• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Sharma-Tasso-Olver-Burgers equation: its conservation laws and kink solitons

    2022-03-12 06:41:46HosseiniAkbulutBaleanuandSalahshour
    Communications in Theoretical Physics 2022年2期

    K Hosseini, A Akbulut, D Baleanu and S Salahshour

    1Department of Mathematics, Near East University TRNC, Mersin 10, Turkey

    2 Department of Mathematics-Computer, Art-Science Faculty, Eskisehir Osmangazi University, Eskisehir,Turkey

    3 Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Ankara 06530, Turkey

    4 Institute of Space Sciences, Magurele-Bucharest, Romania

    5 Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey

    Abstract The present paper deals with the Sharma-Tasso-Olver-Burgers equation (STOBE) and its conservation laws and kink solitons.More precisely,the formal Lagrangian,Lie symmetries,and adjoint equations of the STOBE are firstly constructed to retrieve its conservation laws.Kink solitons of the STOBE are then extracted through adopting a series of newly well-designed approaches such as Kudryashov and exponential methods.Diverse graphs in 2 and 3D postures are formally portrayed to reveal the dynamical features of kink solitons.According to the authors’ knowledge, the outcomes of the current investigation are new and have been listed for the first time.

    Keywords: Sharma-Tasso-Olver-Burgers equation, conservation laws, Kudryashov and exponential methods, kink solitons, dynamical features

    1.Introduction

    Partial differential equations (PDEs) particularly their nonlinear regimes are applied to model a wide variety of phenomena in the extensive areas of science and engineering.As useful tools for simulating many nonlinear phenomena, such models play a pivotal role in progressing the real world.During the past few decades,one of the major goals has been the construction of novel approaches to extract solitons for PDEs.In the last years, several well-organized methods have been proposed to derive solitons of PDEs, the hyperbolic function method [1-4], the modified Jacobi methods [5-8],the Kudryashov method [9-14], and the exponential method[15-20], are samples to point out.

    It is noteworthy that all conservation laws of PDEs do not include physical meanings, however, such laws are essential to explore the integrability and reduction of PDEs [21, 22].Conservation laws of PDEs can be found by using a wide range of methods such as the multiplier approach,the Noether approach,the new conservation theorem, and so on.Of these, the new conservation theorem was first established by Ibragimov and is associated with the formal Lagrangian, Lie symmetries, and adjoint equations of PDEs.Conservation laws can be derived for every symmetry of PDEs and the obtained conservation laws are referred to as trivial or non-trivial [23-29].

    In the present study, the authors deal with the following Sharma-Tasso-Olver-Burgers equation [30]

    and derive its conservation laws and kink solitons.As is clear from the name of equation (1), such a model consists of the Sharma-Tasso-Olver and Burgers equations.These equations have been the main concern of a lot of research works.Or-Roshid and Rashidi [31] employed an exponential method to derive the solitons of these equations.In another investigation,multiple solitons of these equations were obtained by Wazwaz in[32]through the simplified Hirota’s method.Very recently, Hu et al [33] constructed soliton, lump, and interaction solutions of a 2D-STOBE using a series of systematic ansatzes.

    Kudryashov and exponential methods, as privileged approaches, have been applied by many scholars to retrieve solitons of PDEs.Particularly, the effectiveness of these methods has been demonstrated by Hosseini et al in several papers.Hosseini et al [34] derived solitons of the cubicquartic nonlinear Schr?dinger equation using the Kudryashov method.The exponential method was utilized in [35] by Hosseini et al to acquire solitons of the unstable nonlinear Schr?dinger equation.

    The rest of the current study is as follows: In section 2,the conservation theorem and the foundation of Kudryashov and exponential methods are given.In section 3, the formal Lagrangian, Lie symmetries, and adjoint equations of the STOBE are established to derive its conservation laws.In section 4, Kudryashov and exponential methods are adopted to seek solitons of the STOBE.Section 4 further gives diverse graphs in 2 and 3D postures to demonstrate the dynamical features of kink solitons.The achievements of the present paper are provided in section 5.

    2.The conservation theorem and methods

    In the current section, the conservation theorem and the foundation of Kudryashov and exponential methods are formally given.

