• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen-deficient TiO2 Yolk-shell Spheres for Enhanced Lithium Storage Properties

    2022-04-15 11:49:18ZhaoqianLiYuqiPengChaofengLiuXianxiZhangXiulingLiYangHuangYingkeRenDenghuiJiandGuozhongCao
    Energy & Environmental Materials 2022年1期

    Zhaoqian Li,Yuqi Peng,Chaofeng Liu,Xianxi Zhang,Xiuling Li,Yang Huang*,Yingke Ren*,Denghui Ji*,and Guozhong Cao*

    Anatase TiO2is a promising anode material for lithium-ion batteries(LIBs)owing to its low cost and stability.However,the intrinsically kinetic limits seriously hindered its lithium-ion storage capability.Here we present that anatase TiO2with rich oxygen vacancies can enhance its lithium-ion storage performance.We synthesize anatase TiO2with well-retained hierarchical structure by annealing the H2Ti5O11·3H2O yolk-shell spheres precursor in nitrogen atmosphere.EPR and XPS data evidence that the oxygen-deficient environment could generate abundant oxygen vacancies in the as-derived anatase TiO2,which leads to improved electron conductivity and reduced charge-transfer resistance.The rich oxygen vacancies and high structural integrity of the hierarchical yolk-shell spheres enable the as-derived anatase TiO2yolk-shell spheres with a high specific capacity of 280 mAh g-1at 100 mA g-1and 71% of capacity retention after 5000 cycles at 2 A g-1.

    Keywords

    anatase TiO2,lithium-ion batteries,oxygen vacancies,yolk-shell spheres

    1.Introduction

    Pursuing high power and energy densities for lithium-ion batteries(LIBs)drive academia and industry to develop novel electrode materials for practical applications.Benefiting from its low cost,environmental benignity,wide availability,and chemical stability,TiO2attracts broad interests and becomes a promising anode material for LIBs.[1-6]However,TiO2anode materials still suffer from lower capacity and poor capacity retention over long-term chargedischarge cycles caused by the low ionic and electrical conductivity as well as the intrinsic insertion kinetics limit.[7,8]Engineering TiO2nanostructures has been demonstrated to be an efficient approach to resolve or alleviate these issues.[7-10]Nanoparticles can provide shorter transport paths for both electronic and Li+ions,larger electrode-electrolyte contact area,and in some cases extra interfacial or surface low voltage insertion host for Li+ions.[11-13]However,severe aggregation of nanoparticles and breaking of particle connections often occurs during the charge-discharge process,leading to new challenges in practical applications.[10,14]Recent studies show that hollow structures could mitigate or partly resolve these problems.[15-23]Hollow structures including yolk-shell and multi-shell structures composed of nanosized primary building blocks not only hold the advantages of nanoparticles,for example,high surface area and large electrode/electrolyte interface,short electron transfer,and lithium-ion diffusion pathways,but also preserve the integrity of the electrode morphology and possess enhanced volume change accommodation,thus improving lithium-ion storage capability and stability of the electrode materials.[24-26]

    Another viable strategy to alleviate the low electrical conductivity of anatase TiO2is introducing oxygen vacancies.The atomic structure defects resulted from oxygen vacancies can trigger unexpected electronic states changes in TiO2electrode materials,thereby providing higher charge mobility.A few studies have been done to explore the effect of oxygen vacancies on the electronic structure and energy storage properties of TiO2materials and enhanced electrical conduction on energy storage properties.These results reveal that anatase TiO2with rich oxygen vacancies provide greatly improved electrical conductivity and energy storage performance.[27-29]Therefore,the combination of primary nanostructures,yolk-shell structure,and abundant oxygen vacancies is a promising approach to improve lithium-ion storage properties of anatase TiO2.

    In this work,H2Ti5O11·3H2O precursor with uniform yolk-shell spherical structure were synthesized by a solvothermal method.The precursor can be converted to high crystallinity anatase TiO2with perfectly retained morphology and structure through annealing in a nitrogen atmosphere.The formation of the residual carbon species can efficiently restrict the growth of TiO2crystallites,leading to small primary particles.Synchronously,abundant oxygen vacancies are produced due to the oxygen-deficient environment,which renders improved electrical conductivity and charge transport kinetics.Owing to the abundant oxygen vacancies and high structural integrity yolkshell spheres structure,the oxygen-deficient TiO2yolk-shell spheres(BYST)gives rise to enhanced lithium-ion storage performance when compared with the white TiO2yolk-shell spheres(W-YST).

    2.Results and Discussion

    The atomic and electronic properties of pristine TiO2and doped TiO2were first investigated using first-principles calculations.Figure 1a,b show the crystal structure of the two models.From the density of states(DOS)in Figure 1c and Figure S1a,the bandgap of undoped TiO2was calculated to be 3.204 eV,very close to the experimental bandgap value of anatase TiO2,demonstrating the accuracy of our theoretical calculation method.After doping,the VO-doping decrease the bandgap by 0.493 eV,corresponding to a bandgap of 2.711 eV(Figure 1d and Figure S1b).The narrowed bandgap will lead to an improved electrical conductivity of the VOdoped TiO2.

    Figure 1.Crystal lattice models for a)TiO2and b)VO-TiO2(Ti16O31).Total density of states(DOS)plots for c)TiO2and d)VO-TiO2obtained by performing PBE+U calculations.

