楊帆 零雅茗 舒紅 姜生偉 王佳楠 李丹蕾
摘 要:為探究Bx-TIMP基因在松材線蟲(Bursaphelenchus xylophilus)致病過程中的功能,對(duì)Bx-TIMP基因進(jìn)行克隆及分析,并驗(yàn)證基因沉默后松材線蟲致病性變化。PCR法克隆Bx-TIMP,應(yīng)用TMHMM 2.0 server和SignalP 4.1 Server分析該基因編碼蛋白質(zhì)的跨膜結(jié)構(gòu)域和信號(hào)肽;應(yīng)用原位雜交技術(shù)確定該基因在松材線蟲體內(nèi)表達(dá)部位;應(yīng)用RNAi技術(shù),分析沉默該基因后松材線蟲對(duì)紅松(Pinus koraiensis)致病性變化。該基因CDS區(qū)全長(zhǎng)363 bp,編碼120個(gè)氨基酸,編碼蛋白具有跨膜結(jié)構(gòu)域及信號(hào)肽。原位雜交表明該基因在松材線蟲食道腺中表達(dá)。基因沉默后,松材線蟲對(duì)紅松致病性減弱。結(jié)果表明,Bx-TIMP為效應(yīng)因子基因,與松材線蟲致病性相關(guān)。本研究揭示Bx-TIMP基因是松材線蟲危害松樹致使其發(fā)病的關(guān)鍵基因,為進(jìn)一步明確松材線蟲致病機(jī)理提供理論依據(jù),為研發(fā)松材線蟲的防治技術(shù)奠定理論基礎(chǔ)。
關(guān)鍵詞:松材線蟲;致病性;效應(yīng)因子;紅松;基因沉默
中圖分類號(hào):S763.18??? 文獻(xiàn)標(biāo)識(shí)碼:A?? 文章編號(hào):1006-8023(2022)02-0014-06
Cloning and Functional Analysis of Bursaphelenchus xylophilus Bx-TIMP
YANG Fan1,2, LING Yaming1,2,5, SHU Hong3, JIANG Shengwei3,4, WANG Jianan1,2, LI Danlei1,2,4*
(1.School of Forestry, Northeast Forestry University, Harbin 150040, China; 2.Key Laboratory of Alien Forest
Pest Monitoring and Control - Heilongjiang Province, Northeast Forestry University, Harbin 150040, China;
3.Liaoning Provincial Station of Forest and Grassland Pest Control and Quarantine, Shenyang
110001, China; 4.Liaoning Provincial Key Laboratory of Dangerous Forest Pest Management
and Control, Shenyang Institute of Technology, Shenyang 113122, China; 5.Shiwandashan
National Nature Reserve Administration, Fangchenggang 535500, China)
Abstract:To explore the function of the gene Bx-TIMP during Bursaphelenchus xylophilus infecting Pinus sp., Bx-TIMP was cloned and analyzed, then the gene was silenced by RNAi and vitrificated. The transmembrane domain and signal peptide of the protein encoded by Bx-TIMP was analyzed by TMHMM 2.0 server and SignalP 4.1 Server. The expression site of the gene in B. ylophilus was determined by in-situ hybridization. By silencing the gene with RNAi, the pathogenicity of B. xylophilus to P. koraiensis was analyzed. The gene had a total length of 363 bp and encoded 120 amino acids. The protein encoded by Bx-TIMP had a transmembrane domain and signal peptide and the results of in-situ hybridization showed that the gene was expressed in the esophageal gland of B. xylophilus, which accorded with the characteristics of effectors. The symptoms of P. koraiensis in Bx-TIMP-RNAi group were significantly weaker than those in the control group. This study showed that Bx-TIMP was an effector gene, which was related to the pathogenicity of B. xylophilus. This study revealed that Bx-TIMP gene is the key gene of B. xylophilus endangering pine trees, which provided a theoretical basis for further clarifying the pathogenesis of B. xylophilus and laying a theoretical foundation for the development of control technology of B. xylophilus.
