37.0%;擬桿菌門一般與有機(jī)物降解相關(guān)[19],在S和M中的豐度分別為7.9%和14.4%;這兩個菌門都在生物膜中更高,一定程度上驗(yàn)證了前面關(guān)于生物膜具有更高豐度的反硝化細(xì)菌和玉米芯降解細(xì)菌的猜想.另外,綠彎菌門在S和M中的豐度分別為21.6%和38.9%;屬水平的屬于該菌門,且在S和M中的豐度,分別為10.6%和5.2%,它是一種絲狀菌,通常在長污泥齡、低污泥負(fù)荷條件下大量增殖[20].因此綠彎菌門和的富集可能與系統(tǒng)的低有機(jī)負(fù)荷有關(guān).有文獻(xiàn)指出[21],在絲狀菌含量增多時可能出現(xiàn)水質(zhì)變好的現(xiàn)象,本研究處理效果良好也可能與此類微生物含量高有關(guān).
圖6 門水平群落組成
生物硝化是氨氧化細(xì)菌(AOB)和亞硝酸鹽氧化細(xì)菌(NOB)依次進(jìn)行氨氧化和亞硝酸鹽氧化的過程.由圖7可知,該系統(tǒng)的AOB為,在懸浮污泥中的豐度(0.242%)高于生物膜(0.183%),這是因?yàn)閼腋∥勰嗄軌蛟谙到y(tǒng)中循環(huán)并在好氧池獲得溶解氧,因而在懸浮污泥中含量更高.NOB只有一種,它同時也具有反硝化功能,其豐度在生物膜(0.340%)中高于懸浮污泥(0.217%),雖然亞硝酸鹽氧化是需氧的,但該菌屬細(xì)胞表面具有疏水性,利于附著生長[22],因而在生物膜中豐度更高.
圖7 屬水平群落組成(前50)
前50個已知菌屬中共有8種反硝化細(xì)菌,它們總的含量在生物膜(5.53%)中遠(yuǎn)大于懸浮污泥(2.33%),這與生物膜反硝化比速率較快的結(jié)果一致.反硝化菌屬中在生物膜中占比2.88%,高于懸浮污泥中的0.085%;其余7種里,、、和的豐度在懸浮污泥中更高,它們均為好氧微生物[23-26],在懸浮污泥中更便于從循環(huán)過程獲得氧氣;、和在生物膜中豐度較高,前二者的富集是由于細(xì)胞表面的疏水性造成的[21,26],而具有降解玉米心中木質(zhì)素等芳香族化合物的功能[28],在生物膜中更利于獲得碳源物質(zhì).此外,和等菌屬都被證明能夠水解甲殼質(zhì)、果膠、纖維素等多糖[29-30],這兩種菌屬都在生物膜上具有更高的豐度,使生物膜能夠有效水解利用玉米芯.
3.1 將天然碳源玉米芯靶向添加在A2O缺氧池,缺氧池體積填充率為5%時,TN去除率顯著提升13%,同時避免了外碳源對硝化效果的影響,出水氨氮低于1mg/L.
3.2 玉米芯添加后出水COD平均濃度從27.3降至21.0mg/L,碳源的氧化消耗和出水排放量占比減少11%,用于反硝化和污泥增殖的比例提高,反硝化脫氮量占總氮去除量的比重提高10.4%.
3.3 缺氧池形成了懸浮污泥和生物膜的復(fù)合型污泥體系,以玉米芯為碳源時二者的反硝化速率分別是1.58和59.1mg NO3--N/(g VSS×h),生物膜有效保障了原水碳源不足時系統(tǒng)的脫氮效果.
3.4 高通量測序結(jié)果表明,反硝化相關(guān)的Proteobacteria菌門在懸浮污泥和生物膜中占比最高,分別為28.5%和37.0%.是主要的反硝化菌屬,其豐度在生物膜(2.88%)中高于懸浮污泥(0.085%).此外生物膜中還富集了可降解植物多糖的(0.594%)、(0.593%)和(0.683%)等菌屬.
[1] 鄭興燦.城鎮(zhèn)污水處理廠一級A標(biāo)穩(wěn)定達(dá)標(biāo)技術(shù) [M]. 北京:中國建筑工業(yè)出版社, 2015.
Zheng X C. The Technologies for urban wastewater treatment plants to reach first level a standard stably [M]. Beijing: China Architecture & Building Press, 2015.
[2] Wang J, Chu L. Biological nitrate removal from water and wastewater by solid-phase denitrification process [J]. Biotechnology Advances, 2016,34(6):1103-1112.
[3] 邵 留,徐祖信,金 偉,等.農(nóng)業(yè)廢物反硝化固體碳源的優(yōu)選 [J]. 中國環(huán)境科學(xué), 2011,31(5):748-754.
Shao L, Xu Z X, Jin W, et al. Optimization of solid carbon source for denitrification of agriculture wastes [J]. China Environmental Science, 2011,31(5):748-754.
[4] 趙文莉,郝瑞霞,王潤眾,等.以堿處理玉米芯為碳源去除二級出水中硝酸鹽 [J]. 中國給水排水, 2016,32(7):107-111.