    Figure 2a shows the SEM image of the precursor.The as-obtained sample consists of uniform spheres with an average size of~900 nm.Their yolk-shell characteristic and interior core can be directly observed by SEM in the cracked spheres(Figure 2b).Nanosheets are visible and show random orientations in the enlarged SEM image(Figure 2c).The TEM images(Figure 2d,e)provide direct evidence for the yolk-shell structures by showing the apparent contrast difference between the hollow shell and the solid core parts.HRTEM observation(Figure 2f)near the edge of the yolk-shell sphere reveals that the constituted nanosheets are almost transparent,implying the ultrathin character.The invisible lattice fringe in Figure S2 demonstrates poor crystallinity of the yolk-shell spheres.XRD pattern(Figure S3)can be indexed to the H2Ti5O11·3H2O(JCPDS NO.44-0130).The broad diffraction peaks with low intensity suggests a poor crystallinity which agrees with the HRTEM observations(Figure S2).Thermogravimetric analysis(TG)was conducted to confirm the change of organic residues in the H2Ti5O11·3H2O yolkshell spheres with temperature.As shown in Figure S4,TG curve can be divided into two stages.The weight loss of ca.15.2 wt% from room temperature to 250°C can be assigned to the loss of water,[30,31]while the weight loss of ca.11.2 wt% after 250°C belongs to the decomposition of organic species,suggesting a ca.11.2 wt% organic residue existed in the as-obtained sample.The weight loss ending at around 500°C implies that the residual organic species can be removed at 500°C.

    Figure 2.a-c)SEM and d-f)TEM images of the H2Ti5O11·3H2O yolk-shell spheres.

    To elucidate the formation mechanism of such yolk-shell spheres,time-dependent solvothermal experiments were performed.The morphologies and structures of the products obtained at different solvothermal reaction stages were characterized by SEM and TEM.Prior to the heating process,the solution containing IPA,DETA,and TBT maintained a yellow transparent state.At the early solvothermal stage(6 h),as shown in Figure 3a-d,the hierarchical spheres formed with a solid core and randomly oriented nanosheets on the surface.After reaction for 12 h,the yolk-shelled spheres with partial interior hollowing appeared(Figure 3e-h).A gap distance of~100 nm can be clearly seen by the TEM between the core and the shell(Figure 3h).Further extending the reaction time to 24 h gave rise to well-defined yolk-shelled spheres with an enlarged gap distance of ca.180 nm,accompanied by the shrunken core and increased thickness of the growth of nanosheets on the shell(Figure 2a-d).The evolution from the solid to the yolk-shelled spheres stems from an interior etching and outward recrystallization process,namely the inside-out Ostwald-ripening mechanism.[32,33]Notably,the existence of diethylenetriamine(DETA)has a great influence on the formation of constituted nanosheets and the uniformity of products.The amino on DETA has a strong coordination effect which can coordinate with titanium source.[34]The coordination effect of amino can stabilize the titanium source and inhibit its hydrolysis.Meanwhile,the strong coordination effect of amino on DETA will affect the formation of primary nanostructures and prefer to lead to a nanosheets structure.[35]As schematically illustrated in Figure 3i,before heating reaction,due to the strong coordination effect of the diethylenetriamine(DETA),the initial solution is transparent,suggesting that no hydrolysis of TBT occurred in this stage.Generally,titanium sources,such as,TBT,TIP can be easily hydrolyzed even trace amounts of water,which will induce irregular morphologies.The transparent titanium source solution stabilized by DETA can ensure the bottom-up formation of nanostructures during the crystallization process,thus resulted in uniform spheres.Under heating,nucleation and crystallization of Ti composites occur accompanied by the hydrolysis of Ti source due to the etherification of IPA[36,37]and the destroyed coordination state of the Ti source,leading to the formation of hierarchical solid spheres.Because the outside nanosheets were protected by the DETA molecules owing to the strong coordination effect,with ongoing the reaction,the interior unstable nanocrystalline will first dissolve and recrystallized on the outward surface,thereby leading the enlarge sphere sizes and increased thickness of the growth of nanosheets on the shell.Meanwhile,the strong coordination effect of DETA molecular with Ti source restricts the primary crystalline growth of the yolkshelled spheres,resulted in the ultrathin thickness of nanosheets and poor crystallinity as confirmed by XRD analysis(Figure S3).

    Figure 3.SEM and TEM images of the samples prepared at 200°C for different reaction times:a-d)6 h,e-h)12 h.i)Schematic of the formation of yolkshell spherical precursor.IPA,DETA,and TBT represent isopropyl alcohol,diethylenetriamine,and tetra-n-butyl titanate,respectively.