Keywords:Bursaphelenchus xylophilus; pathogenicity; effect factor; Pinus koraiensis; RNAi
0 引言
與寄主互作時(shí),病原分泌效應(yīng)因子抑制寄主模式識(shí)別受體(pattern recognition receptors,PRRs)識(shí)別病原相關(guān)分子模式(pathogen-associated molecular patterns,PAMPs)而觸發(fā)的先天免疫,促進(jìn)病原成功侵染寄主。植物寄生線蟲(plant parasitic nematodes,PPNs)通過口針將食道腺體分泌的效應(yīng)因子導(dǎo)入寄主細(xì)胞中,以完成寄生過程并從寄主細(xì)胞中獲取營(yíng)養(yǎng)。效應(yīng)因子有助于線蟲在寄主體內(nèi)成功取食、繁殖和遷移,促進(jìn)線蟲侵染和寄生。目前,線蟲效應(yīng)因子的研究大都集中在固著性內(nèi)寄生線蟲:胞囊線蟲(Heterodera sp.)和根結(jié)線蟲(Meloidogyne sp.)中。
松材線蟲(Bursaphelenchus xylophilus)是引起松樹萎蔫病(pine wilt disease,PWD)的一種遷徙性內(nèi)寄生線蟲。松樹萎蔫病是對(duì)松樹極具破壞性的病害之一,導(dǎo)致每年約500萬m3的木材損失。在中國(guó),松材線蟲最早于1982年在南京中山陵發(fā)現(xiàn)。松材線蟲與寄主植物的互作是由食道腺分泌的效應(yīng)因子介導(dǎo)的,一些已知的效應(yīng)因子可以修飾寄主植物的細(xì)胞,促進(jìn)松材線蟲營(yíng)養(yǎng)物質(zhì)的攝入以維持生長(zhǎng)和發(fā)育,還有一些效應(yīng)因子可以改變寄主植物的信號(hào)通路,抑制植物的防御反應(yīng)。對(duì)松材線蟲效應(yīng)因子的研究對(duì)了解寄生機(jī)制和開發(fā)新的松材線蟲的防治措施具有重要意義。
根據(jù)實(shí)驗(yàn)室前期研究結(jié)果,通過轉(zhuǎn)錄組數(shù)據(jù)分析篩選到效應(yīng)因子組織金屬蛋白酶抑制劑(tissue inhibitors of metalloproteinases,TIMPs)基因Bx-TIMP。TIMPs是一個(gè)保守的蛋白家族,是基質(zhì)蛋白的特異性抑制劑,主要有4種亞型(TIMP-1、TIMP-2、TIMP-3和TIMP-4)。TIMPs整體呈楔形,可直接與MMPs的活性間隙1∶1結(jié)合發(fā)揮效應(yīng),調(diào)節(jié)MMPs的活性,其N端和C端結(jié)構(gòu)域分別由125和65個(gè)氨基酸構(gòu)成,每個(gè)氨基酸都包含3個(gè)保守的二硫鍵,其中N端結(jié)構(gòu)域的單獨(dú)單元折疊是發(fā)揮抑制MMPs效應(yīng)的主要結(jié)構(gòu)。哺乳動(dòng)物TIMPs已被證明在體外和器官培養(yǎng)系統(tǒng)中負(fù)調(diào)控基質(zhì)金屬蛋白酶的活性,也負(fù)調(diào)控體外聚蛋白多糖酶的活性。目前,尚未見松材線蟲TIMPs研究報(bào)道。本研究探究Bx-TIMP基因在松材線蟲致病過程中的功能,為進(jìn)一步明確松材線蟲致病機(jī)理提供理論依據(jù),為研發(fā)松材線蟲的防治技術(shù)奠定理論基礎(chǔ)。
1 材料與方法
1.1 Bx-TIMP基因克隆及分析
Trizol法提取松材線蟲總RNA,并通過反轉(zhuǎn)錄試劑盒獲得松材線蟲cDNA。根據(jù)轉(zhuǎn)錄組測(cè)序結(jié)果設(shè)計(jì)涵蓋Bx-TIMP完整編碼蛋白區(qū)(coding sequence,CDS)的PCR引物,(Bx-TIMP-F序列:5′-CGCGAAAATCGTCAACCTCG-3′;Bx-TIMP-R序列:5′-GCGGTGCTGTTCAATTCCTC-3′)以植食松材線蟲cDNA為模板進(jìn)行PCR擴(kuò)增,擴(kuò)增產(chǎn)物進(jìn)行TA克隆,克隆后的基因產(chǎn)物送生工生物工程(上海)股份有限公司測(cè)序。
應(yīng)用TMHMM 2.0 server對(duì)Bx-TIMP編碼蛋白質(zhì)進(jìn)行跨膜結(jié)構(gòu)域的預(yù)測(cè),應(yīng)用SignalP 4.1 Server進(jìn)行Bx-TIMP信號(hào)肽分析。