    2.1.The conservation theorem

    To start, suppose that a PDE can be expressed as

    wherePis a polynomial.The Lie point symmetry generator of equation (2) is given by

    whereξx(x,t,u),ξt(x,t,u),andη(x,t,u)are known as the infinitesimals.The kth prolongation of equation (3) is retrieved by

    where

    Abovei,j=1, 2andil= 1forl=1, 2,...,k.The total derivative operator is indicated byDi.

    The formal Lagrangian is given by multiplying equation (2) bywas follows

    L=wP,

    wherewis the adjoint variable.It is noteworthy that the adjoint equation is retrieved by

    If the solution of equation (4) is found, then, a finite number of conservation laws for equation (2) are derived.

    Theorem 1.Every Lie point, Lie-B?cklund, and nonlocal symmetry of equation (2) results in a conservation law.The components of the conserved vector are given by [29]

    whereW=η-ξj uj,andξiandηare the infinitesimal functions.The conserved vectors generated by equation (5)consist of the arbitrary solutions of the adjoint equation.Consequently, one derives a finite number of conservation laws for equation (2) byw[36].

    Theorem 2.Derived conserved vectors using (5) are conservation laws of equation (2) if

    Di(Ti)=0.

    Here,Diis referred to as the total derivative [37].

    2.2.Foundation of methods

    The Kudryashov method applies the following series [9, 10]

    as the nontrivial solution of

    Above,a i,i= 0, 1,...,Nare unknowns,Nis retrieved by the balance approach, and

    is the solution of

    Equations (6) and (7) together result in a nonlinear system which by solving it, solitons of equation (7) are derived.

    The exponential method investigates a solution for equation (7) as [15, 16]

    where the unknowns are acquired later andN∈ ?+.

    Again, equations (7) and (8) together yield a nonlinear system which by solving it, solitons of equation (7) are obtained.

    3.The STOBE and its conservation laws

    In the present section, the conservation theorem is applied to the STOBE to derive its conservation laws.First, the formal Lagrangian is derived in the following form

    wherewis the adjoint variable.

    The adjoint equation is acquired with the aid of the variational derivative as

    Ifuis replaced bywin equation(10),then,equation(1)is not obtained.Thus,equation(1)is not self-adjoint.In such a case,one can say thatw=1 is a solution of equation (10).

    A one-parameter Lie group for equation (1) is given by

    whereεis the group parameter,and consequently equation(1)admits following Lie point symmetry generator

    Obviously,Xmust be satisfied the Lie symmetry condition as follow

    The third prolongation of the Lie point symmetry generator is given by

    where

    If we applyX(3)to equation (1), an equivalent condition is obtained as

    Table 1.The commutator table for the above symmetries.

    Now, after some operations, we find the infinitesimal functions as follows

    wherek1,k2,andk3are arbitrary constants.Finally, the Lie point symmetry generators of equation (1) are given by

    The commutator table for the above symmetries (see equation (11)) has been given in table 1.

    Now, conservation laws of the STOBE for all founded Lie point symmetry generators are derived.Conservation laws formulae for equation (1) are as follows

    Case 1.If we employ (12) and (13) to equation (9) with the use ofX,1we acquire the following conservation laws

    Due to the satisfaction of the divergence condition,these conservation laws are called local conservation laws.Such conservation laws are infinite trivial conservation laws.In this case, we have

    It is noted that forw=1, fromandone can find

    Finite conserved vectors (14) and (15) satisfy the divergence condition, so they are trivial conservation laws.

    Case 2.If we apply(12)and(13)to equation(9)with the aid ofX2,we find the following local conservation laws

    Owing to the satisfaction of the divergence condition, these conservation laws are called local conservation laws.Such conservation laws are infinite trivial conservation laws.In this case, we have

    It is notable that forw=1, one can get

    The above finite conserved vectors satisfy the divergence condition, consequently, they are trivial conservation laws.

    Case 3.If we employ (12) and (13) to equation (9) with the use ofX3,we obtain the following conservation laws

    Due to the satisfaction of the divergence condition, these conservation laws are called local conservation laws.Such conservation laws are infinite trivial conservation laws.

