• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zeros of Primitive Characters

    2022-04-15 08:23:24WenyangWangandNiDu
    Journal of Mathematical Study 2022年1期

    Wenyang Wangand Ni Du

    1Center for General Education,Xiamen Huaxia University,Xiamen 361024,China.

    2School of Mathematical Sciences,Xiamen University,Xiamen 361005,China.

    Abstract.Let G be a finite group. An irreducible character χ of G is said to be primitive if χ?G for any character? of a proper subgroup of G.In this paper,we consider about the zeros of primitive characters.Denote by Irrpri(G)the set of all irreducible primitive characters of G.We proved that if g∈G and the order of gG′in the factor group G/G′does not divide|Irrpri(G)|,then there exists ? ∈ Irrpri(G)such that ?(g)=0.

    Key words:Finite group,primitive character,vanishing element.

    1 Introduction

    LetGbe a finite group and Irr(G)be the set of all irreducible characters ofG.For an elementgofG,gis called a vanishing element if there existsχ∈ Irr(G)such thatχ(g)=0.In[3],W.Burnside proved that for any nonlinear irreducible characterχ,there always existsg∈Gsuch thatχ(g)=0,which means that there exists at least a vanishing element for any nonlinear irreducible characterχ.It is interesting to investigate when an element of a finite group can be a vanishing element.In[1],G.Chen obtained a sufficient condition to determine when an element is a vanishing element.More precisely,suppose thatg∈G?G′and the order ofgG′in the factor groupG/G′is coprime to|Irr(G)|,then there existsχ∈ Irr(G)such thatχ(g)=0.In[4],H.Wang,X.Chen and J.Zeng showed a similar sufficient condition about the Brauer characters.In[2],X.Chen and G.Chen investigated the monomial Brauer characters.An irreducible characterχofGis said to be primitive ifχ?Gfor any character?of a proper subgroup ofG.In this paper,we consider about the zeros of primitive characters.

    2 Main results and proofs

    Acknowledgments

    The project was supported by the Natural Science Foundation of China(Grant No.11771356),the Natural Science Foundation of Fujian Province of China(No.2019J01025)and the Research Fund for Fujian Young Faculty(Grant No.JAT190985).

    五河县| 晴隆县| 临泉县| 临海市| 博湖县| 家居| 陇南市| 金山区| 崇信县| 鹤峰县| 安顺市| 海盐县| 和田市| 胶南市| 萨迦县| 上饶县| 科技| 巴林右旗| 荆州市| 隆昌县| 界首市| 高安市| 长兴县| 武冈市| 陕西省| 鄱阳县| 景宁| 高碑店市| 武陟县| 开江县| 保德县| 江华| 汤原县| 芦溪县| 卓资县| 黑龙江省| 谢通门县| 岚皋县| 九龙坡区| 绥宁县| 巩留县|