• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DFT mechanistic insight into the modular strategy involved in the palladium-catalyzed synthesis of cyclopentenones from α,β-unsaturated acid chlorides and alkynes*

    2022-03-19 01:36:56ZHONGLiangZHAORuihuaWANGZhixiang

    ZHONG Liang,ZHAO Ruihua,WANG Zhixiang

    (School of Chemical Sciences, University of Chinese Academy of Sciences,Beijing 100049, China)(Received 19 April 2021;Revised 19 May 2021)

    Abstract Cyclopentenones are important synthetic building blocks and as motifs appear in bioactive molecules and natural products.We applied density functional theory(DFT)calculations to gain insight into the modular strategy involved in the palladium-catalyzed synthesis of cyclopentenone from α,β-unsaturated acid chlorides and alkynes in the presence of hydrosilane.The study unveils that the transformation proceeds via the sequence: the disassembly of α,β-unsaturated acid chloride into vinyl, carbonyl, and Cl fragments with the palladium catalyst; carbon monoxide release; coupling of alkyne with vinyl group; carbon monoxide re-coordination and migratory insertion to form another C—C bond with alkyne, ring-closure via CC bond insertion, transmetalation with hydrosilane, C, H-reductive elimination to release the product.Different from the mechanism proposed by the experimentalists, the CO group is involved in the reaction via separate liberation and re-coordination in the solvent cage, rather than persistent coordination with palladium.The transmetalation for H/Cl exchange takes place at the late stage and is a bottleneck of the transformation, instead of at early disassembly stage.

    Keywords cyclopentenone synthesis; modular strategy; carbon monoxide surrogates; palladium catalysis; DFT calculation

    Cyclopentenones are valuable building blocks and prevalent motifs in bioactive molecules and natural products[1-9].Development of effective and operationally simple methods to synthesize cyclopentenones is of significance in organic synthesis.The[2+2+1]cycloaddition of alkene, alkyne and carbon monoxide(CO), named as Pauson-Khand reaction(PKR), is a classical method to access cyclopentenones(Eq.(1)in Fig.1).Since the first discovery of PKR[10], considerable efforts have been devoted to improve PKR[11-21].A disadvantage of PKR is the use of toxic and flammable pressured CO gas, which is operationally inconvenient.To circumvent the problem, Chung et al.[22]in 2004 utilized α,β-unsaturated aldehydes to replace CO and alkene for the synthesis of cyclopentenones(Eq.(2)).In 2011, Montgomery group[23-24]and Ogoshi group[25]independently developed the nickel(0)-catalyzed synthesis of cyclopentenones from α,β-unsaturated esters and alkynes(Eq.(3)).Generally, these reactions undergo oxidative cyclization mechanism to form a five-membered metalacycle as a key intermediate(seeTS-OXandIM-OXin Eq.(3))[22-26].As such, these reactions maintain the integrity of the CO surrogates and add C1and C4to the ends of alkynes to afford cyclopentenones.Recently, Morandi and co-workers reported a mechanistically different method, called modular strategy, to synthesize cyclopentenones from α,β-unsaturated acid chlorides and alkynes, as exemplified by Eq.(5)[27].The same strategy was also applied to perform carboformylation of alkynes with acid chlorides(Eq.(4))[28].Interestingly, Eq.(5)affords no alkyne carboformylation product but cyclopentenones.Moreover, by fragmentation and reorganization, the strategy affords cyclopentenones with a quaternary carbon at C5, whereas the oxidative cyclization method furnishes cyclopentenones with C5limited to secondary or tertiary carbon.Continuing our interest in the cyclization involving alkyne[29-30], we here report a detailed DFT mechanistic study to understand how the modular strategy works.As compared in Fig.1, the study indicates that the reaction could proceed via the path-B mechanism, rather than path-A postulated by experimentalists[27].

    Fig.1 Researches on the synthesis of cyclopentenone and mechanisms of the modular strategy

    1 Computational details

    All structures were optimized at B3LYP[31]-D3[32]/BSI level in the gas phase.BSI represents a basis set with SDD[33]for Pd and 6-31G(d,p)for other atoms.Harmonic frequency analysis calculations were subsequently performed to verify the optimized geometries to be minima(no imaginary frequency)or transition states(TSs, having unique one imaginary frequency).The energies were then improved by M06-2X[34]/BSII single-point calculations with solvent effects accounted by the SMD solvent model[35], using the experimental solvent(dioxane).BSⅡ denotes a basis set with SDD for Pd and 6-311++G(d,p)for other atoms.All standard DFT calculations were carried out using Gaussian 09 program[36].

