張德勝 楊雪琪 楊 港 許 彬 趙睿杰
(江蘇大學(xué)國家水泵及系統(tǒng)工程技術(shù)研究中心, 鎮(zhèn)江 212013)
立式蝸殼離心泵具有流量大、揚程高、功率大的特點,是調(diào)水工程中重要的水力機械設(shè)備。為了滿足不同季節(jié)、不同揚程工況下的輸水要求,立式蝸殼離心泵性能指標要求較高,運行工況復(fù)雜。由于四季更替,立式蝸殼離心泵通常需在較寬流量范圍內(nèi)運行,而在小流量工況下葉道內(nèi)會產(chǎn)生流動分離和各種旋渦從而堵塞流道造成失速[1-2],并且伴隨流量-揚程曲線出現(xiàn)正斜率[3-4]。失速現(xiàn)象的出現(xiàn)通常會使機組的水力損失增加,性能下降[5-6],嚴重時通常會誘發(fā)較強的低頻壓力脈動,使得立式蝸殼離心泵內(nèi)流態(tài)惡化、振動加劇,嚴重威脅機組運行的安全性和可靠性[7-9]。
國內(nèi)外學(xué)者對離心泵中失速現(xiàn)象開展了許多研究。文獻[10-11]研究了離心泵在失速工況運行時的不穩(wěn)定流動現(xiàn)象以及失速先兆。文獻[12]發(fā)現(xiàn)流量的改變影響了失速團的產(chǎn)生位置和傳播方向。文獻[13]探究了進口來流情況與離心泵葉輪內(nèi)失速類型的聯(lián)系。文獻[14]利用SST-SAS湍流模型研究了葉輪內(nèi)旋轉(zhuǎn)失速對離心泵穩(wěn)定性的影響,發(fā)現(xiàn)葉輪內(nèi)旋渦反復(fù)的產(chǎn)生、發(fā)展、衰退和潰滅。隨著研究的深入,探究幾何參數(shù)對失速特性的影響也逐漸引起了學(xué)者們的重視[15]。文獻[16-17]通過大渦模擬發(fā)現(xiàn)離心泵內(nèi)失速的類型取決于葉輪葉片數(shù)。文獻[18]研究了混流泵不同葉頂間隙下的失速特征,發(fā)現(xiàn)葉頂間隙的不同使得葉道內(nèi)的失速團數(shù)量和失速傳播規(guī)律發(fā)生改變。文獻[19]研究了葉輪進口直徑、葉輪出口寬度等幾何因素對離心泵內(nèi)流量-揚程曲線正斜率現(xiàn)象的影響。
由上述文獻分析可見,目前對離心泵內(nèi)失速現(xiàn)象的研究主要集中在葉輪內(nèi)失速表現(xiàn)形式以及傳播機理等方面。然而就導(dǎo)葉的幾何參數(shù)對離心泵失速特性影響的相關(guān)研究還很有限,隨著我國珠江三角洲水資源配置工程的建設(shè),大型立式蝸殼泵站的安全穩(wěn)定運行尤為重要。因此,本文通過討論不同導(dǎo)葉開度對離心泵內(nèi)失速特性的影響,探究導(dǎo)葉開度與失速現(xiàn)象的關(guān)聯(lián),以期為大型蝸殼泵多工況運行提供指導(dǎo)。
本文的物理模型為立式蝸殼離心泵,其基本設(shè)計參數(shù)為設(shè)計流量Qdes=0.214 m3/s,揚程H=18 m,額定轉(zhuǎn)速n=1 150 r/min,比轉(zhuǎn)數(shù)ns=215,葉輪出口直徑D2=360 mm,葉片數(shù)Z=7,導(dǎo)葉數(shù)Zd=20。該泵由進水管、離心式葉輪、活動導(dǎo)葉、固定導(dǎo)葉以及螺旋形蝸殼組合而成,如圖1所示。
圖1 立式蝸殼離心泵物理模型Fig.1 Physical model of vertical volute centrifugal pump1.蝸殼 2.固定導(dǎo)葉 3.活動導(dǎo)葉 4.葉輪 5.進水管
本文采用六面體結(jié)構(gòu)化網(wǎng)格進行劃分,如圖2所示??紤]流動分離和旋渦等流態(tài),對葉輪和導(dǎo)葉的近壁面進行了網(wǎng)格加密。葉輪和導(dǎo)葉壁面的y+普遍小于50,如圖3所示。
圖2 立式蝸殼離心泵計算域網(wǎng)格Fig.2 Grid of vertical volute centrifugal pump1.蝸殼 2.固定導(dǎo)葉 3.活動導(dǎo)葉 4.葉輪
