• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Feature Weighted Mixed Naive Bayes Model for Monitoring Anomalies in the Fan System of a Thermal Power Plant

    2022-04-15 04:18:00MinWangLiShengDonghuaZhouandMaoyinChen
    IEEE/CAA Journal of Automatica Sinica 2022年4期

    Min Wang,, Li Sheng,,Donghua Zhou,, and Maoyin Chen,

    Abstract—With the increasing intelligence and integration, a great number of two-valued variables (generally stored in the form of 0 or 1) often exist in large-scale industrial processes.However, these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis (LDA), principal component analysis (PCA) and partial least square (PLS) analysis. Recently, a mixed hidden naive Bayesian model (MHNBM) is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring. Although the MHNBM is effective, it still has some shortcomings that need to be improved. For the MHNBM, the variables with greater correlation to other variables have greater weights, which can not guarantee greater weights are assigned to the more discriminating variables. In addition, the conditional probability P(xj|xj′,y=k) must be computed based on historical data. When the training data is scarce, the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM. Here a novel feature weighted mixed naive Bayes model (FWMNBM) is developed to overcome the above shortcomings. For the FWMNBM, the variables that are more correlated to the class have greater weights, which makes the more discriminating variables contribute more to the model. At the same time, FWMNBM does not have to calculate the conditional probability between variables, thus it is less restricted by the number of training data samples. Compared with the MHNBM, the FWMNBM has better performance, and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant (ZTPP), China.

    I. INTRODUCTION

    WITH increasing intelligence and integration, a great number of two-valued variables (generally stored as 0 or 1 value) often exist in large-scale industrial processes. For instance, 17381 variables are monitored in the No. 1 generator unit of the Zhoushan thermal power plant (ZTPP), where twovalued variables are more than 8820. These two-valued variables mainly include status monitoring variables and numerical range variables, such as control command signals and vibration over-limit signals, which switch from one state to the other with less influence from process fluctuation noise.

    In order to insure the high safety and reliability of largescale industrial processes, the problem of monitoring anomalies becomes more and more important [1]–[5]. The timely and accurate abnormal monitoring can effectively reduce waste of resources, economic losses, and even casualties [6]–[11]. Among a large number of monitoring methods, data-driven techniques have attracted much attention with the advantages of requiring less system information and prior knowledge than model-based and expert experience methods [12]–[19]. For example, principal component analysis (PCA) and its variants have been widely used in industrial processes [20], [21]. In order to detect qualityrelated faults, approaches based on partial least square (PLS)analysis have been proposed [22], [23]. When the training data contains both normal and abnormal working condition samples, linear discriminant analysis (LDA) has been utilized[24]. Kernel dictionary learning can also achieve excellent performance [18]. In addition, many other machine learning methods, such as K-nearest neighbors (KNN) [25], support vector machine (SVM) [26], etc., have also been applied in abnormal monitoring.

    However, the fact that two-valued variables ubiquitously exist in large-scale industrial processes presents a challenge to traditional monitoring methods. It is well known that the above mentioned methods are strongly based on continuous variables and may be not suitable for two-value variables. For example, PCA, PLS, LDA, etc. obtain a subspace that is convenient for monitoring through decomposition and then construct statistics or hyperplanes. But, these operations are based on Euclidean distance or Mahalanobis distance, which can not effectively mine the process information of twovalued variables. Two-valued variables are usually deleted during the data preprocessing stage [27], [28]. Recently, the mixed hidden naive Bayesian model (MHNBM) was proposed for the first time to combine both two-valued and continuous variables to improve monitoring performance [28]. Although MHNBM is effective, the variables with greater correlation to other variables have greater weights, which can not guarantee that greater weights are assigned to the more discriminating variables. Moreover, the conditional probabilityP(xj|xj′,y=k)betweenxjandxj′ undery=kmust be computed based on the historical data. When training data is scarce, the conditional probability between continuous variables tends to be uniformly distributed, which will affect performance.

