• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Charge effects on quinoline hydrodenitrogenation catalyzed by Ni-Mo-S active sites-A theoretical study by DFT calculation

    2022-03-30 13:52:42SiJiDingShoZhongPengZuoJieYnJiFengWngShuJioJingZhnLinYng
    Petroleum Science 2022年1期

    Si-Ji Ding ,Sho-Zhong Peng ,Zuo-Jie Yn ,Ji-Feng Wng ,Shu-Jio Jing ,Zhn-Lin Yng ,*

    a Dalian Research Institute of Petroleum and Petrochemicals,SINOPEC,Dalian,116041,China

    b Fushun Petrochemical Company,Fushun,Liaoning,113001,China

    Keywords:Charge distribution Ni-Mo-S active Sites Quinoline Hydrodenitrogenation Quantum chemistry calculation

    ABSTRACT The charge distribution on Ni-Mo-S active sites can affect hydrodenitrogenation (HDN) activity.In this study,a series of model Ni-Mo-S were developed with various charge distributions.For comparison,the charge distribution effects on quinoline HDN were studied.The results show that a lack of electrons and extra protons can both lower the orbital eigenvalue of the Ni-Mo-S,leading to stronger adsorption of nitrogen-containing compounds and inhibition of ammonia desorption.Electron deficiency will improve the generation of active hydrogen on the active sites but inhibit hydrogen transfer to the nitrogen compounds;extra protons can provide H+ to the nitrogen compounds,which will flexibly transfer between the nitrogen compound and active sites,thus improving the cleavage of the C-N bond.

    1.Introduction

    With the adjusted energy structure and change in the supplydemand relationship,the production capacity of fossil fuels in the petrochemical industry is decreasing gradually,while the production capacity of chemical raw materials must be urgently strengthened.Hydrocracking technology is an important process for the petrochemical industry to convert distillates into chemical raw materials(Bezergianni et al.,2009;Choudhary and Saraf,1975;Kseo;lu and Phillips,1987;Scherzer Jg,1996).In general,hydrocracking catalysts contain acidic zeolites as the cracking center(Ali et al.,2002;Martens et al.,2001;Speight,2020;Zhang et al.,2007),and the nitrogen contents,particularly the basic nitrogen compounds in the cracking feedstock,are strictly limited.To remove the nitrogen compounds in the feedstock,a hydrocracking pretreatment catalyst is required in the hydrocracking process(Badoga et al.,2020;Kohli et al.,2019;Oh et al.,2019;Prada Silvy et al.,2019).

    The prevailing commercial pretreatment catalysts are highly active Mo-Ni bimetal γ-alumina-supported hydrotreating catalysts.Strong acidic supports and electronegative elements can significantly improve the removal of nitrogen compounds(Hu et al.,2019;Tung et al.,2017;Valles et al.,2019;Yao et al.,2017;Tang et al.,2017).These prompters could cause electron deficiency or bring extra protons to the Ni-Mo-S active nanoclusters via inductive effects or charge transfer(Prins et al.,1997;Tominaga and Nagai,2010).With the rapid development of computer technology and the progress of quantum chemical calculations,theoretical calculations of complex catalytic processes,such as charge distribution effects on hydrodenitrogenation,can be implemented.

    In this study,quinoline,which is a typical basic two-ring nitrogen compound for hydrodenitrogenation (HDN) research (Li et al.,2012;Lu et al.,2007),is used as the probe,and a series of model Ni-Mo-S with different charge distributions are used as the active sites.The key processes of quinoline HDN,including adsorption,hydrogenation saturation,and C-N bond cleavage on the Ni-Mo-S,are calculated by quantum chemistry calculations.

    2.Modeling and computational methods

    The neutral Ni-Mo-S model in this study was a hexagonal single-layer nanocluster.The stable state of the Ni-Mo-S active sites under the hydrogenation reaction is shown in Fig.1 (Ding et al.,2018a).Previous studies have shown that on the Ni(Co)-Mo-S or MoS2,the hydrogenolysis active centers are mainly located on the(10-10)plane,denoted as the Ni(Co)-Mo edge(Ding et al.,2017a,2017b,2018a,b;Sun et al.,2004;Sylvain et al.,2004).In this study,the issues of quinoline HDN are focused on the Ni-Mo edge of the Ni-Mo-S active sites.Considering the symmetry of the calculation model,in the electron deficiency case,three pairs of electrons were subtracted from the Ni-Mo-S,and the model is denoted as E-Ni-Mo-S.For additional protons,one proton was added to each Ni-Mo edge,and the model was denoted as P-Ni-Mo-S.