圖3 葉輪和導(dǎo)葉的y+分布Fig.3 y+ distribution of impeller and vane diffuser
進行如圖4所示的網(wǎng)格無關(guān)性驗證,圖中揚程系數(shù)CH定義為
圖4 網(wǎng)格無關(guān)性驗證Fig.4 Mesh independence
(1)
其中
式中g(shù)——重力加速度,m/s2
u2——葉輪出口圓周速度,m/s
由圖4可知,當網(wǎng)格數(shù)大于700萬時,隨著網(wǎng)格數(shù)的增加,對應(yīng)的揚程和效率幾乎沒有差異。因此,最終確定總網(wǎng)格數(shù)為700萬。
在失速工況附近,泵內(nèi)存在較嚴重的流動分離現(xiàn)象,湍流強度較大,且具有一定的周期性和瞬時性,故非定常數(shù)值模擬時對湍流模型的選擇需要謹慎。大渦模擬(LES)模型對于捕捉流場細節(jié)有較好的效果,但計算量較大。而SST-SAS模型主要應(yīng)用于分離區(qū)域[20-21],該模型在這一區(qū)域的功能與LES模型類似[22],但計算量相對小。綜合考慮計算效果要求和計算空間限制,定常計算時采用SST湍流模型,非定常計算選用SST-SAS湍流模型。SAS模型將von Karman長度尺度LνK引入到SST湍流模型的尺度確定方程中[23],其中LνK定義為
(2)
其中
式中U′、U″——速度一階、二階導(dǎo)數(shù)
Ui、Uj——速度分量
xi、xj——x、y方向分量
Sij——應(yīng)變率張量
κ——von Karman常數(shù),取0.41
SST-SAS湍流模型在SST模型的ω方程產(chǎn)生項的基礎(chǔ)上附加了QSAS項[24],QSAS描述為
QSAS=max(A-B,0)
(3)
其中
式中k——湍動能,m2/s2
ω——比耗散率,m2/s3
ζ2、cμ、C、σΦ——常數(shù),分別為3.51、0.09、2.0、2/3
數(shù)值模擬前處理時設(shè)置進水管進口邊界為一個大氣壓,蝸殼出口邊界與質(zhì)量流量Qm有關(guān)。壁面函數(shù)為無滑移壁面邊界條件。收斂精度設(shè)置為10-5。在非定常計算時,時間步長設(shè)置為3°,即4.35×10-4s,每個時間步長中最大迭代次數(shù)為15次。計算時長為1.04 s,即20個轉(zhuǎn)動周期。壓力-速度耦合運用SIMPLEC算法。數(shù)值模擬使用二階迎風(fēng)格式求解。
為保證數(shù)值模擬結(jié)果的可靠性,通過模型機試驗展開驗證。在水利部天津中水北方勘測設(shè)計研究院水力模型試驗臺上開展性能試驗,試驗裝置系統(tǒng)如圖5所示。試驗臺以及主要轉(zhuǎn)動部件葉輪的實物圖如圖6所示。
圖5 試驗裝置系統(tǒng)圖Fig.5 System diagram of test devices1.高壓罐 2.空氣閥 3.蓄水池 4、5.閥門 6.真空泵 7.低壓罐 8.壓力表 9.試驗泵
圖6 試驗設(shè)備實物圖Fig.6 Physical diagram of test equipment1.電機 2.試驗段 3.葉輪
當立式蝸殼離心泵在小流量工況區(qū)運行時流量-揚程曲線通常會出現(xiàn)正斜率,效率也會隨之突降,嚴重影響該泵的穩(wěn)定高效運行。為了預(yù)測該立式蝸殼離心泵的失速區(qū),本文選取了24個工況點進行了數(shù)值模擬,并在流量-揚程曲線出現(xiàn)正斜率的區(qū)域增加了模擬工況點,以獲得準確的失速工況位置。同時,為檢驗瞬態(tài)數(shù)值模擬的可靠性,對多個工況下的瞬態(tài)模擬結(jié)果取時均值后繪制性能曲線。最后,將模擬曲線與試驗曲線進行了對比,如圖7所示。在所有測量工況范圍內(nèi),揚程和效率的模擬值和試驗值偏差均在5%以內(nèi),說明數(shù)值模擬能夠較為準確地預(yù)測該立式蝸殼離心泵的能量特性。且瞬態(tài)的數(shù)值模擬結(jié)果與試驗結(jié)果更為接近。圖中流量系數(shù)CQ定義為