    In Gaussian program, the Gibbs free energies were obtained by using the ideal gas model under the conditions of 383.15 K and 1 atm.Considering that the reaction was carried out in the solvent, we corrected the gas phase Gibbs free energies to the values under the conditions of 383.15 K and 1 mol/L.The correction factor(ΔGcorr= 2.6 kcal/mol)for a species A can be estimated from Eq.(6), where Csolis equal to 1 mol/L and p is the standard atmosphere pressure(101 325 Pa).

    G[A(383.15 K,1 mol/L)]=G[A(383.15 K,1 atm)]+ΔGcorr.

    (6)

    2 Results and discussion

    Examining the energy profile, the intermediates and transition states prior toIM8have high relative energies up to 32.6 kcal/mol and the transmetalation fromIM11toTS8has a high barrier of 31.5 kcal/mol.The somewhat unfavorable energetics explains why elevated temperature(383.15 K)was applied for the reaction.The energy profile suggests that the reaction could be improved from the following two aspects:(i)Because of the low barriers of the elementary reactions involved in the fragmentation of1, using a catalytic system which could be initiated to easily generate a palladium(0)active species irreversibly to facilitate the fragmentation of1.Note that Pd(PPh3)4was used to catalyze reaction, but gave low yield, which we attribute to that Pd(PPh3)4is not easy to give PdPPh3active species via dissociation.(ii)Using alternative hydrogen source to low the transmetalation barrier.

    Morandi et al have considered four pathways for the reaction, among which path-A in Fig.1 was considered to be most likely.Comparing path-A and our predicted path-B, the two pathways are different with two key differences.First, as the transmetalation in path-B takes place at the very late stage, the process in path-A occurs at the early stage.Second, the CO group in path-A coordinates to palladium throughout the reaction after fragmentation, whereas the CO group in path-B is released fromIM5 and then re-coordinates afterIM5converts toIM8.The differences motived us to inspect our mechanism further.For transmetalation process, we considered various possible transmetalations, Fig.3(a).For the intermediates prior toTS5,IM1,IM4andIM5which possess no vacant sitecisto Cl are not viable for transmetalation.The transmetalation barriers of the coordinatively unsaturatedIM3/IM3aandIM6/IM6aare much higher thanTS5.The energetics indicates that fragmentation of the acid chlorides could not be interpreted by[Si]H and straightforwardly leads toIM5.Because the transmetalation barriers ofIM8/IM8aandIM10are much higher thanTS7, these transmetalations can be ruled out, affirming that the transmetalation can only take place after ring-closure to formIM11.

    Fig.2 Energy profile for the reaction Eq.(5)

    Fig.3 Alternative transmetalations(a)and comparing the alkyne-vinyl coupling with or without liberation of monoxide(b)

    To address the second difference, we considered alternative mechanisms for the reaction ofIM5with2without releasing CO, as shown in Fig.3(b).The alkene migration described byTS5awith L released fromIM5is 6.7 kcal/mol less favorable than that(TS5)with CO released, due to the stronger coordination of phosphorus ligandLthan CO.Note that the CO release fromIM5only cost 1.9 kcal/mol(Fig.2).InTS5bandTS5c, the CO group or Cl atom maintain contact with Pd, however, these alkene migration transition states are significantly higher thanTS5.These energetic results indicate that the CO ligand inIM5must be liberated to drive the reaction forward.We considered two scenarios for CO liberation.The first scenario is that the CO release takes place in the solvent cage.When CO is released, it is confined by the solvent cage.AfterIM5reacts with2to generateIM8with accessible vacant site, the CO in the cage then coordinates toIM8to continue the reaction.Alternatively, the liberated CO escapes the solvent cage and enters the gas phase of the reaction system.Given that the process fromIM5toIM8is very facile and could be much faster than CO escape from the cage, it is more likely that the liberation and re-coordination of CO take place in the solvent cage.Experiments using isotopic acid chloride in the CO atmosphere or regular acid chloride in the isotopic CO atmosphere could verify our assumption.