Zhao W L, Hao R X, Wang R Z, et al. Removal of nitrate from secondary effluent by biological denitrification with corncob pretreated by alkali as carbon source [J]. China Water & Wastewater, 2016,32(7):107-111.
[5] 趙文莉,郝瑞霞,王潤眾,等.復(fù)合碳源填料反硝化脫氮及微生物群落特性 [J]. 中國環(huán)境科學(xué), 2015,35(10):3003-3009.
Zhao W L, Hao R X, Wang R Z, et al. Denitrification of composite carbon filler and character of microbial community [J]. China Environmental Science, 2015,35(10):3003-3009.
[6] 趙文莉,郝瑞霞,李 斌,等.預(yù)處理方法對玉米芯作為反硝化固體碳源的影響 [J]. 環(huán)境科學(xué), 2014,35(3):987-994.
Zhao W L, Hao R X, Li B, et al. Effects of pretreatment methods on corncob as carbon source for denitrification [J]. Environmental Science, 2014,35(3):987-994.
[7] 葉姜瑜,項(xiàng)宏偉,王宗萍,等.固體碳源及生物強(qiáng)化CAST工藝處理低C/N生活污水的效果 [J]. 安徽農(nóng)業(yè)科學(xué), 2017,45(19):58-61,65.
Ye J Y, Xiang H W, Wang Z P, et al. Effect of solid carbon source and biofortification CAST process on low C/N domestic sewage wastewater [J]. Journal of Anhui Agricultural Science, 2017,45(19): 58-61,65.
[8] 項(xiàng)宏偉.生物強(qiáng)化與固體碳源結(jié)合處理小城鎮(zhèn)低碳源污水及其微生物群落動態(tài)變化分析 [D]. 重慶:重慶大學(xué), 2017.
Xiang H W. Study on the treatment of low carbon source wastewater and its microbial community dynamics in small towns by bioaugmentation and solid carbon sources [D]. Chongqing: Chongqing University, 2017.
[9] 姜建華.固體碳源及好氧反硝化菌對提高低C/N生活污水脫氮性能的研究 [D]. 重慶:重慶大學(xué), 2016.
Jiang J H. Using aerobic denitrifiers and solid carbon source to enhance the nitrogen removal performance of low C/N ratio domestic sewage treatment [D]. Chongqing: Chongqing University, 2016.
[10] Huang L, Ye J, Xiang H, et al. Enhanced nitrogen removal from low C/N wastewater using biodegradable and inert carriers: Performance and microbial shift [J]. Bioresource Technology, 2020,300.
[11] 唐 婧,劉昱迪,孫鳳海,等.以玉米芯為外加碳源的SBBR脫氮特性 [J]. 環(huán)境工程學(xué)報(bào), 2016,10(6):2775-2780.
Tang J, Liu Y D, Sun F H, et al. Characteristics of nitrogen removal in SBBR using corncob as carbon source [J]. Chinese Journal of Environmental Engineering, 2016,10(6):2775-2780.
[12] 張立秋,王登敏,李淑更,等.固體碳源生物膜SND處理實(shí)際低碳源城市污水 [J]. 工業(yè)水處理, 2019,39(8):19-22,106.
Zhang L Q, Wang D M, Li S G, et al. Treatment of actual low carbon source urban sewage with solid carbon source biofilm SND [J]. Industrial Water Treatment, 2019,39(8):19-22,106.
[13] 張立秋,王登敏,李淑更,等.水力負(fù)荷和C/N比對玉米芯固體碳源SND處理低碳城市污水的影響 [J]. 廣州大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018,17(3):69-75.
Zhang L Q, Wang D M, Li S G, et al. Effect of hydraulic load and C/N ratio on corn stalk solid carbon source SND treatment in low-city urban sewage [J]. Journal of Guangzhou University (Natural Science Edition), 2018,17(3):69-75.
[14] 王社平,王卿卿,惠靈靈,等.分段進(jìn)水A/O脫氮工藝反硝化速率的測定 [J]. 環(huán)境工程, 2008,(3):56-58,4.
Wang S P, Wang Q Q, Hui L L, et al. The determination of denitrification rate of step-feed A/O nitrogen removal process [J]. Environmental Engineering, 2008,(3):56-58,4.
[15] GB18918-2002 城鎮(zhèn)污水處理廠污染物排放標(biāo)準(zhǔn) [S].
GB18918-2002 Discharge standard of pollutants for municipal wastewater treatment plants [S].
[16] 吉芳英,張 千,徐 璇,等.2種BDPs固相反硝化的脫氮效果對比 [J]. 環(huán)境科學(xué)研究, 2014,27(9):1080-1086.
Ji F Y, Zhang Q, Xu X, et al. Comparison of two biodegradable polymers in SPD system for nitrogen removal [J]. Research of Environmental Sciences, 2014,27(9):1080-1086.
[17] Boley A, Muller W R, Haider G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems [J]. Aquacultural Engineering, 2000,22(1/2):75- 85.
[18] Srinandan C S, Shah M, Patel B, et al. Assessment of denitrifying bacterial composition in activated sludge [J]. Bioresource Technology, 2011,102(20):9481-9489.