1.2 Bx-TIMP原位雜交
提取含有相應(yīng)目的片段的質(zhì)粒,應(yīng)用Roche DIG RNA Labeling Kit (SP6/T7)分別合成正義及反義RNA探針。應(yīng)用DIG High Prime DNA Labeling and Detection Starter Kit I (Roche)進(jìn)行雜交及信號(hào)檢測(cè)。將雜交顯影后制成的玻片置于Olympus BX51顯微鏡下拍照。
1.3 Bx-TIMP RNAi及接種驗(yàn)證
用浸泡法對(duì)松材線蟲進(jìn)行RNAi干擾。準(zhǔn)備10 000條松材線蟲(混合蟲齡),以Bx-TIMP基因的siRNA(5′-AUAUUCCGCAAAGUCCAUCCUCGGC -3′)浸泡處理后,用M9緩沖液清洗回收線蟲,為Bx-TIMP-RNAi組。無靶基因序列siRNA(5′-AGGAGCUGUUCACCGGGGUGGUGCCCAUCCU -3′)處理的線蟲為CK組。每組設(shè)3個(gè)重復(fù)。應(yīng)用GoTaq2-Step RT-qPCR System試劑盒,分別提取Bx-TIMP-RNAi組及CK組線蟲總RNA進(jìn)行Q-PCR擴(kuò)增(Pri-R:5′-TCTGCCCACTACGGTCTACA-3′;Pri-F:5′-ACCCCCAGTATTTTCATCTCTGA-3′),驗(yàn)證基因沉默效果,兩獨(dú)立樣本t檢驗(yàn)差異顯著性。
用Bx-TIMP-RNAi組線蟲、CK組線蟲和ddH2O分別接種于紅松(Pinus koraiensis)3年生松苗,處理后連續(xù)觀察癥狀并拍照記錄。
2 結(jié)果與分析
2.1 Bx-TIMP基因克隆及結(jié)構(gòu)域分析
TRIzol法提取松材線蟲總RNA,0.8%凝膠電泳檢測(cè)RNeasy Minikit column(Qiagen, cat. No. 74 104)純化后的RNA如圖1(a)所示,純度由BioPhotometer D30(Eppendorf, Hamburg, Germany)鑒定,OD值(OD260/OD280=1.9,OD260/OD230>1.7)符合要求。
以植食線蟲總RNA反轉(zhuǎn)錄為cDNA模板進(jìn)行PCR擴(kuò)增,擴(kuò)增產(chǎn)物TA克隆后獲得基因產(chǎn)物送由生工生物工程(上海)股份有限公司進(jìn)行測(cè)序,測(cè)序得到Bx-TIMP基因片段長(zhǎng)度363 bp,如圖1(b)所示。
在NCBI(National Center for Biotechnology Information)中比對(duì)同源序列,如圖1(c)所示,篩選到12條同源序列的保守結(jié)構(gòu)域分析均為TIMP結(jié)構(gòu)域,如圖1(d)所示。以擬禾本科根結(jié)線蟲(Meloidogyne graminicola)為內(nèi)參,方頭恐猛蟻(Dinoponera quadriceps)為外參,以這12條同源序列構(gòu)建系統(tǒng)發(fā)育樹,如圖1(e)所示。
進(jìn)一步對(duì)該基因信號(hào)肽及結(jié)構(gòu)域進(jìn)行驗(yàn)證,結(jié)果表明,Bx-TIMP編碼的蛋白質(zhì)具有信號(hào)肽(圖2(a))和跨膜結(jié)構(gòu)域(圖2(b)),均符合效應(yīng)因子特征。
2.2 Bx-TIMP原位雜交
原位雜交結(jié)果顯示在線蟲食道腺上檢測(cè)到Bx-TIMP基因信號(hào)標(biāo)記(圖3)。線蟲的食道腺、性腺和側(cè)尾腺是線蟲效應(yīng)因子分泌部位,以食道腺為主, Bx-TIMP原位雜交結(jié)果表示該基因符合線蟲效應(yīng)因子基因表達(dá)特點(diǎn)。
2.3 Bx-TIMP RNAi及接種驗(yàn)證
使用熒光顯微鏡檢測(cè)RNAi組線蟲體內(nèi)由FAM標(biāo)記的dsRNA,松材線蟲通體顯示綠色熒光,表明dsRNA已成功進(jìn)入線蟲體內(nèi)(圖4(a))。Q-PCR檢測(cè)顯示,RNAi組Bx-TIMP基因表達(dá)下調(diào)(圖4(b))說明Bx-TIMP基因RNAi效果顯著,CK組無明顯變化。
根據(jù)接種后紅松發(fā)病情況(圖4(c)),連續(xù)觀察1~33 d,直至33 d觀察結(jié)束,RNAi組癥狀為少數(shù)松樹針葉局部褪綠,病株均仍未完全枯萎死亡。CK組癥狀為所有針葉黃化。ddH2O處理組紅松無癥狀。