    As our path-B is supported by computed energetics, path-A was proposed on the basis of deuterium-labeling experimental results, raising a question if our path-B contradicts to the experimental results.As shown in Eq.(7)in Fig.4, H/D scrambling was observed at the hydrogen atoms bonded to both C4and C5.Experimentalists attributed their observations to that the palladium hydrideIVdin Eq.(7)could undergo competitive β-H elimination and reductive elimination.Because our path-B also involves a similar intermediate(i.e.IM12), our mechanism would not contradict to the experimental results if their elucidations were correct.However, according to our mechanism, we reasoned that the deuteration should not take place at the palladium hydride, because the barrier for subsequent reductive elimination is too low, being 4.8 kcal/mol fromIM12toTS9(Fig.2).Indeed as shown in Fig.4,TSd5for reductive elimination is 21.9 kcal/mol more favorable thanTSd6for β-H elimination.Thus, whenIMd6is formed, it would give3a-Dbdirectly, leaving no chance for β-H elimination to give3a-Da.According to our computed pathway in Fig.2, we reasoned that the structural isomerizations for deuteration should occur at the deeper valley corresponding toIM11.Unlike the achiralIM11, the counterparts of 1aare stereoisomers, namelyIMd1andIMd5in Fig.4.As such, we first examined which enantiomer is kinetically preferred.As compared,IMd1is more kinetically favorable thanIMd5by 9.7 kcal/mol, which can be attributed to the stronger coordination interaction inTSd0than inTSd0’.Supportively, the two marked Pd-C distances in the former are much shorter than those in the latter.AlthoughIMd1is not able to undergo β-H elimination, it is kinetically more favorable.As such, we should start withIMd1to study the deuteration process.ConsideringIMd1, it can be represented by two resonance structures, namelyIMd1-I andIMd1-Ⅱ.IMd1-I can lead to3a-Dcafter transmetalation and reductive elimination.IMd1-Ⅱ can convert toIMd5via β-H elimination with nPr group(TSd2),IMd4flip, and reverse β-H elimination(TSd3).Subsequently,IMd5proceeds via two pathways.On the one hand, it can afford3a-Dbafter transmetalation to giveIMd6, followed by reductive elimination visTSd5.Alternatively, it can convert toIMd8via β-H elimination(TSd7), structural adjustment, and reverse β-H elimination(TSd8).FinallyIMd8affords3a-Davia subsequent transmetalation and reductive elimination.The transmetalations ofIMd1-I,IMd6, andIMd8are the rate-determining step to give3a-Dc,3a-Db, and3a-Da, respectively.Relative toIMd1, the transmetalation barriers are 35.1(TSd9), 31.5(TSd4), and 34.5 kcal/mol(TSd1).The energetic results reasonably explain the experimental observations.

    Fig.4 Rationalizing the deuterium-labeling experimental results

    According to the experimental studies,[9-10]in addition to3, the reaction could also afford3a-3c(Fig.5).To further corroborate our mechanism and to understand the selectivity of the reaction, we examined if our mechanism can rationalize the selectivity of the reaction to give3.3ais the alkyne carboformylation product in the Pd-catalyzed reaction of benzoyl chloride with alkyne(Eq.(4)).According to the mechanism in Fig.2,3acould be produced via transmetalation ofIM10, followed by reductive elimination.The transition state(TS10)for transmetalation is 8.4 kcal/mol higher thanTS7for alkene insertion, excluding the production of3a.It should be noted that, since the transmetalation barrier(29.9 kcal/mol fromIM10toTS10)is accessible, if there is no vinyl group in acid chloride, the reaction could afford carboformylation product, as shown in Eq.(4).The formations of3band3cboth start fromIM3.First,cisIM3converts totransIM3a.Coordination of alkyne2toIM3aresults inIM15.Alkyne insertion to Pd-C(O)viaTS11givesIM17.On the one hand,IM17undergoes transmetalation, followed by reductive elimination, affording3b.On the other hand,IM17undergoes alkene insertion to giveIM18, which then undergoes transmetalation and reductive elimination, affording3c.Because the transition stateTS11(ΔG≠=37.5 kcal/mol)is much higher thanTS4(ΔG≠=30.1 kcal/mol)andTS5(ΔG≠=32.0 kcal/mol), the reaction channels should not open to the formations of3band3c.3ccould also be generated via oxidative cyclization, however, the highly unfavorable energies(i.e.see the process fromPdIM-OXtoPdTS-OXin Fig.1)for the process exclude the possibility.