    It is noted that forw=1, one can find

    Such conserved vectors satisfy the divergence condition, so,they are trivial conservation laws.

    4.The STOBE and its solitons

    In the present section, Kudryashov and exponential methods are adopted to seek solitons of the STOBE.The present section further gives diverse graphs in 2 and 3D postures to demonstrate the dynamical features of kink solitons.To start,we establish a transformation as follows

    whichwis the soliton velocity.Equations (16) and (1)together result in

    4.1.Kudryashov method

    Equation (6) andN=1 offer taking the following solution

    for equation(17).From equations(17)and(18),we will attain a nonlinear system as

    where its solution yields

    Case 1:

    Thus, the following soliton to the STOBE is acquired

    Case 2:

    Thus, the following soliton to the STOBE is derived

    The dynamical features of the kink solitonu2(x,t)are given in figure 1 forc1= 0.15,c2= 0.15,d= 5,anda=2.7.

    Figure 1.The kink soliton u2 ( x ,t)forc1 = 0.15,c2 = 0.15,d = 5,and a =2.7.

    4.2.Exponential method

    TakingN=1 in equation (8) leads to

    From equations (17) and (19), we will achieve a nonlinear system as

    where its solution results in

    Thus, the following soliton to the STOBE is acquired

    where

    TakingN=2 in equation (8) yields

    Equations (17) and (20) together result in a nonlinear system whose solution gives

    Case 1:

    Thus, the following soliton to the STOBE is derived

    where

    Case 2:

    Consequently, the following exact solution to the STOBE is obtained

    where

    Figure 2 gives the dynamical features of the kink solitonu2(x,t)fora1= -1 ,b0= 1,b2= 1,c1= 0.15,c2=0.15,anda=2.7.Furthermore,the physical behaviors ofu2KMandu2EMfor above parameters have been given in figure 3 whent=0.

    Figure 2.The kink soliton u 2 ( x ,t)for a1 = - 1,b 0 = 1,b 2 = 1,c1 = 0.15,c2 = 0.15,and a =2.7.

    Figure 3.u2KM and u2EM for above parameters whent =0.

    Remark 1.According to the authors’ knowledge, the outcomes of the current investigation are new and have been listed for the first time.

    Remark 2.The authors successfully used a symbolic computation system to check the correctness of the outcomes of the current paper.

    5.Conclusion

    The principal aim of the current paper was to explore a newly well-established model known as the Sharma-Tasso-Olver-Burgers equation and derive its conservation laws and kink solitons.The study proceeded systematically by constructing the formal Lagrangian,Lie symmetries,and adjoint equations of STOBE to acquire its conservation laws.Besides, kink solitons of the STOBE were formally established using Kudryashov and exponential methods.Various plots in 2 and 3D postures were graphically represented to observe the dynamical characteristics of kink solitons.Based on information from the authors, the outcomes of the current investigation are new and have been listed for the first time.The authors’suggestion for future works is employing newly well-organized methods [38-44] to acquire other wave structures of STOBE.

    Declaration of competing interest

    The authors declare no conflict of interest.