[19] Khan S T, Horiba Y, Yamamoto M, et al. Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3- hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach [J]. Applied and Environmental Microbiology, 2002,68(7):3206-3214.
[20] Nittami T, Kasakura R, Kobayashi T, et al. Exploring the operating factors controlling Kouleothrix (type 1851), the dominant filamentous bacterial population, in a full-scale A2O plant [J]. Scientific Reports, 2020,10(1):6809.
[21] Yang X, Peng Y Z, Ren N Q, et al. Nutrient removal performance and microbial community structure in an EBPR system under the limited filamentous bulking state [J]. Bioresource Technology, 2013,144: 86-93.
[22] Cotto I, Dai Z, Huo L, et al. Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems [J]. Water Research, 2020,169.
[23] Kurahashi M, Fukunaga Y, Sakiyama Y, et al. lamia majanohamensis gen. nov., sp nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of lamiaceae fam. nov [J]. International Journal of Systematic and Evolutionary Microbiology, 2009,59:869-873.
[24] Jordan D C. Transfer of1980 togen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants [J]. International Journal of Systematic Bacteriology, 1982,32(1):136-139.
[25] Purkhold U, Pommerening-Roser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys [J]. Applied and Environmental Microbiology, 2000, 66(12):5368-5382.
[26] Nielsen P H, de Muro M A, Nielsen J L. Studies on the in situ physiology of Thiothrix spp. present in activated sludge [J]. Environmental Microbiology, 2000,2(4):389-398.
[27] Fudou R, Jojima Y, Iizuka T, et al. Haliangium ochraceum gen. nov., sp nov and Haliangium tepidum sp nov.: Novel moderately halophilic myxobacteria isolated from coastal saline environments [J]. Journal of General and Applied Microbiology, 2002,48(2):109-115.
[28] Sperfeld M, Diekert G, Studenik S. Anaerobic aromatic compound degradation in sulfuritalea hydrogenivorans sk43H [J]. FEMS Microbiology Ecology, 2019,95(1):fiy199.
[29] Lim J H, Baek S-H, Lee S-T. Ferruginibacter alkalilentus gen. nov., sp nov andsp nov., novel members of the family 'Chitinophagaceae' in the Phylum Bacteroidetes, isolated from freshwater sediment [J]. International Journal of Systematic and Evolutionary Microbiology, 2009,59:2394-2399.
[30] McBride M J, Xie G, Martens E C, et al. Novel features of the polysaccharide-digesting gliding bacteriumas revealed by genome sequence analysis [J]. Applied and Environmental Microbiology, 2009,75(21):6864-6875.
Nitrogen removal characteristic of A2O system with natural corncob supplemented into anoxic zone as carbon source.
SHEN Qiu-shi1, JI Fang-ying1*, WEI Jia-Zhi1,2, JIANG Lei1, ZHANG Qian1, MAO Yuan-xiang1, LIU Cao-cong1
(1.College of Environment and Ecology, Chongqing University, Chongqing 400045, China;2.POWERCHINA Chengdu Engineering Corporation Limited, Chengdu 610072, China)., 2022,42(4):1635~1642
Given that low carbon source sewage has advantage of nitrification rather than denitrification, natural carbon source corncob was added into anoxic zone of a pilot A2O to explore the denitrification potency and characteristics, by means of mass balance, denitrification rate and microbial community analysis. The results showed that TN removal efficiency increased by 13%, and effluent TN decreased from 16.2 to 10.0mg/L. Meanwhile, there was no exceeding risk of ammonia nitrogen and chroma in effluent. Mass balance demonstrated that the consumption amount of oxidation and effluent residual of COD both decreased, while its utilization rates for denitrification and sludge proliferation increased, which stimulated nitrogen removal amount. Therein, nitrogen removal was mainly contributed by denitrification. An integrated denitrification system was established in this reactor: the denitrification rates of newly formed biofilm and suspended sludge were 24.89 and 32.42mg/(L×h) separately in the presence of influent carbon source, which achieved this system with rapid denitrification; while influent carbon source was depleted, the denitrification rates were 4.71 and 1.73mg/(L×h) respectively, and their denitrification rates per biomass amount were 1.58 and 59.1mg NO3--N/(g VSS×h) accordingly, which indicated that corncob was primarily used by biofilm for maintaining denitrification process.The most dominant denitrifier in this system was. Morover, denitrifiers likeand, capable of adhering to growth, enriched on the biofilm, and, which could degrade corncob’s lignin, assembled on the biofilm as well.
anoxic zone;corncob;denitrification;mass balance;microbial community
X703
A
1000-6923(2022)04-1635-08
沈秋實(shí)(1993-),男,河南鄭州人,重慶大學(xué)博士研究生,主要從事水污染控制研究.發(fā)表論文3篇.
2021-09-06
國家重點(diǎn)研發(fā)計(jì)劃(2018YFD1100501);重慶市科委項(xiàng)目(cstc2017shmsA20007)
*責(zé)任作者, 教授, jfy@cqu.edu.cn