    Fig.5 Explaining the selectivity of 3 over 3a-3c

    3 Conclusion

    侵犯人妻中文字幕一二三四区| 亚洲免费av在线视频| 1024香蕉在线观看| 亚洲国产精品一区二区三区在线| 久99久视频精品免费| 99riav亚洲国产免费| 日本vs欧美在线观看视频| 亚洲在线自拍视频| 在线观看66精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱码久久久久久男人| 操出白浆在线播放| 看黄色毛片网站| 飞空精品影院首页| 成年人免费黄色播放视频| 一区二区三区精品91| 美女扒开内裤让男人捅视频| 欧美性长视频在线观看| 精品一区二区三卡| 亚洲七黄色美女视频| 国产97色在线日韩免费| 国产免费男女视频| 亚洲国产看品久久| 天天操日日干夜夜撸| 成年女人毛片免费观看观看9 | 亚洲国产精品sss在线观看 | 超色免费av| 免费久久久久久久精品成人欧美视频| 好看av亚洲va欧美ⅴa在| 男人舔女人的私密视频| 女人久久www免费人成看片| 欧美日韩视频精品一区| 一级毛片精品| 国产在线一区二区三区精| 亚洲久久久国产精品| a级毛片在线看网站| 亚洲综合色网址| 热99国产精品久久久久久7| 天天躁狠狠躁夜夜躁狠狠躁| 欧美激情高清一区二区三区| 一级片'在线观看视频| av不卡在线播放| 在线视频色国产色| 高清黄色对白视频在线免费看| 亚洲欧美激情综合另类| 欧美 亚洲 国产 日韩一| 免费黄频网站在线观看国产| 亚洲aⅴ乱码一区二区在线播放 | 国产99白浆流出| 日韩欧美三级三区| 亚洲人成电影免费在线| 一区二区三区国产精品乱码| 好男人电影高清在线观看| 亚洲精品国产精品久久久不卡| 一区在线观看完整版| 我的亚洲天堂| 99久久人妻综合| 国产精品一区二区在线观看99| 精品国产一区二区久久| 免费在线观看视频国产中文字幕亚洲| 日本欧美视频一区| 在线观看午夜福利视频| 丰满迷人的少妇在线观看| 成人特级黄色片久久久久久久| 亚洲视频免费观看视频| 男人操女人黄网站| 男男h啪啪无遮挡| 99久久人妻综合| 黑丝袜美女国产一区| 日本撒尿小便嘘嘘汇集6| netflix在线观看网站| av线在线观看网站| 满18在线观看网站| 午夜久久久在线观看| 欧美精品亚洲一区二区| 一区二区日韩欧美中文字幕| 十八禁人妻一区二区| 正在播放国产对白刺激| 老熟妇仑乱视频hdxx| av有码第一页| 久久久久视频综合| 成年人午夜在线观看视频| 日韩精品免费视频一区二区三区| a在线观看视频网站| 欧美大码av| 国产亚洲一区二区精品| 女性生殖器流出的白浆| av网站在线播放免费| 97人妻天天添夜夜摸| 国产蜜桃级精品一区二区三区 | 91字幕亚洲| 成人亚洲精品一区在线观看| 可以免费在线观看a视频的电影网站| 国产在视频线精品| 国产又色又爽无遮挡免费看| 在线观看午夜福利视频| 精品久久久久久久久久免费视频 | 国产在线一区二区三区精| 欧美日韩亚洲综合一区二区三区_| 久久久久久亚洲精品国产蜜桃av| 手机成人av网站| 久久狼人影院| 桃红色精品国产亚洲av| 啦啦啦视频在线资源免费观看| 伊人久久大香线蕉亚洲五| 麻豆乱淫一区二区| 国产精品九九99| 极品人妻少妇av视频| 美国免费a级毛片| 久久国产乱子伦精品免费另类| 天堂中文最新版在线下载| 欧美日韩亚洲国产一区二区在线观看 | 亚洲午夜精品一区,二区,三区| 亚洲精品久久成人aⅴ小说| 一边摸一边抽搐一进一小说 | 亚洲性夜色夜夜综合| 少妇的丰满在线观看| 亚洲国产精品合色在线| 日本精品一区二区三区蜜桃| 老司机午夜十八禁免费视频| 成年人午夜在线观看视频| 