    ORCID iDs

    久久久精品94久久精品| 在线永久观看黄色视频| 国产无遮挡羞羞视频在线观看| 国产日韩欧美视频二区| 久久久久视频综合| 国产在线免费精品| 美女视频免费永久观看网站| 国产精品 欧美亚洲| 狠狠婷婷综合久久久久久88av| 亚洲伊人色综图| 9色porny在线观看| 91国产中文字幕| 天天影视国产精品| 欧美性长视频在线观看| 男人操女人黄网站| 宅男免费午夜| 美女视频免费永久观看网站| 日日爽夜夜爽网站| av福利片在线| 十八禁网站网址无遮挡| 天天躁夜夜躁狠狠躁躁| 在线 av 中文字幕| 国产激情久久老熟女| 纵有疾风起免费观看全集完整版| 丝袜美腿诱惑在线| 日韩精品免费视频一区二区三区| 在线观看免费高清a一片| 国产国语露脸激情在线看| 国产有黄有色有爽视频| a级片在线免费高清观看视频| 飞空精品影院首页| 夜夜骑夜夜射夜夜干| 黑人欧美特级aaaaaa片| 免费观看a级毛片全部| 亚洲性夜色夜夜综合| 国产欧美日韩一区二区三| 中文字幕制服av| 老熟妇仑乱视频hdxx| 91精品国产国语对白视频| 国产国语露脸激情在线看| 国产成人精品在线电影| 国产精品久久久人人做人人爽| 日韩中文字幕欧美一区二区| 国产免费视频播放在线视频| 亚洲avbb在线观看| 亚洲熟女精品中文字幕| 亚洲九九香蕉| 亚洲熟妇熟女久久| 亚洲国产看品久久| 亚洲专区中文字幕在线| 国产老妇伦熟女老妇高清| xxxhd国产人妻xxx| 大码成人一级视频| 一区在线观看完整版| 桃红色精品国产亚洲av| videosex国产| 免费在线观看完整版高清| 一本综合久久免费| 大片电影免费在线观看免费| 免费观看人在逋| 午夜福利视频在线观看免费| 国产精品欧美亚洲77777| 18在线观看网站| 岛国毛片在线播放| 蜜桃国产av成人99| 色老头精品视频在线观看| 丰满迷人的少妇在线观看| 亚洲国产av影院在线观看| 天堂中文最新版在线下载| 国产在线视频一区二区| 午夜福利一区二区在线看| 日本五十路高清| 97人妻天天添夜夜摸| 精品国产乱子伦一区二区三区| www.精华液| 中文字幕色久视频| 中文欧美无线码| 亚洲精品中文字幕一二三四区 | 欧美激情极品国产一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁高潮呻吟视频| 手机成人av网站| 中文字幕av电影在线播放| 日韩有码中文字幕| 久久亚洲真实| 欧美激情极品国产一区二区三区| 狠狠精品人妻久久久久久综合| 黄色视频在线播放观看不卡| 最新美女视频免费是黄的| 欧美日韩视频精品一区| 亚洲国产欧美一区二区综合| 女人久久www免费人成看片| 精品一品国产午夜福利视频| 免费在线观看影片大全网站| 大片免费播放器 马上看| 日韩中文字幕视频在线看片| 亚洲天堂av无毛| 国产一区二区三区在线臀色熟女 | 叶爱在线成人免费视频播放| 欧美在线黄色| 亚洲国产成人一精品久久久| 一本大道久久a久久精品| 国产成人av激情在线播放| 日本撒尿小便嘘嘘汇集6| 日韩视频一区二区在线观看| 制服诱惑二区| av网站在线播放免费| 久久久久视频综合| 成人18禁在线播放| 无人区码免费观看不卡 | 欧美日韩中文字幕国产精品一区二区三区 | 日本vs欧美在线观看视频| 91av网站免费观看| 欧美老熟妇乱子伦牲交| 国产精品久久久av美女十八| 男男h啪啪无遮挡| 精品熟女少妇八av免费久了| 最近最新中文字幕大全免费视频| 国产主播在线观看一区二区| 亚洲伊人色综图| 亚洲国产成人一精品久久久| 久久久精品区二区三区| 黄色视频在线播放观看不卡| netflix在线观看网站| 伦理电影免费视频| 777米奇影视久久| 操美女的视频在线观看| 香蕉国产在线看| 精品福利永久在线观看| 国产精品自产拍在线观看55亚洲 | 国产欧美日韩一区二区三区在线| 曰老女人黄片| 久久影院123| 99久久精品国产亚洲精品| 91成年电影在线观看| 亚洲视频免费观看视频| 成人精品一区二区免费| 亚洲成国产人片在线观看| 欧美成狂野欧美在线观看| 99re6热这里在线精品视频| 