    List of symbols

    EadAdsorption energy

    LbBond length

    OmMayer bond order

    ErReaction Energy

    EaActivation Energy

    Calculations were performed using the DMol3 code.The calculation function is the general gradient approximation-Perdew-Burke-Ernzerhof function,and the basis set is a double numerical plus polarization basis(Chigo Anota and Cocoletzi,2014;Delley and B.1982).To analyze the transition state,the open shell mode was used to treat the electron spin.The symmetry in the calculation was also canceled to meet the anisotropy in the HDN process.The orbital cut off is unified to 5.0 ? for every atom.To balance the calculation speed and accuracy,the effective core potential (ECP)method was used to simplify the core electron treatment,and thermal smearing was set to 5 × 10-4Hartree.The self-consistent field density convergence (SCF) was set to 2 × 10-5,and the energy tolerance for the geometry optimization and transition state was 2 × 10-5Hartree.The force tolerance was 4 × 10-3Ha/? geometry optimization and 3 × 10-3Ha/? for the transition search.The Grimme 06 correction method was used to calculate the atomic dispersion.The exchange-correlation dependent factors6was set to 1.0,and the damping coefficient was set to 20.0.The dispersion parameters for the atoms involved in this calculation can be found in Table 1 (Grimme,2010,2011).

    Table 1 Atomic dispersion parameters.

    During the process of HDN,the adsorption of reactants on the active sites relies on the interactions between the lone or conjugated electron pairs of the reactants and the unoccupied molecular orbitals of the active sites.According to acid-base theory,E-Ni-Mo-S can protonate basic nitrogen compounds.The changes in molecular orbitals before and after the protonation of quinoline (Q),tetrahydroquinoline (THQ),and decahydroquinoline (DHQ) (THQ and DHQ are important intermediates in the hydrodenitrogenation process of quinoline (Luan et al.,2009) and are shown in Table 2.The highest occupied molecular orbital (HOMO) of nonprotonated basic nitrogen compounds is mainly contributed by the lone pair electrons on the nitrogen atoms.When the nitrides are protonated by E-Ni-Mo-S,the lone pair electrons of atoms combine with H+.The newly generated HOMO has barely related to the nitrogen atoms,and the orbital eigenvalue is significantly reduced.This change will weaken the binding ability between the active center and the nitrogen compounds.

    The effects of charge distributions on the lowest unoccupied molecular orbital (LUMO) are shown in Table 3.On the neutral Ni-Mo edge,the LUMO is attributed to the d orbital of the tetracoordinated Ni atom and the pentacoordinated Mo atom with S atoms.The LUMO eigenvalue is -4.53 eV.On the E-Ni-Mo-S,the composition and morphology of the LUMO orbitals do not change much,and they still consist of unoccupied d orbitals from aligned metal atoms.However,the LUMO eigenvalue significantly decreases to-8.20 eV.On the P-Ni-Mo edge,the H+bonds are stably coordinated with the pentacoordinated Mo atom,which is near the exposed Ni atom.This combination will satisfy the stable hexacoordination of the Mo atom.The Ni atom close to H+will be more electron deficient,leading to a reduction in the LUMO eigenvalue.It could be concluded that both the lack of electrons and the extra protons will lower the LUMO eigenvalue and enhance the ability of receiving electrons from the reactants.

    Fig.1.Ni-Mo-S nanocluster model (a) front view of the nanocluster,(b) lateral view of the (10-10) plane and (c) lateral view of the (-1010) plane.

    2.1.Effects of charge distribution on the adsorption of nitrogen compounds

    During the HDN process,the reactant,some important intermediates and the ammonia have strong adsorption ability on the active centers.The calculation results of the adsorption of Q,THQ,DHQ and NH3on Ni-Mo-edge affected by different charge distributions are shown in Table 4.On the neutral Ni-Mo-S,the formation of the nitrogen compounds adsorption is point to point.Specifically,the nitrogen atom of Q,THQ and DHQ bonded with nickel atom,forming an N-Ni bond with 2.2-2.3 ? and 0.3-0.4 Mayer bond order.The nitrogen atom of NH3prefers to bond with Mo atoms.The bond direction is in accord with the orientation of the LUMO morphology listed in Table 2.Because of the similarity of LUMO morphology,the adsorption morphology of the nitrogen compounds on the E-Ni-Mo-S and Ni-Mo-S active sites are similar as well,whereas the significant difference is the adsorption energy.The adsorption energies of nitrogen compounds on E-Ni-Mo-S are approximately 20-30 larger than those on the neutral Ni-Mo-S.When the nitrogen compounds adsorb on the P-Ni-Mo-S active sites,the H+will transfer to the nitrogen,combing with the long pair electrons.The adsorption of nitrogen compounds will turn to flat model without forming the N-Ni bond.Despite the lacking of the single strong chemisorption bonds,the weak interaction between the conjugate π-electrons and the unoccupied orbitals the extra dispersion force from the increasing contact area both enlarge the adsorption energy.According to the calculation results,both the electron deficiency and the extra proton will enhance the adsorption of nitrogen compounds on the Ni-Mo-edge,whereas the ammonia desorption is inhibited which is negative to the recovery of the active center during the HDN process.