久久精品国产亚洲av香蕉五月 | 久久久久久久国产电影| 亚洲人成77777在线视频| 女人精品久久久久毛片| 看黄色毛片网站| 午夜影院日韩av| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 亚洲专区中文字幕在线| 天堂中文最新版在线下载| 高清av免费在线| 一级黄色大片毛片| 国产亚洲欧美在线一区二区| 国产国语露脸激情在线看| 黑人操中国人逼视频| 91成人精品电影| 最近最新中文字幕大全免费视频| 一级片'在线观看视频| 又紧又爽又黄一区二区| 久久精品国产清高在天天线| 久99久视频精品免费| 欧美日韩国产mv在线观看视频| 在线视频色国产色| 国产精品成人在线| 日韩免费高清中文字幕av| 精品国产一区二区三区四区第35| 制服诱惑二区| 757午夜福利合集在线观看| avwww免费| 午夜福利在线观看吧| 亚洲情色 制服丝袜| 中文字幕制服av| 国产有黄有色有爽视频| 成熟少妇高潮喷水视频| 国产高清视频在线播放一区| 最近最新中文字幕大全免费视频| 脱女人内裤的视频| 美女午夜性视频免费| 国产黄色免费在线视频| 99久久99久久久精品蜜桃| 国产在线观看jvid| 免费看十八禁软件| 黄色毛片三级朝国网站| 国产在线观看jvid| 国产欧美日韩一区二区精品| 99国产精品一区二区三区| 一区福利在线观看| 黄片大片在线免费观看| 国产亚洲精品一区二区www | 高潮久久久久久久久久久不卡| 天天躁夜夜躁狠狠躁躁| 丝袜人妻中文字幕| 中文字幕精品免费在线观看视频| 亚洲熟妇熟女久久| 亚洲avbb在线观看| www.自偷自拍.com| 1024视频免费在线观看| 色播在线永久视频| 久久狼人影院| 视频区欧美日本亚洲| 国产精品久久久人人做人人爽| 男人的好看免费观看在线视频 | 999久久久精品免费观看国产| 女性生殖器流出的白浆| 精品午夜福利视频在线观看一区| 黄色 视频免费看| 大陆偷拍与自拍| 午夜久久久在线观看| 999久久久精品免费观看国产| 老司机影院毛片| 成人三级做爰电影| 欧美成人午夜精品| 成人亚洲精品一区在线观看| 欧美大码av| 黑人巨大精品欧美一区二区蜜桃| 中亚洲国语对白在线视频| 午夜免费鲁丝| 精品国产一区二区三区四区第35| 两性夫妻黄色片| 韩国av一区二区三区四区| 精品一品国产午夜福利视频| x7x7x7水蜜桃| 在线观看66精品国产| 美女高潮到喷水免费观看| 久久精品国产99精品国产亚洲性色 | 久久久久久久久久久久大奶| 免费观看精品视频网站| 一区二区日韩欧美中文字幕| e午夜精品久久久久久久| 九色亚洲精品在线播放| 一个人免费在线观看的高清视频| 正在播放国产对白刺激| 亚洲欧美色中文字幕在线| 免费看十八禁软件| 热re99久久国产66热| 国产精品香港三级国产av潘金莲| 免费在线观看黄色视频的| 老司机亚洲免费影院| 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| 激情视频va一区二区三区| 人人妻人人澡人人爽人人夜夜| www.精华液| 久久久久久久国产电影| 桃红色精品国产亚洲av| 久久久久国产精品人妻aⅴ院 | 99久久99久久久精品蜜桃| 久热这里只有精品99| 国产国语露脸激情在线看| 97人妻天天添夜夜摸| 成人免费观看视频高清| 美女扒开内裤让男人捅视频| 新久久久久国产一级毛片| 18在线观看网站| 精品久久久精品久久久| 黄色视频不卡| 成人18禁在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 无人区码免费观看不卡| 天堂俺去俺来也www色官网| 一个人免费在线观看的高清视频| 