    Motivated by the above discussions, a model known as the feature weighted mixed naive Bayes model (FWMNBM) is proposed to overcome the shortcomings of MHNBM. In FWMNBM, the variables that are more correlated to the class have greater weights which results in variables with greater differences under different working conditions contribute more to the model. Meanwhile, FWMNBM can avoid calculating the conditional probability between variables such that it can still be used when there is not enough training data.In addition, a more effective consistent characterization technique is developed for the correlation of mixed variables,and the corresponding feasibility analysis is conducted.Compared with MHNBM, FWMNBM has better performance, and the effectiveness of FWMNBM is validated through the simulations of a numerical example and a practical vibration fault case.

    In this paper, the remainder is organized as follows. Some preliminaries are briefly outlined in Section II. In Section III-A,FWMNBM is elaborated on. The estimation of parameters is introduced in Section III-B. In Section IV, the effectiveness of FWMNBM is verified. Finally, conclusions are drawn in Section V.

    II. PRELIMINARY

    III. MAIN ALGORITHM

    A. FWMNBM

    correlation between thexjandyas accurately as possible. The mutual information (MI)MI(xj,y) is used to characterize the correlation betweenxjandy.MI(xj,y) can effectively describe the correlation betweenxjandy, but it also contains some correlational information betweenxjand other variables(such asxj′) because variables are coupled. Then, the average feature-feature intercorrelation is introduced to compute the feature weight [32]

    B. Parameters Estimation

    In this subsection,Xis used for parameter estimation.According to maximum likelihood estimation (MLE) [35], the prior probability can be given as

    where

    Algorithm FWMNBM Offline modeling:X,yXt Xc Step 1: Divide the training data () into two-valued variables and continuous variables .Step 2: Construct the auxiliary two-valued variable for each continuous variable according to (12).Step 3: Calculate the estimates of each probability via (30) and(32).Step 4: Calculate the mutual information between variables and between variables and labels.FWj Step 5: Calculate the weight of the feature ().?θk j ?pk Step 6: Estimate the response functions ( ) and the prior probabilities ( ) of two-valued variables.?μk j?σk j Step 7: Estimate the mean ( ) and the standard deviation () of continuous variables.Step 8: Build the model with the estimated parameters.Online detection:?x Step 9: Select the sampled data and construct vector via (17).φkφk Step 10: Calculate , via (18) and (19).?x·φk+φkkargmaxk(?x·φk+φk)Step 11: Calculate for every , then is the predicted label.

    IV. SIMULATION

    In this section, the numerical cases of a numerical simulation example and a practical vibration fault case of ZTPP are utilized to validate the effectiveness of FWMNBM.

    A. Numerical Simulation

    The numerical simulation data contains 5 continuous variables and 5 two-valued variables. The means of continuous variables are shown in Table I and corresponding standard deviations (stds) are displayed in Table II. The twovalued variable values under different classes are depicted in Table III. In order to make the case more general, the twovalued variable values under different classes are randomly adjusted. The adjustment percentages are listed in Table III.For instance, some values ofv6under normal working conditions, which are set as 0, are changed to be 1 after adjusting. Under each working condition, 1500 samples are randomly generated according to the parameters. The samples under normal 1 and fault 1 are used for training the model,and the other instances are used for testing.

    TABLE I THE PRESET MEANS OF CONTINUOUS VARIABLES

    TABLE II THE PRESET STDS OF CONTINUOUS VARIABLES

    TABLE III THE VALUES AND ADJUSTMENT PERCENTAGE OF TWO-VALUED VARIABLES

    The Gaussian naive Bayesian model (GNBM) is used for the continuous variables and the Bernoulli naive Bayesian model (BNBM) is utilized to two-valued variables. That is onlyv1,...,v5are used for build and test GNBM, and BNBM just utilize the information ofv6,...,v10for modeling and verification. Different from GNBM and BNBM, MHNBM and FWHNBM are utilized for modeling and anomaly detection with both two-valued and continuous variables. The first 1500 samples of test data are normal data, and the rest are marked as faults. The test results of all above models for the testing data are depicted in Figs. 1(a)–1(d). There are a lot of false alarms and missing faults when only continuous or twovalued variables are used, which can be seen in Figs. 1(a) and 1(b). MHNBM and FWHNBM have better performance because they can simultaneously mine continuous and twovalued information at the same time. Compared to MHNBM,FWHNBM has the lower false alarm rate (FARs) and a higher fault detection rate (FDR) which are depicted in Figs. 2(e) and 2(f).