3 結(jié)論與討論
本研究通過克隆TIMPs相關(guān)基因Bx-TIMP并進(jìn)行分析,該基因編碼的蛋白質(zhì)具有跨膜結(jié)構(gòu)域及信號(hào)肽,原位雜交試驗(yàn)表明該基因于松材線蟲食道腺中表達(dá)。將該基因沉默后,松材線蟲對(duì)紅松的致病性降低。因此確定該基因?yàn)樾?yīng)因子基因,該基因編碼的效應(yīng)因子可促進(jìn)松材線蟲侵染松樹。
TIMPs除了抑制MMPs活性還有其他作用,如生長(zhǎng)因子活性、類固醇生成和細(xì)胞形態(tài)調(diào)節(jié)。秀麗線蟲(Caenorhabditis elegans)通過TIMP-1調(diào)節(jié)性腺發(fā)育促進(jìn)其繁殖。Bx-TIMP為組織金屬蛋白酶抑制劑(TIMPs)基因,可能通過特異性抑制植物基質(zhì)金屬蛋白酶(MMPs)活性對(duì)植物防御反應(yīng)產(chǎn)生影響,但該基因影響松材線蟲致病性的作用機(jī)理還需深入研究。本研究通過RNAi技術(shù)沉默該基因后接種紅松驗(yàn)證其功能,Bx-TIMP基因沉默后松材線蟲的致病性降低,表明該基因與松材線蟲致病性有關(guān),結(jié)合效應(yīng)因子在松材線蟲抑制植物防御反應(yīng)中的重要作用可知,Bx-TIMP在松材線蟲致病性中起關(guān)鍵作用,能夠成為松材線蟲防治的靶標(biāo)基因,有效降低松材線蟲致病性,為松材線蟲的防治提供理論基礎(chǔ)。
【參 考 文 獻(xiàn)】
HUSSEY R S. Disease-inducing secretions of plant-parasitic nematodes. Annual Review of Phytopathology, 1989, 27: 123-141.
ROSSO M N, HUSSEY R S, DAVIS E L, et al. Effectors in plant-microbe interactions. Oxford, UK: Wiley-Blackwell, 2011.
HAEGEMAN A, MANTELIN S, JONES J T, et al. Functional roles of effectors of plant-parasitic nematodes. Gene, 2012, 492(1): 19-31.
BIRD D M, JONES J T, OPPERMAN C H, et al. Signatures of adaptation to plant parasitism in nematode genomes. Parasitology, 2015, 142(Suppl 1): S71-S84.
王步勇,問榮榮,李秀偉,等.松材線蟲谷胱甘肽S轉(zhuǎn)移酶Sigma1基因(BxGSTs1)克隆及表達(dá)分析.中南林業(yè)科技大學(xué)學(xué)報(bào),2021,41(4):156-164.
WANG B Y, WEN R R, LI X W, et al. Cloning and expression analysis of glutathione s-transferase gene BxGSTs1 in Bursaphelenchus xylophilus. Journal of Central South University of Forestry & Technology, 2021,41(4):156-164.
REHMAN S, GUPTA V K, GOYAL A K. Identification and functional analysis of secreted effectors from phytoparasitic nematodes. BMC Microbiology, 2016, 16: 48.
JONES J D G, DANGL J L. The plant immune system. Nature, 2006, 444(7117): 323-329.
HUANG X, HU L J, WU X Q. Identification of a novel effector BxSapB3 that enhances the virulence of pine wood nematode Bursaphelenchus xylophilus. Acta Biochimica et Biophysica Sinica, 2019, 51(10): 1071-1078.