    2.2.Effects of charge distributions on the hydrogen activation and transfer

    On the Ni-Mo edge,hydrogen activation is carried out by H2molecule dissociation on the metal or sulfur atom.Hydrogen dissociation with adsorption of a quinoline molecule was calculated,and the results are shown in Table 5.On the Ni-Mo edge of neutral Ni-Mo-S,hydrogen dissociation is a strong endothermic step with a high energy barrier.At the corresponding position of ENi-Mo-S,this dissociation is an obvious exothermic process,and the activation energy significantly decreases to 108.51 kJ/mol.On the P-Ni-Mo-S,the thermal effects and activation energy charge were less significant than those on E-Ni-Mo-S.It could be predicted that electron deficiency will promote hydrogen dissociation.

    The newly generated active hydrogen must transfer to the nitrogen compounds quickly in the case of self-combination.Among the several hydrogen transfers of quinoline HDN,the conversion from THQ to penta-hydroquinoline (PHQ) is a key speed control step (Ding et al.,2017;Jian and Prins,1998).This elementary reaction on the Ni-Mo edge with different charge distributions is shown in Table 6.The active hydrogen breaks the conjugated aromatic rings.The reaction energy is up to 40-70 kJ/mol,and the activation energy exceeds 100 kJ/mol.In comparison,hydrogen transfer on neutral Ni-Mo-S is relatively easier and most difficult on E-Ni-Mo-S.The difficulty of hydrogen transfer is adverse to hydrogen dissociation,indicating that the stronger the interaction between the hydrogen and active sites,the easier the hydrogen dissociation and the harder the hydrogen transfer.

    2.3.Effects of charge distributions on the C-N cleavage of nitrogen compounds

    For quinoline,the main pathway of C-N bond cleavage is the E2elimination of DHQ.This process contains two elementary steps:the first step is hydrogen elimination of β-C,forming nonahydroquinoline,and the second step is cleavage of the C-N bond,forming a C=C bond and amino group (Li et al.,2012).Table 7 shows the elimination of the β-H of DHQ on Ni-Mo-edges with different acid types.According to the calculated results,the transfer of β-H to the active sites is an endothermic process with high activation energy.During this step,the S accepts the hydrogen atom,and the β-C atom bonds with the Mo atom.The influence of the charge distribution is limited,whereas the H+provided by B-Ni-Mo-S returns to the active sites,and the reaction energy and activation energy both decrease.The C-N bond cleavage of NHQ is shown in Table 8.The results show that the C-N break on the neutral Ni-Mo-S is a strong endothermic step with very high energy barrier.Meanwhile,the C-N bond cleaves the newly generated C=C bonds attached with the Mo atom.The electron deficiency on Ni-Mo-S does not change the pathway of C-N bond cleavage,and the influence is quite limited.Attributable to thestronger adsorption ability of the LUMO,the energy barrier decreased by approximately 10 kJ/mol on the E-Mo-Ni-S.Notably,on the P-Ni-Mo-S,the proton transferred to the Ni-Mo-edge in the elimination step returns back to nitrogen compounds during C-N bond cleavage.The proton not only lowers the electron density but also increases the coordination of the N atom,leading to a more stable transition state of C-N bond cleavage.The activation energy decreased by approximately 40 kJ/mol,indicating thatflexible H+transfer between the nitrogen compounds and the active center significantly lowered the C-N bond cleavage in the HDN of quinoline.

    Table 4 Adsorption of Q,THQ and DHQ on the Ni-Mo-edge with different charge distributions.

    Table 5 Hydrogen dissociation with adsorbing quinoline.

    Table 6 Hydrogen transfer from THQ to PHQ on Ni-Mo-edge with charge distributions.