    B. Actual Data Validation

    A vibration fault of ZTPP is also used to illustrate the effectiveness of FWMNBM. At 11:35 on September 3, 2017,a hydraulic cylinder vibration fault of the primary air fan occurred, and it was recovered after 26 hours. The data,containing 495 two-valued variables and 260 continuous variables, is sampled every 5 seconds and collected from 11:35, September 1, 2017. A total of 53280 instances are collected for model training and testing.

    The first 60% instances under normal conditions and first 60% fault instances are utilized for modeling, and the remaining data is used for testing. In this article, we used 35 two-valued variables and continuous variables respectively.The detailed variable selection process can refer to article[28]. In the traditional methods, LDA [24], decision trees(DT) [37], SVM [26], k-nearest neighbors (KNN) [25] are adopted to detect anomaly with the continuous variables.MHNBM and FWMNBM are used with both two-valued and continuous variables. The testing results of all methods are shown in Figs. 2(a)–2(f).

    Excepting for DT, the performance of other methods in terms of FDR are very satisfactory. DT has omission of fault and all methods have false alarms. In order to compare the performance of various methods, the FDRs and FARs of all methods are shown in Table IV. From the experimental results, the addition of two-valued variables can reduce the impact of parameter fluctuations before a fault occurs.Affected by anomaly evolution, some normal instances are misclassified into fault. However, MHNBM and FWMNBM effectively reduce FAR through combining multiple process data sources, because the advantages of both two-valued and continuous variables are taken into consideration. Among all methods, FWMNBM has the best detection performance.

    V. CONCLUSIONS

    A data-driven anomaly detection method called FWMNBM is proposed with both two-valued and continuous variables.For FWMNBM, the variables more correlated to class have greater weights, which makes the more discriminating variables contribute more to the model. At the same time,FWMNBM can effectively avoid calculating the conditional probability between variables so that it can still be used when the amount of training data is not sufficient. In addition, a more effective consistent characterization method for the correlation of mixed variables is provided, and the corresponding feasibility analysis is conducted. The superior performance of FWMNBM is verified by the numerical cases of a numerical simulation example and an actual plant’s case.Compared to traditional classical approaches, MHNBM and FWMNBM significantly improve the anomaly monitoring performance by increasing the information of two-valued variables. Furthermore, FWMNBM has more outstanding performance because greater weights are assigned to variables with greater difference under different working conditions.

    Fig. 1. The label results of different methods. (a) GNBM; (b) BNBM; (c) MHNBM; (d) FWMNBM.

    Fig. 2. The testing results. (a) LDA; (b) KNN; (c) DT; (d) SVM; (e) MHNBM; (f) FWMNBM.

    APPENDIX A ANALYSIS OF DEFINITION 1

    Definition 1 unifies the correlation analysis between variables containing both two-valued and continuous variables by the same standard. The correlation between two-valued variables and two-valued variables or between continuous variables and continuous variables can be effectively characterized, and the original two-valued variables do not change. Therefore, the rationality of Definition 1 can be proved when a quantitative relationship exists between the correlation index of the auxiliary two-valued variables and that of original continuous variables.