圖7 外特性模擬曲線與試驗曲線Fig.7 Performance curves of simulation and experiment
(4)
式中Q——泵的流量,m3/s
b2——葉輪出口寬度,取0.070 3 m
2.1.1水力性能對比
3種開度下立式蝸殼離心泵的性能曲線如圖8所示。其中,小開度時活動導(dǎo)葉開度為19°,最優(yōu)開度時為25°,大開度時為31°。
圖8 不同開度下立式蝸殼離心泵的性能曲線Fig.8 Performance curves of vertical volute centrifugal pump at different openings
由圖8可知,3種導(dǎo)葉開度下流量-揚程曲線在CP2~CP3流量范圍內(nèi)均出現(xiàn)正斜率,即存在駝峰區(qū)。小開度時正斜率區(qū)域的對應(yīng)斜率最大,最優(yōu)開度時最小。結(jié)合流量-效率曲線可知,在臨界失速工況(CP3工況)時小開度對應(yīng)的效率最大,而在深度失速工況(CP2工況)時小開度對應(yīng)的效率最小。故小開度下當流量從臨界失速工況下降到深度失速工況時,效率的驟降最為明顯。由此可知,小開度下當立式蝸殼離心泵發(fā)生失速后,泵內(nèi)流態(tài)發(fā)生較大變化,造成揚程的劇烈減小以及效率的陡降。同時,隨著導(dǎo)葉開度的增大,立式蝸殼離心泵的揚程整體上減小。
2.1.2導(dǎo)葉內(nèi)渦量場分析
由于活動導(dǎo)葉開度的改變,直接影響了導(dǎo)葉流域的流態(tài),故本文首先探討了導(dǎo)葉內(nèi)的流動差異性。選取深度失速工況時流道內(nèi)渦量分布進行研究,如圖9所示。
圖9 不同開度下導(dǎo)葉內(nèi)的渦量分布(CP2工況)Fig.9 Vorticity distribution in vane diffuser at different openings (condition CP2)
由圖9可知,在3種導(dǎo)葉開度下,活動導(dǎo)葉與固定導(dǎo)葉之間的無葉區(qū)內(nèi)均出現(xiàn)了高渦量區(qū)域。且旋渦沿固定導(dǎo)葉工作面前緣向后緣延伸,旋渦強度逐漸減小,如圖中虛線框位置所示(見標識A)。小導(dǎo)葉開度和大導(dǎo)葉開度下,該位置存在的旋渦均是沿順時針方向旋轉(zhuǎn),且大開度時旋渦強度大,覆蓋面積廣。最優(yōu)開度時旋渦強度相對較小,但在活動和固定導(dǎo)葉間的無葉區(qū)出現(xiàn)兩種旋向相反的旋渦。
同時固定導(dǎo)葉工作面的旋渦,引起了相鄰固定導(dǎo)葉背面產(chǎn)生旋渦,如圖中實線框位置所示(見標識B)。該旋渦從固定導(dǎo)葉工作面尾緣向相鄰固定導(dǎo)葉背面擴散,旋渦強度隨之減小。并且該旋渦在大開度條件時強度最大,最優(yōu)開度時最小。
綜上所述,3種不同開度時活動和固定導(dǎo)葉之間的無葉區(qū)內(nèi)都存在大尺度旋渦。且旋渦不斷向下游擴散,造成固定導(dǎo)葉內(nèi)流態(tài)的惡化。同時,導(dǎo)葉流域在大開度條件時旋渦強度最大,最優(yōu)開度時相對最小。
2.1.3葉輪內(nèi)熵產(chǎn)率分布
活動導(dǎo)葉開度的變化,不僅改變了導(dǎo)葉內(nèi)的流動特性,也對相鄰過流部件葉輪內(nèi)的流動不均勻性造成了影響。本節(jié)借助熵產(chǎn)理論建立立式蝸殼離心泵內(nèi)過流部件的能量損失與熵產(chǎn)變化之間的聯(lián)系,從而獲得過流部件內(nèi)損失分布規(guī)律。首先,假設(shè)運輸介質(zhì)水是不可壓縮的,且泵內(nèi)的能量變化是不可逆的。其次,考慮水在流動過程中水溫變化較小,故忽略由于溫度上升而引起的熵增,認為過流部件內(nèi)的熵產(chǎn)是由湍流流動造成的。該熵產(chǎn)主要包括兩個部分,其定義為