    Table 7 Hydrogen elimination of DHQ β-C.

    Table 8 C-N bond cleavage of NHQ.

    3.Conclusions

    In this study,the HDN catalytic activities of Ni-Mo-S with different charge distributions are calculated.The conclusions are as follows:

    1.Electron deficiency and extra protons could both lower the LUMO eigenvalue of Ni-Mo-S.The effects of electron deficiency on the morphology are limited,whereas extra protons could change the local morphology of LUMO.

    2.Electron deficiency and extra protons could both enhance the adsorption ability of Ni-Mo-S active sties to nitrogen compounds.On neutral Ni-Mo-S and E-Ni-Mo-S,the nitrogen compounds adsorb via the chemisorption N-Ni bond,whereas on P-Ni-Mo-S,the nitrogen compounds take flat adsorption.However,ammonia desorption is inhibited by electron deficiency and extra protons during the HDN process.

    3.Electron deficiency on N-Mo-S promotes the generation of active hydrogen but restricts hydrogen transfer to nitrogen compounds.

    4.During C-N bond cleavage,the proton of P-Ni-Mo-S can flexibly transfer between the nitrogen compounds and the active sites.In this way,the cleavage of C-N is significantly promoted.

    Acknowledgments

    The authors acknowledge the financial support from the Sinopec Science and Technology Department (Grant No.121014-1).