    TABLE IV FARS AND FDRS OF ALL METHODS

    精品久久久久久,| 亚洲狠狠婷婷综合久久图片| 亚洲va日本ⅴa欧美va伊人久久| 成人三级做爰电影| 大香蕉久久成人网| 国产亚洲欧美在线一区二区| 久久人人精品亚洲av| 久久久久免费精品人妻一区二区 | 久久九九热精品免费| АⅤ资源中文在线天堂| 国产av在哪里看| 国产成+人综合+亚洲专区| 久久伊人香网站| 国产日本99.免费观看| 国产亚洲av嫩草精品影院| 青草久久国产| 桃红色精品国产亚洲av| 国产精品 国内视频| 久久中文字幕一级| 日本精品一区二区三区蜜桃| 久热这里只有精品99| 国产精品久久久av美女十八| 欧美一区二区精品小视频在线| 国产精品亚洲一级av第二区| 少妇熟女aⅴ在线视频| 午夜日韩欧美国产| 中文字幕av电影在线播放| 亚洲国产中文字幕在线视频| 成人手机av| 久久久久久久精品吃奶| 国产高清有码在线观看视频 | 亚洲欧美精品综合一区二区三区| 老司机深夜福利视频在线观看| 免费观看精品视频网站| 两个人看的免费小视频| 成熟少妇高潮喷水视频| 少妇的丰满在线观看| 精品午夜福利视频在线观看一区| 午夜激情福利司机影院| a在线观看视频网站| 日日干狠狠操夜夜爽| АⅤ资源中文在线天堂| 长腿黑丝高跟| 欧美黑人精品巨大| 日本五十路高清| 悠悠久久av| 婷婷精品国产亚洲av| 亚洲一区中文字幕在线| 777久久人妻少妇嫩草av网站| 一二三四在线观看免费中文在| 脱女人内裤的视频| 黄色a级毛片大全视频| 欧美中文日本在线观看视频| 精品无人区乱码1区二区| 三级毛片av免费| 国产成人av教育| 久久午夜亚洲精品久久| 桃红色精品国产亚洲av| 女警被强在线播放| 18禁裸乳无遮挡免费网站照片 | av超薄肉色丝袜交足视频| 哪里可以看免费的av片| 99在线人妻在线中文字幕| 精品国产一区二区三区四区第35| 婷婷精品国产亚洲av在线| ponron亚洲| 99久久久亚洲精品蜜臀av| 99久久久亚洲精品蜜臀av| 国产精品自产拍在线观看55亚洲| 婷婷六月久久综合丁香| 欧美黑人精品巨大| 在线观看一区二区三区| 日本免费一区二区三区高清不卡| 亚洲 欧美 日韩 在线 免费| 中文资源天堂在线| 怎么达到女性高潮| 日韩欧美在线二视频| 老司机午夜十八禁免费视频| 桃色一区二区三区在线观看| 99久久精品国产亚洲精品| 免费在线观看成人毛片| 国产97色在线日韩免费| 免费在线观看亚洲国产| 正在播放国产对白刺激| 成人一区二区视频在线观看| 色播在线永久视频| 精品卡一卡二卡四卡免费| 国产片内射在线| 国产区一区二久久| 久久精品国产99精品国产亚洲性色| 国产极品粉嫩免费观看在线| 两性夫妻黄色片| 最近在线观看免费完整版| 1024手机看黄色片| 欧美日韩一级在线毛片| 麻豆成人午夜福利视频| aaaaa片日本免费| av片东京热男人的天堂| 成年免费大片在线观看| 99久久国产精品久久久| 久久性视频一级片| 国产成人影院久久av| 精品久久久久久久毛片微露脸| www.999成人在线观看| 国产蜜桃级精品一区二区三区| 免费看a级黄色片| 悠悠久久av| 亚洲 欧美 日韩 在线 免费| 国产黄片美女视频| 欧美国产精品va在线观看不卡| 精品高清国产在线一区| 高潮久久久久久久久久久不卡| svipshipincom国产片| 免费看日本二区| 国产成人一区二区三区免费视频网站| tocl精华| 国产av又大| 午夜福利视频1000在线观看| 亚洲国产精品成人综合色| 日韩欧美免费精品| 精品久久久久久久毛片微露脸| 