    The pristine H2Ti5O11·3H2O yolk-shell spheres can be converted to high crystallinity TiO2upon calcination.Previous studies have shown that the selection of annealing atmosphere plays a great role in the morphologies,structure,and properties of the final products.[38-40]The formation of residual carbon species by annealing the sample in Ar,N2,or vacuum efficiently affect the growth of TiO2crystallites,leading to different morphologies,structure and the concentration of defects with that annealed in air.[40,41]XRD pattern presents sharp characteristic peaks,verifying the improved crystallinity of B-YST and W-YST after calcination(Figure 4a and Figure S5).All the diffraction peaks can be readily indexed well with the anatase TiO2phase(JCPDS No.21-1272).Compared with W-YST,B-YST shows broader peaks and weaker crystallinity,demonstrating a restrained growth of crystallites.The grain size was calculated to be ca.10.5 nm according to the Scherrer formula,while the W-YST is ca.20.3 nm.The existence of residual carbon in B-YST is confirmed by the TG analysis and the content is examined to be ca.5.6 wt% (Figure 4b)in a flowing air test.The yolkshell spherical structure was perfectly retained after annealing(Figure 4c,d).The nanosheets subunits of these yolk-shell spheres can endure the calcination process and still maintain the similar structure with the pristine H2Ti5O11·3H2O spheres(Figure S6a).Figure 4e,f,and Figure S6b show the hierarchical yolk-shell sphere structure observed by TEM.The smooth and nearly transparent shell edge in Figure S6b demonstrates the ultrathin character of the constituted nanosheets that are almost identical to the pristine H2Ti5O11·3H2O yolk-shell spheres(Figure 2f).The clear lattice fringes(Figure 4g)demonstrate that B-YST has a high crystallinity after thermal calcination as confirmed by XRD results in Figure 4a.The interplanar distance is measured to be ca.0.351 nm,corresponding to(101)lattice plane of anatase TiO2(JCPDS No.21-1272).In contrast to B-YST,although the yolk-shelled spherical morphology is reserved after annealing in air(Figure S7),the constituted nanosheets of the W-YST sample are destroyed and transformed to the coarse particles(Figure S7c,f).As confirmed by the HRTEM(Figure S7g,h),the primary nanoparticles possess a large particle size of>20 nm and high crystallinity with perfect lattice planes.

    Figure 4.a)XRD patterns,b)TG curve,c,d)SEM,e,f)TEM and g)HRTEM images of B-YST.h)EPR,i)O1s XPS and j)UV-Vis absorbance spectra of B-YST and W-YST.The inset of j)is the digital photos of B-YST and W-YST.k)Illustration of the feature changes from the H2Ti5O11·3H2O precursor to B-YST and W-YST by annealing in N2and air at 500°C.

    The presence of oxygen vacancies in the B-YST sample was validated by electron paramagnetic resonance spectroscopy(Figure 4h).Compared with the silent EPR signal in W-YST,the strong EPR signal response with a g value of 2.002 indicate that rich oxygen vacancies are present in the B-YST sample.[42-44]X-ray photoelectron spectroscopy(XPS)analysis of the O1s region evidenced significant differences in the surface of B-YST and W-YST(Figure 4i).As often reported in the case of the oxygen-deficient state,the presence of two O 1s components attributed to Ti-O-Ti in TiO2(529.5±0.2 eV)and surface OH(OOH)species associated with O defects(531.0±0.2 eV).[45]The result revealed by Figure 4i indicates that abundant O vacancies existed in the B-YST sample after heating treatment in N2.The proportion of the oxygen vacancies in the B-YST is calculated to be~33.4% according to the XPS fitting data of O1s,higher than that of W-YST(22.5% ).UV-visible absorption spectra(Figure 4j)display that,in comparison with the W-YST sample with an intrinsic absorption edge of ca.400 nm,the B-YST showed and additional visible light absorptions up to 800 nm,implying a reduced bandgap which agree well with the DFT calculation results.Accordingly,the B-YST and W-YST show black and white color,respectively,as displayed in the inset of Figure 4j.The morphology and structure differences induced by changing the annealing atmosphere are depicted in Figure 4k.The significant difference in two samples demonstrates the great impact of residue carbon species on the structure and properties control of TiO2nanomaterials.[41]

    Figure 5a displays discharge-charge voltage profiles at a current density of 100 mA g-1.The initial discharge and charge capacities of B-YST are 280 and 224 mAh g-1,respectively,corresponding to an irreversible capacity loss of 20% .The discharge capacity then decays to 254 and 244 mAh g-1in the second and third discharge,and remained at 218 mAh g-1in the 50th cycle(Figure 5b).This discharge capacity value in the voltage range 1-3 V is higher than previously reported TiO2materials, for example, microboxes,[2]nanoparticles,[46]nanofiber,[47]and oxygen-deficient blue TiO2.[48]However,only an initial capacity of 140 mAh g-1(Figure 5a)is obtained by W-YST sample,and then,the capacity decayed to 128 mAh g-1in the second discharge and maintained 110 mAh g-1in the 50th cycle(Figure 5c).The B-YST exhibits superior rate capability and long-term cyclic performance.When cycled at 0.2-2.0 A g-1,capacities of 92-198 mAh g-1can be delivered(Figure 5d and Figure S8a).The discharge capacities at each current are higher than those of W-YST(65-108 mAh g-1)(Figure 5d and Figure S8b).After cycling at a high rate of 2.0 A g-1,a capacity of 196 mAh g-1can be recovered upon reducing the current density to 0.2 A g-1.Figure 5e shows the cyclic performance of B-YST at 2 A g-1,the capacity starts at 90 mAh g-1and still maintains at 64 mAh g-1after 5000 cycles,corresponding to a capacity retention of 71% .The long-term cycling stability of B-YST demonstrates the robust structural stability of the yolk-shell sphere structure.

    Figure 5.a)Charge-discharge curves at 100 mA g-1of B-TST and W-YST.b,c)Discharge,charge,and Coulombic efficiency curves of B-YST(b)and W-YST(c)at the current density of 100 mA g-1.d)Rate performance of B-YST and W-YST.e)Long-term cycling performance of B-YST at 2 A g-1.