許佳瑤,陳俏麗,張瑞芝,等.松材線蟲Bx-ubc-3基因克隆及泛素通路鑒定.森林工程,2019,35(5):9-15.
XU J Y, CHEN Q L, ZHANG R Z, et al. Genetic cloning of Bx-ubc-3 and identification of ubiquitin pathway from Bursaphelenchus xylophilus(Aphelenchida: Aphelenchoididae). Forest Engineering, 2019, 35(5): 9-15.
CHEN Q, ZHANG R, LI D, et al. Genetic characteristics of Bursaphelenchus xylophilus third-stage dispersal juveniles. Scientific Reports, 2021, 11(1): 3908.
陶佳慧,肖煒,楊偉,等.計(jì)劃燒除對(duì)松材線蟲的影響.中南林業(yè)科技大學(xué)學(xué)報(bào),2021,41(11):65-72.
TAO J H, XIAO W, YANG W, et al. Effects of prescribed burning on Bursaphelenchus xylophilus. Journal of Central South University of Forestry & Technology, 2021,41(11):65-72.
LIU Q, WEI Y, XU L, et al. Transcriptomic profiling reveals differentially expressed genes associated with pine wood nematode resistance in Masson pine (Pinus massoniana lamb.). Scientific Reports, 2017, 7(1): 4693.
HU L J, WU X Q, LI H Y, et al. An effector, BxSapB1, induces cell death and contributes to virulence in the pine wood nematode Bursaphelenchus xylophilus. Molecular Plant-Microbe Interactions, 2019, 32(4): 452-463.
ESPADA M, DEN AKKER S E V, MAIER T, et al. STATAWAARS: a promoter motif associated with spatial expression in the major effector-producing tissues of the plant-parasitic nematode Bursaphelenchus xylophilus. BMC Genomics, 2018, 19(1): 553.
高景斌,徐六一,葉建仁,等. 馬尾松松材線蟲病抗性無性系的篩選和遺傳多樣性分析. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021, 45(5): 109-118.
GAO J B, XU L Y, YE J R et al. Growth and genetic diversity analysis of clones screened by phenotypical resistant to pine wilt disease inPinus massoniana.Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(5): 109-118.
FLINN B S. Plant extracellular matrix metalloproteinases. Functional Plant Biology, 2008, 35(12): 1183-1193.
BREW K, DINAKARPANDIAN D, NAGASE H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochimica et Biophysica Acta (BBA) -Protein Structure and Molecular Enzymology, 2000, 1477(1/2): 267-283.
FATA J E, HO A T, LECO K J, et al. Cellular turnover and extracellular matrix remodeling in female reproductive tissues: functions of metalloproteinases and their inhibitors. Cellular and Molecular Life Sciences, 2000, 57(1): 77-95.
JACKSON H W, DEFAMIE V, WATERHOUSE P, et al. TIMPs: versatile extracellular regulators in cancer. Nature Reviews Cancer, 2017, 17(1): 38-53.
ISLAM S, CHUENSIRIKULCHAI K, KHUMMUANG S, et al. Accumulation of versican facilitates wound healing: implication of its initial ADAMTS-cleavage site. Matrix Biology, 2020, 87: 77-93.
HASHIMOTO G, AOKI T, NAKAMURA H, et al. Inhibition of ADAMTS4 (aggrecanase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4). FEBS Letters, 2001, 494(3): 192-195.
KASHIWAGI M, TORTORELLA M, NAGASE H, et al. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). Journal of Biological Chemistry, 2001, 276(16): 12501-12504.
WANG W M, GE G X, LIM N H, et al. TIMP-3 inhibits the procollagen N-proteinase ADAMTS-2. The Biochemical Journal, 2006, 398(3): 515-519.
零雅茗.松材線蟲3條效應(yīng)因子基因克隆.哈爾濱:東北林業(yè)大學(xué),2018.
LING Y M. The cloning of 3 Bursaphelenchus xylophilus effector genes. Harbin: Northeast Forestry University, 2018.
WOESSNER J F JR. MMPs and TIMPs-an historical perspective. Methods in Molecular Biology (Clifton, N J), 2001, 151: 1-23.
KUBOTA Y, NISHIWAKI K, ITO M, et al. The role of tissue inhibitors of metalloproteinases in organ development and regulation of ADAMTS family metalloproteinases in Caenorhabditis elegans. Genetics, 2019, 212(2): 523-535.