国产精品九九99| 亚洲精品粉嫩美女一区| 日韩三级视频一区二区三区| 中文字幕人妻丝袜一区二区| 国产一卡二卡三卡精品| 国内揄拍国产精品人妻在线 | 国产av不卡久久| 国内毛片毛片毛片毛片毛片| 亚洲国产欧美一区二区综合| 在线观看免费日韩欧美大片| 最新在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 欧美另类亚洲清纯唯美| 国产成人啪精品午夜网站| 高清在线国产一区| 国产成人av激情在线播放| 久久午夜综合久久蜜桃| 最新美女视频免费是黄的| 日韩大尺度精品在线看网址| 国产在线精品亚洲第一网站| 精品第一国产精品| 啦啦啦观看免费观看视频高清| 国产伦一二天堂av在线观看| 国产亚洲精品久久久久久毛片| 人人妻人人澡欧美一区二区| 亚洲国产精品sss在线观看| 国产又爽黄色视频| 美女午夜性视频免费| 久久中文看片网| 88av欧美| 久久久国产精品麻豆| 亚洲av电影在线进入| 听说在线观看完整版免费高清| 久久精品成人免费网站| 老司机福利观看| 日日爽夜夜爽网站| 999久久久国产精品视频| av欧美777| 男女下面进入的视频免费午夜 | 久久久久久久久久黄片| 亚洲av成人av| 欧美日韩乱码在线| 日本a在线网址| a级毛片在线看网站| 夜夜夜夜夜久久久久| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 国产不卡一卡二| 十八禁网站免费在线| 欧美激情高清一区二区三区| 视频在线观看一区二区三区| tocl精华| 国产精品久久电影中文字幕| 男女那种视频在线观看| 亚洲av片天天在线观看| 国产乱人伦免费视频| 欧美日本亚洲视频在线播放| 日韩欧美一区视频在线观看| 老汉色av国产亚洲站长工具| 亚洲av电影在线进入| 亚洲av第一区精品v没综合| 亚洲国产欧美一区二区综合| 大香蕉久久成人网| 一进一出抽搐动态| 久久久精品国产亚洲av高清涩受| www国产在线视频色| √禁漫天堂资源中文www| 久久人妻av系列| 国产激情偷乱视频一区二区| 中文字幕精品免费在线观看视频| 国产精品98久久久久久宅男小说| 亚洲中文字幕一区二区三区有码在线看 | 99久久精品国产亚洲精品| 精品久久蜜臀av无| 欧美中文日本在线观看视频| 日韩欧美在线二视频| 中文字幕最新亚洲高清| 人妻丰满熟妇av一区二区三区| 精品国内亚洲2022精品成人| 国产精品电影一区二区三区| 一区二区三区国产精品乱码| 老司机深夜福利视频在线观看| 日韩免费av在线播放| 欧美黄色片欧美黄色片| 午夜亚洲福利在线播放| 中国美女看黄片| 性欧美人与动物交配| 精品第一国产精品| 久久久久免费精品人妻一区二区 | 久久国产乱子伦精品免费另类| 久久天堂一区二区三区四区| 日本免费a在线| 精品欧美国产一区二区三| 亚洲免费av在线视频| 精品一区二区三区av网在线观看| 成人永久免费在线观看视频| 中文亚洲av片在线观看爽| 成人三级黄色视频| 极品教师在线免费播放| 国产精华一区二区三区| 夜夜夜夜夜久久久久| 欧美一级a爱片免费观看看 | 国内精品久久久久精免费| 一级毛片高清免费大全| 老司机在亚洲福利影院| 每晚都被弄得嗷嗷叫到高潮| 巨乳人妻的诱惑在线观看| 久久精品影院6| 国产成人精品无人区| 制服丝袜大香蕉在线| 亚洲黑人精品在线| 18禁美女被吸乳视频| 1024视频免费在线观看| 欧美国产日韩亚洲一区| 国产成+人综合+亚洲专区| 最好的美女福利视频网| 宅男免费午夜| 国产成人精品久久二区二区91| 国产真实乱freesex| 