    The outstanding lithium-ion storage performance of the oxygen-deficient TiO2yolk-shell spheres can be ascribed to the structure and properties control in the calcination process and the advantages of hierarchical yolk-shelled structures.The yolk-shell spheres are composed of primary nanoparticles which can shorten the transport path for the diffusion of Li+ions.The existence of oxygen vacancies in B-YST can provide more accessible active sites for Li+insertion and act as shallow donors,narrowing the bandgap(Eg),raising the density of states below the Fermi level,and reducing the charge-transfer resistance,as evidenced by the DFT theoretical calculation,UV-Vis absorption spectra,and EIS measurements(Figure S9).GITT(Figure S10)test confirms that the introduction of oxygen vacancies can enhance Li+diffusion in B-YST,leading to higher Li+diffusion coefficient ranging from 10-8to 10-10cm2S-1than that of W-YST(10-11-10-8cm2S-1).The residual carbon in B-YST favor the electrical conductivity of the electrode,leading to improved diffusion coefficient of Li+and fast electron transfer.[32]The robust yolk-shell structure effectively inhibits the aggregation of nanoparticles and offers vast space to accommodate the volume change during the charge-discharge process which is responsible for the long-term cycling stability of the electrode and long-term cycling.These features promote the lithium-ion insertion and extraction process and give rise to high-performance lithium-ion storage capability of BYST.

    3.Conclusion

    A solvothermal approach is presented to synthesized hierarchical H2Ti5O11·3H2O yolk-shell spheres.Calcined in nitrogen,the precursor can be converted to high crystalline anatase TiO2with well-retained hierarchical yolk-shell sphere structure.The formation of residual carbon species can effectively affect the structure and properties of final TiO2nanomaterials.EPR and XPS data proved that the oxygen-deficient environment leads to the formation of oxygen vacancies in anatase TiO2,which gives rise to improved electron conductivity and reduced charge-transfer resistance.Owing to the rich oxygen vacancies and robust yolk-shell structures,the as-derived TiO2spheres manifest superior lithium storage capabilities with a high and stable capacity of 280 mAh g-1at a current rate of 100 mA g-1and excellent longterm cyclic stability with a capacity retention of 71% over 5000 cycles at 2 A g-1.

    4.Experimental and Methods

    Calculation Methods:All calculations were carried out employing the CASTEP plane-wave DFT code.[49,50]The generalized gradient approximation functional developed by Perdew and Wang(PW91)[51]was chosen as the correlation function,and DFT+U method with a value of Ti was set as 7.0 eV(U)based on the Ref.[52]For geometric optimization calculations,a plane-wave basis with a kinetic energy cutoff of was set as 340 eV.The k-points were sampled on Monkhorst-Pack grid of 2×2×1 for the unit cell or super cell.The max ionic force,max ionic displacement, and max stress component tolerance were 8.0 × 10-2eV °A-1,2.0 × 10-3°A,and 0.1 GPa,respectively.It was similar with the method reported by Zhao et al.[52]

    Material Preparation:Synthesis of H2Ti5O11·3H2O Yolk-shell spheres.In a typical procedure,diethylenetriamine(DETA,Sigma-Aldrich,0.05 mL)was added dropwise to isopropyl alcohol(IPA,Sigma-Aldrich,50 mL)with vigorously stirring.After continuous stirring for 10 min,tetra-n-butyl titanate(TBT,Sigma-Aldrich,2 mL)was added.Continue stirring for 10 min,the resulted transparent yellowish solution was transferred to a 100 mL of autoclave and heated at 200°C for 24 h in an electric oven.After the reaction,the product was collected and washed with ethanol several times,then dried at 80°C for 24 h.

    Synthesis of B-YST(Black yolk-shell TiO2spheres):The as-synthesized yolk-shell spheres were calcined at 500°C for 1 h in nitrogen with a ramping rate of 2°C min-1.

    Synthesis of W-YST(White yolk-shell TiO2spheres):The as-synthesized yolk-shell spheres were calcined at 500°C for 1 h in air with a ramping rate of 2°C min-1.

    Material Characterization:XRD patterns of the products were performed on a Rigaku smartLab X-ray diffractometer 9 kW(Cu Kα radiation,λ =1.540593).The morphologies and structures were examined by FE-SEM(Helios Nanolab 600i,FEI)and TEM(JEOL,JEM-2100F,200 kV).N2adsorption-desorption isotherms were measured at 77 K on an ASAP 2460,Micromeritics Instrument.TG analysis was performed using a TA Instruments SDT Q600 from room temperature to 600 °C with a heating rate of 10 °C min-1under a flow of air.XPS analysis was conducted on ESCALAB 250,Thermo-VG Scientific to obtain the chemical states of the oxygen element.The electron paramagnetic resonance(EPR)spectra were taken on a Bruker EMX plus 10/12(equipped with Oxford ESR910 Liquid Helium cryostat)at 2 K.The UV-Vis absorbance spectra were carried out on a Japan Shimadzu UV-Vis spectrophotometer(UV-2600).Electrochemical Measurements:Electrochemical properties were tested using 2032-type coin cells in the voltage window of 1-3 V.The working electrode was fabricated by mixing and grinding active material(B-YST and W-YST),conductive agent(carbon black,Super-P),and polymer binder(poly(vinylidene difluoride),PVDF,Aldrich)at a weight ratio of 7:2:1.The homogeneous slurry was then coated on a stainless steel mesh and dried at 80°C for 12 h under vacuum.The mass loading of active materials is 2-3 mg cm-2.The electrode was assembled in an Ar- filled glovebox with the concentrations of moisture and oxygen below 0.5 ppm.Lithium metal was used as the counter electrode.1 M LiPF6 in a mixture of dimethyl carbonate,ethylene carbonate,and diethyl carbonate(1:1:1 vol% )was used as the electrolyte.Polypropylene film(Celgard 2400)was used as the separator.The galvanostatic discharge/charge was performed on a Neware Battery Testing System(BTS 3000,Shenzhen Neware,China).Cyclic voltammograms(CV)were tested on an electrochemical workstation(CHI600E).EIS spectra were carried out in a frequency range from 100 kHz to 100 mHz with an applied amplitude voltage of 10 mV on a Solartron 1260 Multistat impedance analyzer.