    久久韩国三级中文字幕| 亚洲欧美精品综合久久99| 老司机福利观看| 日本三级黄在线观看| 午夜精品一区二区三区免费看| 波野结衣二区三区在线| av免费观看日本| 久久久久久大精品| 欧美性猛交黑人性爽| 国产免费视频播放在线视频 | 国产淫语在线视频| 成人毛片a级毛片在线播放| 高清日韩中文字幕在线| 亚洲综合精品二区| 直男gayav资源| 看黄色毛片网站| av.在线天堂| 色综合亚洲欧美另类图片| 亚洲欧美日韩卡通动漫| 免费黄网站久久成人精品| 国产免费男女视频| 成人三级黄色视频| 最近中文字幕高清免费大全6| 在线免费十八禁| 亚洲在线自拍视频| 中文亚洲av片在线观看爽| 久久精品久久久久久噜噜老黄 | 成人亚洲欧美一区二区av| 亚洲欧美精品专区久久| 欧美性猛交╳xxx乱大交人| 国产黄色视频一区二区在线观看 | 国产精品女同一区二区软件| 超碰97精品在线观看| 国产伦一二天堂av在线观看| 国产精品福利在线免费观看| 久久精品综合一区二区三区| 在线免费观看不下载黄p国产| 亚洲三级黄色毛片| 91午夜精品亚洲一区二区三区| 国产高清视频在线观看网站| 国产淫片久久久久久久久| 亚洲精品乱码久久久v下载方式| 国内精品一区二区在线观看| 亚洲欧美成人综合另类久久久 | 日本黄色视频三级网站网址| 国产国拍精品亚洲av在线观看| 禁无遮挡网站| 麻豆一二三区av精品| 成人毛片a级毛片在线播放| 国产国拍精品亚洲av在线观看| 精品欧美国产一区二区三| 最近最新中文字幕大全电影3| 亚洲av二区三区四区| 色噜噜av男人的天堂激情| 久久99热这里只频精品6学生 | 精品人妻偷拍中文字幕| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 日本熟妇午夜| 3wmmmm亚洲av在线观看| 嫩草影院入口| 又爽又黄a免费视频| 夫妻性生交免费视频一级片| 国产成年人精品一区二区| 亚洲综合精品二区| 天堂av国产一区二区熟女人妻| 边亲边吃奶的免费视频| 欧美一区二区国产精品久久精品| 成年免费大片在线观看| 白带黄色成豆腐渣| 亚州av有码| 国产亚洲av嫩草精品影院| 国产大屁股一区二区在线视频| 在线天堂最新版资源| 亚洲av.av天堂| 天天躁日日操中文字幕| 日本一本二区三区精品| 国产精品一区二区性色av| 欧美精品国产亚洲| 日韩一区二区三区影片| 网址你懂的国产日韩在线| 黄片wwwwww| 一夜夜www| 免费看日本二区| 精品少妇黑人巨大在线播放 | 亚洲图色成人| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 精品一区二区三区视频在线| 99久久精品一区二区三区| 日本免费一区二区三区高清不卡| 青春草亚洲视频在线观看| 国产乱来视频区| 亚洲国产日韩欧美精品在线观看| 亚洲乱码一区二区免费版| 日日干狠狠操夜夜爽| 午夜福利成人在线免费观看| 成年女人看的毛片在线观看| 国产国拍精品亚洲av在线观看| 国产麻豆成人av免费视频| 亚洲人成网站在线观看播放| av播播在线观看一区| 最近中文字幕高清免费大全6| 中文字幕免费在线视频6| 欧美最新免费一区二区三区| 变态另类丝袜制服| 少妇熟女欧美另类| 亚洲av二区三区四区| 色吧在线观看| 免费在线观看成人毛片| 久久久久国产网址| 亚洲一级一片aⅴ在线观看| 春色校园在线视频观看| 看黄色毛片网站| 国产一区二区三区av在线| 亚洲aⅴ乱码一区二区在线播放| 内地一区二区视频在线| 身体一侧抽搐| 噜噜噜噜噜久久久久久91| 麻豆av噜噜一区二区三区| 日韩,欧美,国产一区二区三区 | 国产淫语在线视频| 国产av在哪里看| 日本av手机在线免费观看| 亚洲av不卡在线观看| 三级男女做爰猛烈吃奶摸视频| 日韩大片免费观看网站 | 亚洲欧美成人精品一区二区| 亚洲欧洲国产日韩| 成人无遮挡网站| 久久久精品大字幕| 国产三级在线视频| 欧美成人一区二区免费高清观看| av专区在线播放| 91午夜精品亚洲一区二区三区| 久久综合国产亚洲精品| 亚洲图色成人| 乱人视频在线观看| 亚洲美女搞黄在线观看| 亚洲电影在线观看av| 国产亚洲午夜精品一区二区久久 | 一区二区三区乱码不卡18| 国产日韩欧美在线精品| 91aial.com中文字幕在线观看| 91久久精品国产一区二区成人| 久久精品国产鲁丝片午夜精品| 白带黄色成豆腐渣| 国产亚洲午夜精品一区二区久久 | 日韩 亚洲 欧美在线| 中文资源天堂在线| 高清日韩中文字幕在线| 女人被狂操c到高潮| h日本视频在线播放| 久久久久久久久久黄片| 午夜爱爱视频在线播放| 国产精品一区二区三区四区免费观看| 日本猛色少妇xxxxx猛交久久| 麻豆精品久久久久久蜜桃| 久久久久国产网址| 成年女人永久免费观看视频| 亚洲不卡免费看| 国产熟女欧美一区二区| 免费av毛片视频| 国产精品一区二区三区四区免费观看| 久久久久久九九精品二区国产| 中文精品一卡2卡3卡4更新| 午夜福利视频1000在线观看| 国产乱人偷精品视频| 欧美不卡视频在线免费观看| 亚洲av成人精品一二三区| 日本爱情动作片www.