日韩一卡2卡3卡4卡2021年| 高清在线国产一区| 国产免费男女视频| 一区二区三区激情视频| 欧美日本亚洲视频在线播放| 淫秽高清视频在线观看| 一级片免费观看大全| 97超级碰碰碰精品色视频在线观看| 91老司机精品| 少妇 在线观看| 国产在线观看jvid| 国产一区二区在线av高清观看| 亚洲av熟女| 免费在线观看黄色视频的| 中出人妻视频一区二区| 久久青草综合色| 岛国在线观看网站| 精品电影一区二区在线| 久久婷婷人人爽人人干人人爱| 亚洲人成77777在线视频| 成人手机av| 法律面前人人平等表现在哪些方面| 成人欧美大片| 午夜日韩欧美国产| 777久久人妻少妇嫩草av网站| 亚洲国产精品sss在线观看| 黄色视频不卡| 18美女黄网站色大片免费观看| 老司机午夜福利在线观看视频| 看片在线看免费视频| 一边摸一边做爽爽视频免费| 精品国产一区二区三区四区第35| 国产精品爽爽va在线观看网站 | 亚洲精品久久国产高清桃花| 免费在线观看完整版高清| 久久久精品欧美日韩精品| 国产成人影院久久av| 97超级碰碰碰精品色视频在线观看| 最近最新中文字幕大全电影3 | 一边摸一边做爽爽视频免费| 国产av在哪里看| 成人亚洲精品一区在线观看| 99热6这里只有精品| 欧美一级a爱片免费观看看 | 中文资源天堂在线| 身体一侧抽搐| 色综合亚洲欧美另类图片| 久久中文字幕一级| 国产单亲对白刺激| 波多野结衣巨乳人妻| 老熟妇乱子伦视频在线观看| 亚洲专区中文字幕在线| 国产精品二区激情视频| 满18在线观看网站| 免费在线观看亚洲国产| 精品卡一卡二卡四卡免费| 日韩免费av在线播放| 国产黄a三级三级三级人| 免费看十八禁软件| √禁漫天堂资源中文www| 侵犯人妻中文字幕一二三四区| 村上凉子中文字幕在线| 哪里可以看免费的av片| 国产亚洲av嫩草精品影院| 欧美另类亚洲清纯唯美| 在线国产一区二区在线| 精品国产超薄肉色丝袜足j| 久久精品aⅴ一区二区三区四区| 老汉色av国产亚洲站长工具| 国产欧美日韩一区二区精品| 亚洲欧美精品综合久久99| 窝窝影院91人妻| 白带黄色成豆腐渣| 国产野战对白在线观看| 久久香蕉国产精品| 精品熟女少妇八av免费久了| 成人一区二区视频在线观看| 色哟哟哟哟哟哟| 国产精品免费一区二区三区在线| 久久久久久久精品吃奶| 国产v大片淫在线免费观看| 久久精品亚洲精品国产色婷小说| 欧美又色又爽又黄视频| 亚洲精品色激情综合| 中亚洲国语对白在线视频| 久久久久久亚洲精品国产蜜桃av| 看免费av毛片| 一区二区三区激情视频| 在线永久观看黄色视频| 日韩av在线大香蕉| 满18在线观看网站| 老鸭窝网址在线观看| 成年女人毛片免费观看观看9| 国产精品亚洲美女久久久| 男人舔奶头视频| 大型av网站在线播放| 国产区一区二久久| 99国产精品99久久久久| 每晚都被弄得嗷嗷叫到高潮| 天堂动漫精品| bbb黄色大片| 国产熟女xx| 精品电影一区二区在线| 国产一区二区激情短视频| 非洲黑人性xxxx精品又粗又长| 男男h啪啪无遮挡| 久久人人精品亚洲av| 亚洲黑人精品在线| 久久热在线av| 婷婷精品国产亚洲av在线| 国产av不卡久久| 国产区一区二久久| 久久久久国产精品人妻aⅴ院| 一级a爱片免费观看的视频| 久久亚洲真实| 欧美久久黑人一区二区| 91字幕亚洲| 黄频高清免费视频| 亚洲欧美精品综合久久99| 激情在线观看视频在线高清| 国产精品二区激情视频| 成人国语在线视频| 亚洲国产高清在线一区二区三 | 亚洲七黄色美女视频| 在线播放国产精品三级| 国产一区二区三区视频了| 久久精品影院6| 欧美日韩一级在线毛片| 日本熟妇午夜| 免费av毛片视频| 亚洲成av人片免费观看| 久久午夜综合久久蜜桃| 亚洲精品中文字幕在线视频| 亚洲熟妇中文字幕五十中出| 久久九九热精品免费| 免费一级毛片在线播放高清视频| 97人妻精品一区二区三区麻豆 | 国产成人影院久久av| 国产精品久久电影中文字幕| 亚洲专区国产一区二区| www.999成人在线观看| 中文字幕精品亚洲无线码一区 | 一进一出抽搐gif免费好疼| 国产精品日韩av在线免费观看| 国产日本99.