    Acknowledgements

    This work was supported by the National Key R&D Program of China(2019YFB1503200),the National Science Foundation(CBET-1803256),the Anhui Provincial Natural Science Foundation(1908085QB52),the CASHIPS Director’s Fund(YZJJ2018QN21),Shijiazhuang University Doctoral Scientific Research Startup Fund Project(20BS019),Colleges and universities in Shandong Province science and technology projects(J17KA097),and CAS Key Laboratory of Photovoltaic and Energy Conservation,Chinese Academy of Sciences(PECL2018QN006).A portion of this work was performed on the Steady High Magnetic Field Facilities,High Magnetic Field Laboratory,Chinese Academy of Sciences.

    Conflict of Interest

    The authors declare no conflict of interest.

    Supporting Information

    Supporting Information is available from the Wiley Online Library or from the author.

    国产亚洲精品一区二区www| 女人十人毛片免费观看3o分钟| 欧美色视频一区免费| 久久草成人影院| 一级毛片高清免费大全| 国产免费一级a男人的天堂| 久久亚洲精品不卡| 亚洲av熟女| 国产成人av教育| 国产成人av激情在线播放| 又黄又爽又免费观看的视频| 欧美bdsm另类| av视频在线观看入口| aaaaa片日本免费| 窝窝影院91人妻| 夜夜看夜夜爽夜夜摸| 一区福利在线观看| 日本 欧美在线| 亚洲第一欧美日韩一区二区三区| 伊人久久精品亚洲午夜| 亚洲乱码一区二区免费版| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 啦啦啦观看免费观看视频高清| 女同久久另类99精品国产91| 色吧在线观看| 欧美xxxx黑人xx丫x性爽| 色av中文字幕| 欧美日韩精品网址| 国产私拍福利视频在线观看| 国产成人影院久久av| 丰满人妻熟妇乱又伦精品不卡| 少妇高潮的动态图| 久久精品国产自在天天线| 国产黄色小视频在线观看| 日本撒尿小便嘘嘘汇集6| 美女被艹到高潮喷水动态| 欧美三级亚洲精品| 变态另类丝袜制服| 最近在线观看免费完整版| 欧美一级a爱片免费观看看| 全区人妻精品视频| 天堂√8在线中文| 国产亚洲精品久久久com| 久久久久精品国产欧美久久久| 婷婷亚洲欧美| 一区福利在线观看| 91久久精品国产一区二区成人 | 麻豆久久精品国产亚洲av| 色吧在线观看| 在线观看免费午夜福利视频| 中文资源天堂在线| 一级a爱片免费观看的视频| 叶爱在线成人免费视频播放| 色综合欧美亚洲国产小说| 高潮久久久久久久久久久不卡| 中文字幕av在线有码专区| 国产欧美日韩精品一区二区| 高潮久久久久久久久久久不卡| 国产伦在线观看视频一区| 精品不卡国产一区二区三区| 国产视频一区二区在线看| 国产精品1区2区在线观看.| 国产精品国产高清国产av| 国产精品99久久久久久久久| 一级毛片女人18水好多| 午夜久久久久精精品| 99热这里只有精品一区| 成熟少妇高潮喷水视频| 丰满人妻熟妇乱又伦精品不卡| 国产综合懂色| 制服人妻中文乱码| 免费在线观看日本一区| 我的老师免费观看完整版| 亚洲18禁久久av| 久9热在线精品视频| 国产在线精品亚洲第一网站| 久久精品人妻少妇| 亚洲在线自拍视频| 999久久久精品免费观看国产| 精品乱码久久久久久99久播| 久久午夜亚洲精品久久| 人妻丰满熟妇av一区二区三区| 国产一区二区三区视频了| 丰满的人妻完整版| 久久性视频一级片| 午夜日韩欧美国产| 3wmmmm亚洲av在线观看| 亚洲黑人精品在线| 国产成人av激情在线播放| 亚洲成人久久性| 国产成人福利小说| www国产在线视频色| 一个人看视频在线观看www免费 | 国产在视频线在精品| 久久香蕉精品热| 国产精品一及| bbb黄色大片| 人人妻人人看人人澡| 亚洲精品在线观看二区| 一个人免费在线观看电影| 欧美极品一区二区三区四区| 日韩中文字幕欧美一区二区| 色综合站精品国产| 女人被狂操c到高潮| 色老头精品视频在线观看| 亚洲片人在线观看| 久久久色成人| 中文字幕高清在线视频| 欧美bdsm另类| 