(5)
其中
式中SPRO——湍流流動的耗散導(dǎo)致的總熵產(chǎn)率,kW/(m3·K)
SPRO,D′——湍流脈動速度導(dǎo)致的熵產(chǎn)率,kW/(m3·K)
μ——流體動力粘度,Pa·s
u、v、w——速度在x、y、z坐標方向上的投影,m/s
u′、v′、w′——瞬態(tài)速度分量u、v、w時均化時的脈動量,m/s
然而,由于CFD計算中采用RANS方法,無法得到湍流脈動速度,故湍流脈動速度導(dǎo)致的熵產(chǎn)率SPRO,D′則難以直接根據(jù)式(5)獲得。為此文獻[25]提出一種近似計算方法,描述為
(6)
式中ρ——流體密度,kg/m3
ε——湍流耗散率,m2/s3
若假設(shè)流體在立式蝸殼離心泵中流動時溫度恒定,則將總熵產(chǎn)率定義為
(7)
根據(jù)上述熵產(chǎn)理論,獲得深度失速工況時不同導(dǎo)葉開度下葉輪葉片靠近前蓋板截面(Span值0.1)、葉輪葉片中截面(Span值0.5)以及葉輪葉片靠近后蓋板截面(Span值0.9)的熵產(chǎn)率分布情況,如圖10所示。
圖10 不同開度下葉輪內(nèi)的熵產(chǎn)率分布(CP2工況)Fig.10 Entropy production rate distribution in impeller at different openings (condition CP2)
由圖10可知,隨著活動導(dǎo)葉開度的增大,Span值0.1截面上的高熵產(chǎn)率區(qū)域不斷擴大,且集中于葉輪進口附近。同時在最優(yōu)開度以及大開度下,可以在Span值0.5截面上觀察到較高的熵產(chǎn)率分布在葉輪流道靠近出口位置,某些流道的出口處十分明顯。而Span值0.9位置僅在葉輪葉片前緣附近有較小的高熵產(chǎn)率區(qū)域。
依據(jù)熵產(chǎn)理論可知,過流部件內(nèi)的熵產(chǎn)是由湍流流動造成的。而不穩(wěn)定流動結(jié)構(gòu)會誘導(dǎo)湍流脈動的產(chǎn)生,從而引起較大的水力損失。所以高熵產(chǎn)率區(qū)域?qū)?yīng)的流動不均勻性嚴重,由此造成的水力損失較大。為進一步探究高熵產(chǎn)率區(qū)域的流態(tài),結(jié)合葉輪內(nèi)對應(yīng)流線分布情況進行分析,如圖11所示。
通過圖10和圖11可知,不同導(dǎo)葉開度下葉輪內(nèi)高熵產(chǎn)率特征出現(xiàn)位置對應(yīng)流場存在流動分離、旋渦等不穩(wěn)定流動結(jié)構(gòu)。同時流場中速度梯度較大位置處的熵產(chǎn)率也較高。由此可知,Span值0.1截面的流態(tài)隨著導(dǎo)葉開度增大而惡化,旋渦覆蓋面積擴大。Span值0.5截面處,當導(dǎo)葉為最優(yōu)開度以及大開度時,葉輪出口附近出現(xiàn)較大的速度梯度。而Span值0.9截面處,可以在葉輪葉片前緣吸力面位置觀察到較小的旋渦,在葉輪出口附近也存在局部較大速度梯度。
圖11 不同開度下葉輪內(nèi)的流線分布(CP2工況)Fig.11 Streamline distributions in impeller at different openings (condition CP2)
當立式蝸殼離心泵在失速工況運行時,導(dǎo)葉內(nèi)流動分離和旋渦的存在通常會誘發(fā)不穩(wěn)定的壓力波動。為更好地研究壓力脈動變化情況,在導(dǎo)葉流道中截面內(nèi)設(shè)置了如圖12所示監(jiān)測點。圖12中在活動導(dǎo)葉中間流道r=214 mm處沿圓周方向均布了20個監(jiān)測點。