免费观看| 欧美激情久久久久久爽电影| 婷婷六月久久综合丁香| 成人手机av| 成人永久免费在线观看视频| 18禁国产床啪视频网站| 免费在线观看亚洲国产| 国产精品98久久久久久宅男小说| 在线免费观看的www视频| 久久这里只有精品19| 国产成人影院久久av| 国产亚洲欧美98| 99国产精品一区二区三区| 亚洲欧美日韩无卡精品| 国产成人精品无人区| 日本三级黄在线观看| 此物有八面人人有两片| 国产精品久久久久久精品电影 | 中文字幕高清在线视频| 91成人精品电影| 国产成人精品久久二区二区91| 国产精品 欧美亚洲| 亚洲国产欧美日韩在线播放| 久久久久久久午夜电影| 日韩一卡2卡3卡4卡2021年| 中文字幕精品免费在线观看视频| av在线播放免费不卡| 久久性视频一级片| 成人一区二区视频在线观看| 99国产极品粉嫩在线观看| 欧美成人性av电影在线观看| 正在播放国产对白刺激| 久久精品人妻少妇| 亚洲av第一区精品v没综合| 欧美中文综合在线视频| 日本黄色视频三级网站网址| 女性生殖器流出的白浆| 久久精品国产99精品国产亚洲性色| 黄色成人免费大全| 国产精品九九99| 亚洲第一电影网av| 人人妻人人澡欧美一区二区| 日韩av在线大香蕉| 欧美一级a爱片免费观看看 | 成人av一区二区三区在线看| 一个人免费在线观看的高清视频| 老司机福利观看| 欧美不卡视频在线免费观看 | 国产蜜桃级精品一区二区三区| tocl精华| 韩国av一区二区三区四区| avwww免费| 两性夫妻黄色片| 亚洲午夜理论影院| 男女下面进入的视频免费午夜 | 国产一区在线观看成人免费| 久久狼人影院| 真人一进一出gif抽搐免费| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av香蕉五月| 亚洲成a人片在线一区二区| 一级黄色大片毛片| 亚洲人成77777在线视频| svipshipincom国产片| 自线自在国产av| 午夜免费激情av| 在线观看舔阴道视频| 日本 av在线| 99久久国产精品久久久| 亚洲精品在线美女| cao死你这个sao货| 麻豆一二三区av精品| 男人舔女人下体高潮全视频| 丝袜人妻中文字幕| 9191精品国产免费久久| 两个人免费观看高清视频| 国产真实乱freesex| 国产在线精品亚洲第一网站| 国产亚洲精品久久久久久毛片| 亚洲一码二码三码区别大吗| 级片在线观看| 男人舔女人的私密视频| 免费人成视频x8x8入口观看| 免费在线观看日本一区| 在线视频色国产色| 久久九九热精品免费| 国产精品亚洲美女久久久| 宅男免费午夜| 国产区一区二久久| 亚洲 欧美 日韩 在线 免费| 国内毛片毛片毛片毛片毛片| 观看免费一级毛片| 人人妻人人澡欧美一区二区| 高清毛片免费观看视频网站| 少妇熟女aⅴ在线视频| 淫秽高清视频在线观看| 日本一本二区三区精品| 色在线成人网| 精品欧美国产一区二区三| 免费无遮挡裸体视频| 日本精品一区二区三区蜜桃| 狂野欧美激情性xxxx| 国产精品综合久久久久久久免费| 亚洲国产精品成人综合色| 国产精品电影一区二区三区| 亚洲精品久久成人aⅴ小说| 一进一出抽搐动态| 午夜两性在线视频| 一夜夜www| 脱女人内裤的视频| 一区二区日韩欧美中文字幕| 国产成人一区二区三区免费视频网站| 日韩中文字幕欧美一区二区| 久久精品成人免费网站| 欧美精品亚洲一区二区| 欧美日韩乱码在线| 中文字幕久久专区| 久久久久久久久久黄片| www.