99精品久久久久人妻精品| 麻豆一二三区av精品| 国产野战对白在线观看| 精品久久久久久久末码| 国产色爽女视频免费观看| 每晚都被弄得嗷嗷叫到高潮| 久久久国产精品麻豆| 国产亚洲欧美98| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷六月久久综合丁香| 久久久国产成人免费| 午夜免费男女啪啪视频观看 | 99久久成人亚洲精品观看| 亚洲人成网站在线播放欧美日韩| 欧美一区二区国产精品久久精品| 亚洲成a人片在线一区二区| 国产免费男女视频| 久久99热这里只有精品18| 18禁裸乳无遮挡免费网站照片| 亚洲在线观看片| 午夜福利高清视频| 日韩av在线大香蕉| 最近最新中文字幕大全电影3| 国产一级毛片七仙女欲春2| 琪琪午夜伦伦电影理论片6080| 99久久精品国产亚洲精品| 国产成+人综合+亚洲专区| 啦啦啦免费观看视频1| 久久亚洲真实| 午夜视频国产福利| 国产一区在线观看成人免费| 99精品久久久久人妻精品| 久久久久免费精品人妻一区二区| 久久久久久久久大av| 香蕉丝袜av| 少妇人妻精品综合一区二区 | 中文字幕人妻熟人妻熟丝袜美 | 亚洲欧美精品综合久久99| 国产精品98久久久久久宅男小说| 岛国视频午夜一区免费看| 在线观看日韩欧美| 久久久久国产精品人妻aⅴ院| av欧美777| 亚洲av免费高清在线观看| 一级毛片女人18水好多| 啦啦啦免费观看视频1| 国模一区二区三区四区视频| 免费av观看视频| av国产免费在线观看| 欧美xxxx黑人xx丫x性爽| 脱女人内裤的视频| 一a级毛片在线观看| 青草久久国产| 欧美乱色亚洲激情| 99精品欧美一区二区三区四区| 国产成人aa在线观看| 久久精品亚洲精品国产色婷小说| 中文字幕人妻丝袜一区二区| 99久久综合精品五月天人人| 老熟妇仑乱视频hdxx| 黄色视频,在线免费观看| 精品99又大又爽又粗少妇毛片 | 一个人看的www免费观看视频| 日韩欧美一区二区三区在线观看| av片东京热男人的天堂| 亚洲一区二区三区色噜噜| or卡值多少钱| 欧美大码av| 此物有八面人人有两片| 日韩av在线大香蕉| 怎么达到女性高潮| 国产精品av视频在线免费观看| 欧美成狂野欧美在线观看| 亚洲中文日韩欧美视频| 18禁国产床啪视频网站| 国产成人欧美在线观看| 欧美最新免费一区二区三区 | 一夜夜www| 日韩欧美国产在线观看| 精华霜和精华液先用哪个| 国产成人影院久久av| 9191精品国产免费久久| 黄片小视频在线播放| 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 国产黄色小视频在线观看| xxx96com| 国产主播在线观看一区二区| 国产日本99.免费观看| 国产免费男女视频| 亚洲精品在线观看二区| 国产真实伦视频高清在线观看 | 精品日产1卡2卡| 成人亚洲精品av一区二区| 久久久久久久亚洲中文字幕 | 欧美日韩综合久久久久久 | 18禁美女被吸乳视频| www.www免费av| 日日摸夜夜添夜夜添小说| 韩国av一区二区三区四区| 三级国产精品欧美在线观看| 亚洲av成人av| 亚洲五月婷婷丁香| 99久久综合精品五月天人人| 制服人妻中文乱码| 亚洲一区二区三区不卡视频| 欧美日韩综合久久久久久 | 无人区码免费观看不卡| 国产精品久久电影中文字幕| 丁香六月欧美| 国产伦在线观看视频一区| 色哟哟哟哟哟哟| 在线视频色国产色| 丰满乱子伦码专区| tocl精华| 国产成人a区在线观看| a级一级毛片免费在线观看| 中文亚洲av片在线观看爽| 亚洲真实伦在线观看| www.999成人在线观看| 国产高清有码在线观看视频| 亚洲人与动物交配视频| 最新美女视频免费是黄的| 欧美日韩综合久久久久久 | 日韩人妻高清精品专区| 嫁个100分男人电影在线观看| 91在线观看av| 变态另类丝袜制服| 一本精品99久久精品77| 色噜噜av男人的天堂激情| 狂野欧美白嫩少妇大欣赏| 欧美日韩综合久久久久久 | 18禁黄网站禁片免费观看直播| 给我免费播放毛片高清在线观看| 99久久九九国产精品国产免费| 国产成人福利小说| 精品久久久久久久久久免费视频| 国产高清激情床上av| 久久久久性生活片| 一进一出抽搐gif免费好疼| 亚洲精华国产精华精| 韩国av一区二区三区四区| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 97碰自拍视频| 在线观看免费午夜福利视频| 午夜两性在线视频| 成人午夜高清在线视频| 内射极品少妇av片p| 国产av不卡久久| 色尼玛亚洲综合影院| 亚洲真实伦在线观看| 日韩亚洲欧美综合| 日韩中文字幕欧美一区二区| 中国美女看黄片| 久久久久免费精品人妻一区二区| 成人特级av手机在线观看| 久久国产精品人妻蜜桃| 热99在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美精品v在线| 日韩有码中文字幕| 12—13女人毛片做爰片一| 欧美黑人巨大hd| 亚洲无线观看免费| 国产一区二区三区在线臀色熟女| a级一级毛片免费在线观看| 