黄色丝袜av网址大全| 国产欧美日韩一区二区三区在线| 丝袜人妻中文字幕| 一本综合久久免费| 久久久久久久午夜电影 | 精品福利观看| 中文字幕人妻丝袜制服| 日日摸夜夜添夜夜添小说| 久久久精品免费免费高清| 无人区码免费观看不卡| 国产一区二区三区视频了| 亚洲精品中文字幕一二三四区| 人人妻人人添人人爽欧美一区卜| 在线视频色国产色| 午夜老司机福利片| 身体一侧抽搐| 亚洲av欧美aⅴ国产| 看片在线看免费视频| 少妇被粗大的猛进出69影院| 久久久久国产一级毛片高清牌| 999精品在线视频| 性色av乱码一区二区三区2| 9色porny在线观看| 搡老岳熟女国产| 麻豆国产av国片精品| 成年人午夜在线观看视频| 成人免费观看视频高清| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| 久久久久国产一级毛片高清牌| 国产高清视频在线播放一区| 亚洲一区二区三区欧美精品| 丝袜美腿诱惑在线| 免费观看精品视频网站| 欧美午夜高清在线| 法律面前人人平等表现在哪些方面| 久久久久久人人人人人| 久久久久久久国产电影| 亚洲av欧美aⅴ国产| 亚洲精品av麻豆狂野| 一区二区日韩欧美中文字幕| 日韩有码中文字幕| 久久香蕉精品热| 国产有黄有色有爽视频| 热re99久久国产66热| 精品乱码久久久久久99久播| 欧美成人免费av一区二区三区 | 亚洲av欧美aⅴ国产| 真人做人爱边吃奶动态| 日韩欧美三级三区| 黑人猛操日本美女一级片| 婷婷精品国产亚洲av在线 | 美女视频免费永久观看网站| 中文字幕人妻丝袜制服| 少妇猛男粗大的猛烈进出视频| 久久亚洲精品不卡| 亚洲免费av在线视频| 身体一侧抽搐| 91国产中文字幕| 国产精品乱码一区二三区的特点 | 在线视频色国产色| 久久久精品国产亚洲av高清涩受| 纯流量卡能插随身wifi吗| 午夜福利在线观看吧| 高清欧美精品videossex| 黄色视频不卡| 脱女人内裤的视频| www.999成人在线观看| 久久午夜综合久久蜜桃| 国产免费av片在线观看野外av| 精品午夜福利视频在线观看一区| av线在线观看网站| 无人区码免费观看不卡| 伊人久久大香线蕉亚洲五| 大香蕉久久成人网| 日本黄色视频三级网站网址 | 麻豆乱淫一区二区| 51午夜福利影视在线观看| 美女福利国产在线| 久久香蕉国产精品| 国产99久久九九免费精品| 日韩欧美一区二区三区在线观看 | 国产精品久久久久久精品古装| 午夜福利免费观看在线| 欧美久久黑人一区二区| av视频免费观看在线观看| 久久久久视频综合| 波多野结衣av一区二区av| 女警被强在线播放| 每晚都被弄得嗷嗷叫到高潮| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区精品视频观看| 久久精品国产亚洲av高清一级| 9191精品国产免费久久| 国产免费现黄频在线看| 久久国产亚洲av麻豆专区| 午夜福利,免费看| 欧美日韩视频精品一区| 妹子高潮喷水视频| 一区二区三区精品91| 亚洲国产精品合色在线| 久久99一区二区三区| 搡老熟女国产l中国老女人| 亚洲中文av在线| 黄色丝袜av网址大全| 人妻 亚洲 视频| 欧美日韩亚洲国产一区二区在线观看 | 宅男免费午夜| 国产精品永久免费网站| 日韩精品免费视频一区二区三区| 国产精品秋霞免费鲁丝片| 日韩免费av在线播放| 国产精品偷伦视频观看了| 国产在视频线精品| 亚洲国产毛片av蜜桃av| 首页视频小说图片口味搜索| 精品亚洲成a人片在线观看| 99久久国产精品久久久| 国产在线一区二区三区精| 美女 人体艺术 gogo| 伊人久久大香线蕉亚洲五| av福利片在线| 91字幕亚洲| 国产极品粉嫩免费观看在线| 