在线观看| 亚洲精品乱码久久久v下载方式| 一级黄色大片毛片| 久久久久久久久久黄片| 日韩亚洲欧美综合| 大又大粗又爽又黄少妇毛片口| 三级男女做爰猛烈吃奶摸视频| 久久99热这里只有精品18| 午夜老司机福利剧场| 亚洲av不卡在线观看| .国产精品久久| www.色视频.com| 听说在线观看完整版免费高清| 国产美女午夜福利| 大又大粗又爽又黄少妇毛片口| 亚洲激情五月婷婷啪啪| 国产av不卡久久| 国产老妇伦熟女老妇高清| 日本三级黄在线观看| 国产免费男女视频| 91aial.com中文字幕在线观看| videossex国产| 天堂av国产一区二区熟女人妻| 日本午夜av视频| 毛片女人毛片| 一个人看的www免费观看视频| 又粗又硬又长又爽又黄的视频| 成年免费大片在线观看| 亚洲av日韩在线播放| 舔av片在线| 亚洲av不卡在线观看| 三级国产精品欧美在线观看| av在线播放精品| videos熟女内射| 久久久亚洲精品成人影院| 嫩草影院新地址| 天堂影院成人在线观看| 深夜a级毛片| 欧美成人一区二区免费高清观看| 亚洲,欧美,日韩| 亚洲国产精品专区欧美| 国产亚洲一区二区精品| 国产免费一级a男人的天堂| 日韩强制内射视频| 久久久久久久久久久丰满| 一区二区三区高清视频在线| 岛国在线免费视频观看| 看片在线看免费视频| 97人妻精品一区二区三区麻豆| 午夜免费激情av| 亚洲精华国产精华液的使用体验| 亚洲18禁久久av| 干丝袜人妻中文字幕| 小说图片视频综合网站| 搡老妇女老女人老熟妇| 国产激情偷乱视频一区二区| 亚洲精品日韩av片在线观看| 熟女人妻精品中文字幕| 国产熟女欧美一区二区| 欧美zozozo另类| 夜夜爽夜夜爽视频| 免费播放大片免费观看视频在线观看 | 日本av手机在线免费观看| 久久久精品大字幕| 97人妻精品一区二区三区麻豆| 2021少妇久久久久久久久久久| 日韩欧美在线乱码| 日韩大片免费观看网站 | 亚洲激情五月婷婷啪啪| 禁无遮挡网站| .国产精品久久| 乱人视频在线观看| 亚洲av成人精品一区久久| 亚洲成人中文字幕在线播放| 最近的中文字幕免费完整| 国产精品国产高清国产av| 久久人人爽人人爽人人片va| 蜜桃亚洲精品一区二区三区| 亚洲精品aⅴ在线观看| 69av精品久久久久久| 可以在线观看毛片的网站| 久久精品久久久久久噜噜老黄 | 免费播放大片免费观看视频在线观看 | 在线播放国产精品三级| 国产熟女欧美一区二区| 国产男人的电影天堂91| 欧美成人一区二区免费高清观看| 欧美另类亚洲清纯唯美| 夫妻性生交免费视频一级片| 国产私拍福利视频在线观看| 国内精品宾馆在线| 成人欧美大片| 亚洲中文字幕一区二区三区有码在线看| 丰满人妻一区二区三区视频av| 亚洲最大成人手机在线| 老师上课跳d突然被开到最大视频| 亚洲美女搞黄在线观看| 九九在线视频观看精品| 日韩制服骚丝袜av| av视频在线观看入口| 亚洲久久久久久中文字幕| 欧美一区二区精品小视频在线| 99久久无色码亚洲精品果冻| 国产伦在线观看视频一区| 日韩欧美三级三区| 免费黄网站久久成人精品| 神马国产精品三级电影在线观看| 精品一区二区三区视频在线| 特级一级黄色大片| 国产成人福利小说| 亚洲人成网站高清观看| 国产成人免费观看mmmm| 亚洲美女搞黄在线观看| 亚洲精品成人久久久久久| 午夜激情福利司机影院| 两个人的视频大全免费| 亚洲五月天丁香| 91精品一卡2卡3卡4卡| 五月玫瑰六月丁香| 国产精品久久电影中文字幕| 久久99精品国语久久久| 在现免费观看毛片| 久久精品91蜜桃| 日韩av在线大香蕉| 少妇熟女aⅴ在线视频| 久久精品影院6| 99热这里只有精品一区| 美女大奶头视频| 三级毛片av免费| 国产精品久久久久久久电影| 日日摸夜夜添夜夜爱| 小蜜桃在线观看免费完整版高清| 少妇的逼好多水| 国产综合懂色| 久久久久久伊人网av| 