• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Zeros of Primitive Characters

      2022-04-15 08:23:24WenyangWangandNiDu
      Journal of Mathematical Study 2022年1期

      Wenyang Wangand Ni Du

      1Center for General Education,Xiamen Huaxia University,Xiamen 361024,China.

      2School of Mathematical Sciences,Xiamen University,Xiamen 361005,China.

      Abstract.Let G be a finite group. An irreducible character χ of G is said to be primitive if χ?G for any character? of a proper subgroup of G.In this paper,we consider about the zeros of primitive characters.Denote by Irrpri(G)the set of all irreducible primitive characters of G.We proved that if g∈G and the order of gG′in the factor group G/G′does not divide|Irrpri(G)|,then there exists ? ∈ Irrpri(G)such that ?(g)=0.

      Key words:Finite group,primitive character,vanishing element.

      1 Introduction

      LetGbe a finite group and Irr(G)be the set of all irreducible characters ofG.For an elementgofG,gis called a vanishing element if there existsχ∈ Irr(G)such thatχ(g)=0.In[3],W.Burnside proved that for any nonlinear irreducible characterχ,there always existsg∈Gsuch thatχ(g)=0,which means that there exists at least a vanishing element for any nonlinear irreducible characterχ.It is interesting to investigate when an element of a finite group can be a vanishing element.In[1],G.Chen obtained a sufficient condition to determine when an element is a vanishing element.More precisely,suppose thatg∈G?G′and the order ofgG′in the factor groupG/G′is coprime to|Irr(G)|,then there existsχ∈ Irr(G)such thatχ(g)=0.In[4],H.Wang,X.Chen and J.Zeng showed a similar sufficient condition about the Brauer characters.In[2],X.Chen and G.Chen investigated the monomial Brauer characters.An irreducible characterχofGis said to be primitive ifχ?Gfor any character?of a proper subgroup ofG.In this paper,we consider about the zeros of primitive characters.

      2 Main results and proofs

      Acknowledgments

      The project was supported by the Natural Science Foundation of China(Grant No.11771356),the Natural Science Foundation of Fujian Province of China(No.2019J01025)and the Research Fund for Fujian Young Faculty(Grant No.JAT190985).

      威海市| 遂溪县| 清远市| 通城县| 桦甸市| 讷河市| 伊吾县| 柘城县| 乌拉特中旗| 大竹县| 淮阳县| 台江县| 景泰县| 涟源市| 来凤县| 斗六市| 博客| 昌吉市| 新河县| 东乡| 抚宁县| 蓬莱市| 南康市| 龙山县| 泸水县| 西和县| 凤山市| 泰和县| 吉林市| 平阳县| 交口县| 阳曲县| 曲靖市| 安阳市| 北安市| 石门县| 丘北县| 漳州市| 慈溪市| 普定县| 安徽省|