亚洲精品在线美女| 这个男人来自地球电影免费观看| 亚洲成人免费电影在线观看| 国产精华一区二区三区| 亚洲精品在线美女| av福利片在线| 十八禁高潮呻吟视频| 99久久国产精品久久久| 国产野战对白在线观看| 人妻久久中文字幕网| 涩涩av久久男人的天堂| 久久草成人影院| 午夜免费成人在线视频| 久久草成人影院| 久久国产乱子伦精品免费另类| 国产精品秋霞免费鲁丝片| av线在线观看网站| 老司机午夜十八禁免费视频| 国产野战对白在线观看| 久久久久视频综合| 一区二区日韩欧美中文字幕| 最新美女视频免费是黄的| 久久天堂一区二区三区四区| xxx96com| 在线天堂中文资源库| av国产精品久久久久影院| 少妇被粗大的猛进出69影院| 成人18禁高潮啪啪吃奶动态图| 久久中文看片网| 亚洲国产中文字幕在线视频| 精品人妻在线不人妻| 伦理电影免费视频| 亚洲av成人av| 色综合婷婷激情| 国产一区二区三区在线臀色熟女 | 亚洲专区中文字幕在线| 精品无人区乱码1区二区| 人人妻,人人澡人人爽秒播| 国产极品粉嫩免费观看在线| 午夜影院日韩av| 欧美丝袜亚洲另类 | 亚洲熟女毛片儿| 最近最新免费中文字幕在线| 久久久久久免费高清国产稀缺| 后天国语完整版免费观看| 少妇粗大呻吟视频| bbb黄色大片| 新久久久久国产一级毛片| 久久精品国产99精品国产亚洲性色 | 老司机福利观看| 国产真人三级小视频在线观看| 久久久久视频综合| 在线永久观看黄色视频| 淫妇啪啪啪对白视频| 国产精品二区激情视频| 亚洲成人手机| 亚洲欧美一区二区三区黑人| 757午夜福利合集在线观看| 精品国产乱码久久久久久男人| 国产精品乱码一区二三区的特点 | 国产精品.久久久| 精品卡一卡二卡四卡免费| 欧美激情高清一区二区三区| 日韩免费高清中文字幕av| 欧美日韩亚洲综合一区二区三区_| 欧美国产精品va在线观看不卡| 一夜夜www| 十八禁高潮呻吟视频| 亚洲熟妇熟女久久| 久久久久久亚洲精品国产蜜桃av| 自线自在国产av| 午夜精品国产一区二区电影| 精品无人区乱码1区二区| 日韩欧美在线二视频 | 丝袜人妻中文字幕| 国产精品1区2区在线观看. | 久久精品国产99精品国产亚洲性色 | xxx96com| 亚洲视频免费观看视频| 最新在线观看一区二区三区| 一级a爱片免费观看的视频| 久久性视频一级片| 丰满饥渴人妻一区二区三| 成年人黄色毛片网站| 一边摸一边抽搐一进一出视频| 99国产精品一区二区蜜桃av | 五月开心婷婷网| 丝袜美足系列| 热99久久久久精品小说推荐| 人人妻人人添人人爽欧美一区卜| 久久精品熟女亚洲av麻豆精品| 免费av中文字幕在线| 亚洲精品在线美女| 亚洲五月婷婷丁香| 亚洲全国av大片| 国产精品九九99| 亚洲中文日韩欧美视频| 久久中文字幕一级| 亚洲国产欧美网| 18禁美女被吸乳视频| www.熟女人妻精品国产| 中文字幕人妻丝袜一区二区| 在线观看免费高清a一片| 国产精品国产av在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产日韩欧美亚洲二区| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区蜜桃| 最新在线观看一区二区三区| 国产亚洲精品第一综合不卡| 免费久久久久久久精品成人欧美视频| 精品国产美女av久久久久小说| 中文字幕色久视频| 久久精品熟女亚洲av麻豆精品| 欧美久久黑人一区二区| 久久久精品免费免费高清| 亚洲在线自拍视频| 亚洲熟妇中文字幕五十中出 | 欧美不卡视频在线免费观看 | 日本精品一区二区三区蜜桃| 91麻豆av在线| 国产91精品成人一区二区三区| 91国产中文字幕| 一级作爱视频免费观看| 亚洲av成人不卡在线观看播放网| 日韩三级视频一区二区三区| 搡老熟女国产l中国老女人| 高清黄色对白视频在线免费看| 久久影院123| 国产精品.