圖12 截面處監(jiān)測點的布置Fig.12 Distribution of monitoring points on cross-section
圖13為通過快速傅里葉變換(FFT)得到的不同導(dǎo)葉開度下監(jiān)測點V1在深度失速工況時的壓力脈動頻域圖,其中壓力系數(shù)Cp定義為
圖13 監(jiān)測點V1的壓力脈動頻域圖(CP2工況)Fig.13 Frequency spectra of pressure fluctuation at monitoring point V1 (condition CP2)
(8)
式中p——瞬態(tài)壓力,Pa
由圖13可知,隨著導(dǎo)葉開度的增大低頻信號愈加復(fù)雜且對應(yīng)振幅不斷增加。小開度時壓力脈動的主頻f=7fn=134 Hz(fn為軸頻),即為葉片通過頻率。同時也可以觀察到葉片通過頻率的高次諧波。由此可知,小開度時深度失速工況下的壓力脈動主要受到葉輪與導(dǎo)葉間的動靜干涉作用影響。而最優(yōu)開度時主頻為0.9fn,大開度時在0.7fn~1.2fn范圍內(nèi)頻率對應(yīng)振幅均較大,呈現(xiàn)寬頻特性。這些低頻壓力信號的出現(xiàn)可能是由導(dǎo)葉內(nèi)的流動分離和旋渦造成的。為進一步闡明低頻信號出現(xiàn)原因,選取最優(yōu)開度下不同時刻導(dǎo)葉中截面上的瞬態(tài)流動結(jié)構(gòu)進行研究,如圖14所示。其中T0為某一時刻,T為葉輪一個旋轉(zhuǎn)周期。
由圖14可知,在T0時刻,可以在固定導(dǎo)葉吸力面前緣附近觀察到一個大尺度旋渦。然而在T0+0.45T時刻,該位置的旋渦消失。T0+0.9T時刻該位置附近又出現(xiàn)了旋渦。在T0+1.35T時刻,該位置的流態(tài)又恢復(fù)順暢。當T0+1.8T時刻時,又出現(xiàn)了旋渦,且旋渦尺度較大。即每經(jīng)過0.9T時間,該旋渦就會出現(xiàn)一次。由此可知,最優(yōu)開度時深度失速工況下主頻為0.9fn與導(dǎo)葉內(nèi)存在的周期性大尺度旋渦密切相關(guān)。
圖14 導(dǎo)葉內(nèi)不同時刻的速度分布(CP2工況)Fig.14 Velocity distribution of vane diffuser with different time (condition CP2)
(1)導(dǎo)葉開度對立式蝸殼離心泵流量-揚程水力性能曲線影響較大。隨著導(dǎo)葉開度的增大,揚程整體上減小。不同導(dǎo)葉開度下失速特征工況點不變,但小開度時失速區(qū)流量-揚程曲線對應(yīng)斜率最大,最優(yōu)開度時最小。
(2)固定和活動導(dǎo)葉間無葉區(qū)內(nèi)的旋渦在3種活動導(dǎo)葉開度下均較為嚴重,且大開度時旋渦強度最大,最優(yōu)開度時最小。同時固定導(dǎo)葉工作面的旋渦擴散至相鄰固定導(dǎo)葉背面。
(3)在深度失速工況下,不同導(dǎo)葉開度下葉輪內(nèi)的流體熵產(chǎn)率分布規(guī)律呈現(xiàn)明顯不同的特征。葉輪葉片靠近前蓋板截面上的高熵產(chǎn)區(qū)域隨導(dǎo)葉開度的增大而擴大。葉輪葉片中截面上,在最優(yōu)開度和大開度時葉輪流道靠近出口位置出現(xiàn)較大熵產(chǎn)。葉輪葉片靠近后蓋板截面上的熵產(chǎn)整體較小。通過對比分析發(fā)現(xiàn)流動分離、旋渦等不穩(wěn)定流動結(jié)構(gòu)會誘導(dǎo)湍流脈動的產(chǎn)生,造成局部高熵產(chǎn)率。
(4)小開度時深度失速工況下壓力脈動的主頻為葉片通過頻率,而最優(yōu)開度和大開度時主頻為低頻信號。通過對導(dǎo)葉內(nèi)瞬態(tài)流場的分析可知,低頻信號占據(jù)主導(dǎo)地位與導(dǎo)葉內(nèi)出現(xiàn)的大尺度旋渦密切相關(guān)。