蜜桃亚洲精品一区二区三区| 中文欧美无线码| 精品一区二区三区视频在线| 永久网站在线| 日韩亚洲欧美综合| 国产成人精品久久久久久| 亚洲aⅴ乱码一区二区在线播放| 尾随美女入室| or卡值多少钱| 国产欧美日韩精品一区二区| 精品午夜福利在线看| 成年av动漫网址| 黄片无遮挡物在线观看| 久久久久性生活片| 国产极品天堂在线| 精品无人区乱码1区二区| av在线蜜桃| 亚洲婷婷狠狠爱综合网| 国语自产精品视频在线第100页| 偷拍熟女少妇极品色| 一级毛片aaaaaa免费看小| 久久99热这里只有精品18| 国产精品久久久久久久久免| 少妇人妻一区二区三区视频| 91精品国产九色| 免费看a级黄色片| 亚洲国产色片| 边亲边吃奶的免费视频| 久久久国产成人免费| 日本黄色视频三级网站网址| 免费观看的影片在线观看| 看十八女毛片水多多多| 欧美激情在线99| 欧美激情国产日韩精品一区| 免费大片18禁| 国产成人一区二区在线| 久久综合国产亚洲精品| 国产免费男女视频| 搡老妇女老女人老熟妇| 亚洲国产精品合色在线| 国产高清有码在线观看视频| 熟妇人妻久久中文字幕3abv| 国产精品女同一区二区软件| 亚洲,欧美,日韩| 久久综合国产亚洲精品| 亚洲在久久综合| 亚洲av电影在线观看一区二区三区 | av国产久精品久网站免费入址| 免费看光身美女| 午夜亚洲福利在线播放| 日韩,欧美,国产一区二区三区 | 人体艺术视频欧美日本| videossex国产| 人人妻人人澡人人爽人人夜夜 | av女优亚洲男人天堂| 你懂的网址亚洲精品在线观看 | 两个人的视频大全免费| 乱系列少妇在线播放| 纵有疾风起免费观看全集完整版 | 欧美3d第一页| 亚洲成人精品中文字幕电影| 亚洲精品456在线播放app| 2021天堂中文幕一二区在线观| 热99re8久久精品国产| 欧美精品一区二区大全| 中文字幕精品亚洲无线码一区| 国产免费一级a男人的天堂| 99久久精品国产国产毛片| 夫妻性生交免费视频一级片| 日韩高清综合在线| 美女脱内裤让男人舔精品视频| 午夜福利在线观看吧| 在线a可以看的网站| 91久久精品国产一区二区成人| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区成人| 女人久久www免费人成看片 | 91久久精品电影网| 午夜爱爱视频在线播放| 亚洲精品亚洲一区二区| 桃色一区二区三区在线观看| 五月伊人婷婷丁香| 免费黄网站久久成人精品| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久电影中文字幕| 久久久成人免费电影| 别揉我奶头 嗯啊视频| 久久精品久久久久久噜噜老黄 | 长腿黑丝高跟| 久久这里有精品视频免费| 有码 亚洲区| 成人午夜精彩视频在线观看| 欧美性感艳星| 国产精品99久久久久久久久| 天美传媒精品一区二区| 九草在线视频观看| 一边摸一边抽搐一进一小说| 日本黄色视频三级网站网址| 中文乱码字字幕精品一区二区三区 | 2022亚洲国产成人精品| 99热这里只有是精品在线观看| 国产av在哪里看| 久久精品久久久久久久性| 欧美日韩在线观看h| 欧美成人免费av一区二区三区| eeuss影院久久| 亚洲欧美精品综合久久99| 五月伊人婷婷丁香| 天堂影院成人在线观看| 亚洲18禁久久av| 大又大粗又爽又黄少妇毛片口| 国产国拍精品亚洲av在线观看| 秋霞伦理黄片| 在线观看美女被高潮喷水网站| 国产伦一二天堂av在线观看| 亚洲欧美日韩卡通动漫| 在线a可以看的网站| 一本久久精品| 一区二区三区高清视频在线| 国产视频内射| www日本黄色视频网| 蜜桃久久精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品国产自在天天线| 免费黄网站久久成人精品| 久久婷婷人人爽人人干人人爱| 亚洲国产精品成人综合色| 亚洲欧美日韩东京热| 少妇猛男粗大的猛烈进出视频 | 亚洲最大成人中文| 性插视频无遮挡在线免费观看| 在线a可以看的网站| 亚洲欧美清纯卡通| 中文字幕av成人在线电影| 国产视频内射| 亚洲欧洲国产日韩| 亚洲精品乱码久久久v下载方式| 免费av毛片视频| 国产色爽女视频免费观看| 九色成人免费人妻av| 欧美高清成人免费视频www| 中国国产av一级| 国产探花极品一区二区| 久久韩国三级中文字幕| 免费av不卡在线播放| 国语对白做爰xxxⅹ性视频网站| 免费观看在线日韩| 亚洲成人久久爱视频| 