宅男免费午夜| 级片在线观看| 精品国产三级普通话版| 校园春色视频在线观看| 国产一区在线观看成人免费| 成年女人毛片免费观看观看9| 又粗又爽又猛毛片免费看| 99riav亚洲国产免费| 日本熟妇午夜| 一个人免费在线观看电影| 一区二区三区国产精品乱码| 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 免费av毛片视频| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| 午夜福利视频1000在线观看| 一级黄色大片毛片| 免费看十八禁软件| 亚洲最大成人中文| а√天堂www在线а√下载| 人人妻人人看人人澡| 波多野结衣高清作品| svipshipincom国产片| 午夜福利18| 在线免费观看不下载黄p国产 | 又黄又爽又免费观看的视频| 日日干狠狠操夜夜爽| 看黄色毛片网站| 亚洲熟妇中文字幕五十中出| 真实男女啪啪啪动态图| 香蕉av资源在线| 蜜桃久久精品国产亚洲av| 亚洲精品日韩av片在线观看 | av在线蜜桃| 久久久久国内视频| 国产精品亚洲一级av第二区| 午夜老司机福利剧场| 欧美+日韩+精品| 精华霜和精华液先用哪个| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 国内精品美女久久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产成人啪精品午夜网站| 变态另类成人亚洲欧美熟女| 免费电影在线观看免费观看| 在线观看日韩欧美| 看免费av毛片| 国产av在哪里看| 久久6这里有精品| 搡老熟女国产l中国老女人| 亚洲av日韩精品久久久久久密| 啦啦啦观看免费观看视频高清| 精品乱码久久久久久99久播| 国产在线精品亚洲第一网站| 亚洲,欧美精品.| 99久久成人亚洲精品观看| 国内揄拍国产精品人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 丰满的人妻完整版| 观看免费一级毛片| 日韩欧美三级三区| 高潮久久久久久久久久久不卡| 精品乱码久久久久久99久播| 精品一区二区三区av网在线观看| 岛国视频午夜一区免费看| 制服人妻中文乱码| 亚洲18禁久久av| 亚洲人成网站高清观看| 亚洲av成人av| 国产伦精品一区二区三区四那| 少妇的逼好多水| 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 99热这里只有是精品50| 国产高清视频在线观看网站| 看免费av毛片| 欧美一区二区国产精品久久精品| netflix在线观看网站| 午夜福利免费观看在线| 18+在线观看网站| 成人特级av手机在线观看| 99久久精品一区二区三区| 久久精品影院6| 国产亚洲欧美98| 三级男女做爰猛烈吃奶摸视频| 国产精品一及| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区人妻视频| 免费高清视频大片| 两人在一起打扑克的视频| 欧美日本视频| 国产真人三级小视频在线观看| 亚洲av免费高清在线观看| 午夜日韩欧美国产| av欧美777| 99精品久久久久人妻精品| 欧美日本视频| avwww免费| 男插女下体视频免费在线播放| 精品国内亚洲2022精品成人| 女人高潮潮喷娇喘18禁视频| 一个人免费在线观看电影| 内地一区二区视频在线| 久久精品人妻少妇| 亚洲欧美一区二区三区黑人| 天堂网av新在线| 国产成人系列免费观看| 欧美另类亚洲清纯唯美| avwww免费| svipshipincom国产片| 免费av毛片视频| 午夜久久久久精精品| 国产精品免费一区二区三区在线| 亚洲在线观看片| 少妇的逼好多水| 亚洲av中文字字幕乱码综合| 嫩草影院精品99| 一本综合久久免费| 两个人视频免费观看高清| 手机成人av网站| 欧美xxxx黑人xx丫x性爽| 久久香蕉精品热| 给我免费播放毛片高清在线观看| 国内少妇人妻偷人精品xxx网站| 一进一出抽搐动态| 国产av在哪里看| 国产成人欧美在线观看| 久久这里只有精品中国| 国产在线精品亚洲第一网站| 国产精品日韩av在线免费观看| 波多野结衣巨乳人妻| 天天添夜夜摸| 国产毛片a区久久久久| 免费人成视频x8x8入口观看| 一级黄色大片毛片| 国产欧美日韩一区二区精品| 欧美又色又爽又黄视频| 国产精品久久久久久久久免 | 国产蜜桃级精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 美女黄网站色视频| 国产伦精品一区二区三区四那| 精品久久久久久久毛片微露脸| 一本综合久久免费| 欧美成人a在线观看| 全区人妻精品视频| 久久久国产成人免费| 国产三级中文精品| 欧美一级毛片孕妇| 久久久久久久久大av| 午夜精品一区二区三区免费看| 女生性感内裤真人,穿戴方法视频| 99久久99久久久精品蜜桃| 18禁在线播放成人免费| 手机成人av网站| 嫁个100分男人电影在线观看| 我的老师免费观看完整版| 午夜激情欧美在线| eeuss影院久久| 99久久成人亚洲精品观看| 