精华液| 欧美av亚洲av综合av国产av| 久久香蕉激情| 欧美激情久久久久久爽电影| av在线天堂中文字幕| 高潮久久久久久久久久久不卡| 久久婷婷人人爽人人干人人爱| 亚洲成国产人片在线观看| 久久精品人妻少妇| 一本久久中文字幕| 国语自产精品视频在线第100页| 制服人妻中文乱码| 午夜福利在线在线| 中国美女看黄片| 看免费av毛片| 香蕉av资源在线| 成人亚洲精品av一区二区| 久久久久亚洲av毛片大全| 久久九九热精品免费| 国产精品1区2区在线观看.| 久久人妻福利社区极品人妻图片| 午夜日韩欧美国产| 在线天堂中文资源库| 欧美一级a爱片免费观看看 | 丝袜在线中文字幕| 国产成人影院久久av| 欧美 亚洲 国产 日韩一| 亚洲性夜色夜夜综合| 99国产精品99久久久久| videosex国产| 黄色毛片三级朝国网站| 欧美日韩中文字幕国产精品一区二区三区| 国产激情偷乱视频一区二区| 精品久久久久久久毛片微露脸| 国产免费男女视频| 人成视频在线观看免费观看| 免费无遮挡裸体视频| 国产亚洲av嫩草精品影院| 欧美一区二区精品小视频在线| aaaaa片日本免费| 男女午夜视频在线观看| 日本一区二区免费在线视频| 亚洲国产高清在线一区二区三 | 18禁黄网站禁片午夜丰满| 好男人电影高清在线观看| 又大又爽又粗| 欧美国产精品va在线观看不卡| 叶爱在线成人免费视频播放| 精品久久久久久久人妻蜜臀av| 国产精品二区激情视频| 亚洲在线自拍视频| 欧美午夜高清在线| 高清在线国产一区| 久久精品aⅴ一区二区三区四区| 国产v大片淫在线免费观看| 日本五十路高清| 精品一区二区三区四区五区乱码| 一进一出抽搐gif免费好疼| 好男人在线观看高清免费视频 | 久久久久久久精品吃奶| 日本熟妇午夜| 免费女性裸体啪啪无遮挡网站| 一区二区三区国产精品乱码| 亚洲av日韩精品久久久久久密| 中文字幕av电影在线播放| 国产三级黄色录像| 在线国产一区二区在线| 久久久久久大精品| 精品卡一卡二卡四卡免费| 丝袜美腿诱惑在线| 久久久久国产精品人妻aⅴ院| 久久天躁狠狠躁夜夜2o2o| 国产视频一区二区在线看| 真人一进一出gif抽搐免费| 悠悠久久av| 中文字幕精品亚洲无线码一区 | 女性生殖器流出的白浆| 又黄又粗又硬又大视频| 亚洲av熟女| 日本黄色视频三级网站网址| 香蕉国产在线看| 久久精品人妻少妇| 成人国语在线视频| 亚洲国产看品久久| 校园春色视频在线观看| 中文字幕人成人乱码亚洲影| 色综合欧美亚洲国产小说| 国产成人系列免费观看| 婷婷丁香在线五月| 久热这里只有精品99| 中文字幕最新亚洲高清| 国产精品二区激情视频| 99精品在免费线老司机午夜| 国产午夜精品久久久久久| 成人欧美大片| 免费高清在线观看日韩| 一本综合久久免费| 欧美日韩乱码在线| 国产精品国产高清国产av| 69av精品久久久久久| 老熟妇乱子伦视频在线观看| 欧美黑人巨大hd| 中文亚洲av片在线观看爽| tocl精华| 嫩草影视91久久| 久久久国产成人精品二区| 国产不卡一卡二| 伦理电影免费视频| 深夜精品福利| 久久国产亚洲av麻豆专区| 国产精品精品国产色婷婷| 国产精品国产高清国产av| 1024视频免费在线观看|