日韩人妻高清精品专区| 一级av片app| 亚洲伊人久久精品综合 | eeuss影院久久| 亚洲国产精品国产精品| 国产一区亚洲一区在线观看| 天堂av国产一区二区熟女人妻| 深爱激情五月婷婷| 国产毛片a区久久久久| 97热精品久久久久久| 大话2 男鬼变身卡| 久久精品国产亚洲网站| 91av网一区二区| 欧美另类亚洲清纯唯美| 亚州av有码| 赤兔流量卡办理| 激情 狠狠 欧美| 亚洲欧美日韩东京热| 欧美xxxx黑人xx丫x性爽| 免费观看在线日韩| 免费在线观看成人毛片| 亚洲av成人精品一二三区| 99热这里只有是精品50| 成年女人永久免费观看视频| 久久精品国产亚洲av涩爱| 成人无遮挡网站| 国产高潮美女av| 日韩 亚洲 欧美在线| 亚洲欧美日韩无卡精品| 中文在线观看免费www的网站| 天堂√8在线中文| 久久亚洲国产成人精品v| 成人午夜高清在线视频| 国产精品久久久久久久电影| 久久精品国产亚洲网站| 婷婷六月久久综合丁香| 国产探花在线观看一区二区| 欧美性猛交╳xxx乱大交人| 国产黄片美女视频| 国产精品嫩草影院av在线观看| 久久欧美精品欧美久久欧美| 中文字幕亚洲精品专区| 国产成人精品婷婷| 欧美激情国产日韩精品一区| 丰满少妇做爰视频| 日韩一本色道免费dvd| 中文字幕亚洲精品专区| av又黄又爽大尺度在线免费看 | 黑人高潮一二区| 久久久欧美国产精品| 91在线精品国自产拍蜜月| 国产av码专区亚洲av| 简卡轻食公司| 婷婷色综合大香蕉| 又黄又爽又刺激的免费视频.| 久久久精品欧美日韩精品| 欧美不卡视频在线免费观看| 久久久久网色| 国产午夜精品久久久久久一区二区三区| 尤物成人国产欧美一区二区三区| 国产一区二区在线av高清观看| 欧美激情国产日韩精品一区| 午夜老司机福利剧场| 亚洲精品亚洲一区二区| 亚洲精品乱码久久久v下载方式| 久久精品影院6| 国产精品不卡视频一区二区| 日韩av在线大香蕉| 男的添女的下面高潮视频| 18禁动态无遮挡网站| 国产欧美另类精品又又久久亚洲欧美| 少妇的逼水好多| 成人午夜高清在线视频| 成人毛片60女人毛片免费| 国产精品蜜桃在线观看| 三级经典国产精品| 1024手机看黄色片| 少妇人妻一区二区三区视频| 亚洲在线自拍视频| 乱人视频在线观看| 精品不卡国产一区二区三区| 国产麻豆成人av免费视频| 午夜a级毛片| 成人美女网站在线观看视频| 免费大片18禁| 日本-黄色视频高清免费观看| 三级国产精品片| 精品一区二区免费观看| 中文字幕av在线有码专区| 少妇猛男粗大的猛烈进出视频 | av在线亚洲专区| 午夜亚洲福利在线播放| 伦理电影大哥的女人| 国产精品一区www在线观看| 日日啪夜夜撸| 久久99热6这里只有精品| 国产三级在线视频| 亚洲天堂国产精品一区在线| 美女xxoo啪啪120秒动态图| 99视频精品全部免费 在线| 青春草国产在线视频| 亚洲美女视频黄频| 免费一级毛片在线播放高清视频| 卡戴珊不雅视频在线播放| ponron亚洲| 成年av动漫网址| 精品久久国产蜜桃| 黄色日韩在线| 秋霞在线观看毛片| 日日撸夜夜添| 麻豆成人av视频| 国产精品嫩草影院av在线观看| 精品人妻视频免费看| 亚洲在线观看片| 久久精品久久精品一区二区三区| 麻豆久久精品国产亚洲av| 极品教师在线视频| 亚洲av福利一区| 国产精品国产高清国产av| 51国产日韩欧美| 菩萨蛮人人尽说江南好唐韦庄 | 少妇的逼好多水| 国产精品.久久久| 亚洲人与动物交配视频| 99久久精品热视频| 免费av观看视频| 大香蕉97超碰在线| eeuss影院久久| 秋霞伦理黄片| 成人无遮挡网站| 精品人妻视频免费看| 欧美一级a爱片免费观看看| 日日干狠狠操夜夜爽| 久久热精品热| 国产大屁股一区二区在线视频| 偷拍熟女少妇极品色| 身体一侧抽搐| 亚洲不卡免费看| 中国国产av一级| av.在线天堂| 18禁动态无遮挡网站| 综合色av麻豆| 全区人妻精品视频| 国产单亲对白刺激| 国国产精品蜜臀av免费| 小说图片视频综合网站| 免费看av在线观看网站| 又粗又硬又长又爽又黄的视频| 国产精品一区二区三区四区免费观看| 国产成人aa在线观看| 七月丁香在线播放| 成人高潮视频无遮挡免费网站| 国产美女午夜福利| 国产精品久久久久久精品电影| 伦精品一区二区三区| 午夜爱爱视频在线播放| 久久久成人免费电影| 国产精品99久久久久久久久| 熟女人妻精品中文字幕| 99热网站在线观看| 国产午夜精品论理片| 中文乱码字字幕精品一区二区三区 |