中文字幕人妻丝袜一区二区| 亚洲午夜理论影院| 欧美在线一区亚洲| 国产99白浆流出| 午夜激情欧美在线| 午夜福利欧美成人| 黑人欧美特级aaaaaa片| 综合色av麻豆| 日韩国内少妇激情av| 久久天躁狠狠躁夜夜2o2o| 日本黄大片高清| 国内精品久久久久久久电影| 男女下面进入的视频免费午夜| 一夜夜www| 欧美一区二区亚洲| 99热精品在线国产| 国产精品免费一区二区三区在线| 91麻豆av在线| 国产精品影院久久| 欧美日韩福利视频一区二区| 动漫黄色视频在线观看| 午夜福利在线观看吧| 欧美激情久久久久久爽电影| 免费观看人在逋| 成人精品一区二区免费| 国产国拍精品亚洲av在线观看 | 搞女人的毛片| 国产精品爽爽va在线观看网站| 国产av麻豆久久久久久久| 亚洲18禁久久av| 男女那种视频在线观看| 91麻豆精品激情在线观看国产| 欧美日韩亚洲国产一区二区在线观看| 久久国产乱子伦精品免费另类| 国产69精品久久久久777片| 日本与韩国留学比较| 欧美黄色淫秽网站| 亚洲美女黄片视频| 老司机福利观看| 久久精品夜夜夜夜夜久久蜜豆| 性欧美人与动物交配| 国产三级中文精品| 亚洲avbb在线观看| 天堂√8在线中文| 国产伦一二天堂av在线观看| 久久亚洲真实| 老熟妇仑乱视频hdxx| 蜜桃亚洲精品一区二区三区| 欧美黄色片欧美黄色片| 99久久99久久久精品蜜桃| 色播亚洲综合网| 人妻夜夜爽99麻豆av| 最新在线观看一区二区三区| 色吧在线观看| 91九色精品人成在线观看| 久久精品91无色码中文字幕| 欧美+亚洲+日韩+国产| 亚洲avbb在线观看| 99在线人妻在线中文字幕| 老司机深夜福利视频在线观看| 18禁裸乳无遮挡免费网站照片| 久久精品人妻少妇| 国产精品 欧美亚洲| 亚洲精品国产精品久久久不卡| 两性午夜刺激爽爽歪歪视频在线观看| 给我免费播放毛片高清在线观看| 国产午夜精品久久久久久一区二区三区 | 99国产精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 午夜福利高清视频| 99热这里只有精品一区| 久久精品影院6| 免费看光身美女| 嫁个100分男人电影在线观看| 婷婷精品国产亚洲av在线| 色尼玛亚洲综合影院| 成人特级av手机在线观看| 国产乱人伦免费视频| 日韩有码中文字幕| 国产主播在线观看一区二区| a级一级毛片免费在线观看| 日韩av在线大香蕉| 精品人妻偷拍中文字幕| 亚洲人成网站在线播| 麻豆国产97在线/欧美| 亚洲国产精品合色在线| 别揉我奶头~嗯~啊~动态视频| 国产真实伦视频高清在线观看 | 日本三级黄在线观看| 亚洲熟妇熟女久久| 手机成人av网站| 久99久视频精品免费| av欧美777| a级一级毛片免费在线观看| 国产精品久久久久久人妻精品电影| 久久久久久人人人人人| 蜜桃久久精品国产亚洲av| 国产亚洲欧美在线一区二区| 亚洲av二区三区四区| 51国产日韩欧美| 九九久久精品国产亚洲av麻豆| 国产欧美日韩精品一区二区| 久久亚洲真实| 国产精品久久久久久亚洲av鲁大| 日韩欧美国产在线观看| 我要搜黄色片| 国产免费一级a男人的天堂| 老司机福利观看| 亚洲精品国产精品久久久不卡| 欧美不卡视频在线免费观看| 51国产日韩欧美| 丰满的人妻完整版| 国产熟女xx| 亚洲av免费高清在线观看| 亚洲精品成人久久久久久| 国产色婷婷99| 国产精品久久久久久人妻精品电影| 精品电影一区二区在线| 黄色丝袜av网址大全| 九九热线精品视视频播放| 国产精品98久久久久久宅男小说| 很黄的视频免费| 久久久成人免费电影| 国产亚洲精品av在线| 免费观看的影片在线观看| 搡老岳熟女国产| 国产探花极品一区二区| av女优亚洲男人天堂| 欧美bdsm另类| 美女被艹到高潮喷水动态| 色精品久久人妻99蜜桃| 神马国产精品三级电影在线观看| 久久国产精品人妻蜜桃| 亚洲欧美一区二区三区黑人| 国产精品综合久久久久久久免费| 精品久久久久久成人av| 欧美日韩中文字幕国产精品一区二区三区| av天堂中文字幕网| 成人鲁丝片一二三区免费| АⅤ资源中文在线天堂| 亚洲av二区三区四区| av片东京热男人的天堂| 十八禁网站免费在线| 久久久久国产精品人妻aⅴ院| 国产麻豆成人av免费视频| 最新中文字幕久久久久| 精品久久久久久久人妻蜜臀av| 性色avwww在线观看| 91av网一区二区| 麻豆一二三区av精品| 久久久久九九精品影院| 3wmmmm亚洲av在线观看| 丁香六月欧美| 高清毛片免费观看视频网站| 亚洲成人中文字幕在线播放| 午夜视频国产福利| 国产精华一区二区三区| 国产精品香港三级国产av潘金莲| 91在线观看av| 欧美色视频一区免费| 久久99热这里只有精品18| 国产精品99久久久久久久久| 欧美日韩福利视频一区二区| 91麻豆精品激情在线观看国产| 免费看光身美女| 精品无人区乱码1区二区| 国产精品一及| 欧美激情久久久久久爽电影| 国内精品久久久久久久电影| 国产精品一区二区三区四区久久| 国产黄片美女视频| 女人被狂操c到高潮| 国产精品三级大全| 日韩中文字幕欧美一区二区| 亚洲avbb在线观看| 欧美一区二区亚洲|