久久久| 制服人妻中文乱码| 国产蜜桃级精品一区二区三区 | 国产黄色免费在线视频| 成人永久免费在线观看视频| 亚洲久久久国产精品| 精品国产国语对白av| 久久99一区二区三区| 久久香蕉精品热| 久久精品亚洲av国产电影网| 午夜两性在线视频| 久久久精品国产亚洲av高清涩受| 12—13女人毛片做爰片一| 黑人巨大精品欧美一区二区mp4| 18禁美女被吸乳视频| 午夜两性在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲全国av大片| 高清av免费在线| 99re6热这里在线精品视频| 久久国产精品人妻蜜桃| 欧美日本中文国产一区发布| 超碰成人久久| 国产精品.久久久| 亚洲午夜精品一区,二区,三区| 亚洲五月婷婷丁香| 久久国产精品影院| 色精品久久人妻99蜜桃| 成年版毛片免费区| 精品国产乱码久久久久久男人| 欧美日韩国产mv在线观看视频| 人妻一区二区av| 制服人妻中文乱码| 国产欧美日韩一区二区三| 黄色毛片三级朝国网站| 最近最新中文字幕大全免费视频| 美女福利国产在线| 久久久久久久精品吃奶| 12—13女人毛片做爰片一| 欧美成人免费av一区二区三区 | 中亚洲国语对白在线视频| 中文字幕高清在线视频| 国产精品.久久久| 亚洲色图av天堂| 久久午夜亚洲精品久久| 一区二区三区激情视频| 99热网站在线观看| 91字幕亚洲| 校园春色视频在线观看| 啦啦啦 在线观看视频| 夜夜躁狠狠躁天天躁| 久久中文字幕人妻熟女| 国产亚洲一区二区精品| e午夜精品久久久久久久| 亚洲伊人色综图| 夫妻午夜视频| 五月开心婷婷网| av国产精品久久久久影院| 51午夜福利影视在线观看| 国产无遮挡羞羞视频在线观看| 国产成人精品无人区| 激情视频va一区二区三区| 夜夜夜夜夜久久久久| 亚洲精品国产区一区二| 少妇的丰满在线观看| 亚洲成人国产一区在线观看| 国产高清videossex| 视频区欧美日本亚洲| 下体分泌物呈黄色| 99国产精品一区二区蜜桃av | 日本wwww免费看| 亚洲成人免费电影在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲精品成人av观看孕妇| 精品人妻熟女毛片av久久网站| 免费在线观看视频国产中文字幕亚洲| 自线自在国产av| 一级片免费观看大全| 午夜视频精品福利| 成人三级做爰电影| 啦啦啦 在线观看视频| 亚洲自偷自拍图片 自拍| 久久性视频一级片| 香蕉丝袜av| 国产99白浆流出| 久久久久国产一级毛片高清牌| 99re6热这里在线精品视频| 又黄又爽又免费观看的视频| tocl精华| 日韩免费av在线播放| 国产片内射在线| 一个人免费在线观看的高清视频| 亚洲欧美精品综合一区二区三区| 久久久精品国产亚洲av高清涩受| 精品久久久久久,| 精品第一国产精品| 最近最新中文字幕大全免费视频| 免费日韩欧美在线观看| 精品熟女少妇八av免费久了| av在线播放免费不卡| 亚洲免费av在线视频| 亚洲av成人av| 激情在线观看视频在线高清 | 欧美乱码精品一区二区三区| 欧美日韩成人在线一区二区| av电影中文网址| 免费观看a级毛片全部| 久热这里只有精品99| 亚洲成人手机| 日韩欧美免费精品| 超碰97精品在线观看| 美女扒开内裤让男人捅视频| 午夜福利欧美成人| 在线观看免费高清a一片| 高清毛片免费观看视频网站 | 老熟妇乱子伦视频在线观看| 午夜亚洲福利在线播放| 亚洲全国av大片| 9色porny在线观看| 热99久久久久精品小说推荐|