嫩草影视91久久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区免费| 亚洲人成伊人成综合网2020| 在线观看免费日韩欧美大片| 精品人妻熟女毛片av久久网站| 成人特级黄色片久久久久久久 | 国产一区二区在线观看av| 久久久久久久精品吃奶| 国产精品九九99| 久久精品国产亚洲av香蕉五月 | 99国产精品一区二区三区| 亚洲 欧美一区二区三区| 国产日韩一区二区三区精品不卡| 欧美精品av麻豆av| 亚洲免费av在线视频| 99精品久久久久人妻精品| 欧美亚洲 丝袜 人妻 在线| 美女高潮到喷水免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲专区中文字幕在线| 18禁观看日本| 久久久久久久大尺度免费视频| 午夜福利影视在线免费观看| 香蕉久久夜色| 99久久99久久久精品蜜桃| av国产精品久久久久影院| av网站在线播放免费| 首页视频小说图片口味搜索| 日韩中文字幕视频在线看片| 国产精品亚洲av一区麻豆| 国产国语露脸激情在线看| 欧美人与性动交α欧美精品济南到| 国产熟女午夜一区二区三区| 亚洲熟女精品中文字幕| 欧美日韩福利视频一区二区| 99精品久久久久人妻精品| 亚洲成a人片在线一区二区| 国产单亲对白刺激| 在线观看免费午夜福利视频| 麻豆av在线久日| 亚洲五月婷婷丁香| 中国美女看黄片| 日本a在线网址| 精品免费久久久久久久清纯 | 亚洲精品在线美女| 在线 av 中文字幕| 夜夜骑夜夜射夜夜干| 99久久99久久久精品蜜桃| 国产精品电影一区二区三区 | 日韩人妻精品一区2区三区| 91av网站免费观看| 久久99一区二区三区| 久久亚洲真实| 99国产精品一区二区蜜桃av | 日本欧美视频一区| 老熟女久久久| 国产极品粉嫩免费观看在线| 欧美激情高清一区二区三区| 五月开心婷婷网| 久久中文字幕人妻熟女| 久久99一区二区三区| 老鸭窝网址在线观看| 国产黄频视频在线观看| 麻豆国产av国片精品| 一区在线观看完整版| tocl精华| 国产成人一区二区三区免费视频网站| 在线观看一区二区三区激情| 欧美 日韩 精品 国产| 自线自在国产av| 国产日韩欧美亚洲二区| 国产xxxxx性猛交| 国产精品香港三级国产av潘金莲| 国产在线观看jvid| 两个人免费观看高清视频| 一二三四社区在线视频社区8| 国产亚洲欧美在线一区二区| 日韩视频一区二区在线观看| 亚洲一码二码三码区别大吗| 夜夜爽天天搞| tocl精华| 最新在线观看一区二区三区| 黑人猛操日本美女一级片| 色尼玛亚洲综合影院| www.熟女人妻精品国产| 50天的宝宝边吃奶边哭怎么回事| 午夜免费鲁丝| 免费一级毛片在线播放高清视频 | 久久香蕉激情| 99香蕉大伊视频| 国产欧美日韩综合在线一区二区| 少妇的丰满在线观看| 国产精品一区二区在线不卡| 亚洲av成人一区二区三| 一边摸一边抽搐一进一出视频| 妹子高潮喷水视频| 韩国精品一区二区三区| 国产主播在线观看一区二区| 1024香蕉在线观看| 精品国产一区二区三区久久久樱花| 1024视频免费在线观看| 在线观看免费午夜福利视频| 高清av免费在线| 一区二区三区国产精品乱码| 国产精品国产高清国产av | 热99国产精品久久久久久7| 热re99久久精品国产66热6| 日本五十路高清| 欧美老熟妇乱子伦牲交| 国产精品av久久久久免费| 99riav亚洲国产免费| 亚洲伊人久久精品综合| 国产精品一区二区在线不卡| 大片免费播放器 马上看| 欧美日韩精品网址| 亚洲全国av大片| 成年动漫av网址| 欧美激情极品国产一区二区三区| 一夜夜www| 久9热在线精品视频| 国产成人啪精品午夜网站| 国产成人精品久久二区二区免费| 热99国产精品久久久久久7| 美女视频免费永久观看网站| 丁香欧美五月| 精品人妻熟女毛片av久久网站| 在线看a的网站| av片东京热男人的天堂| 国产男女内射视频| 人人澡人人妻人| 久久青草综合色| 中文字幕高清在线视频| 国产精品99久久99久久久不卡| 国产高清视频在线播放一区| 在线观看免费视频网站a站| 亚洲男人天堂网一区| 极品教师在线免费播放| 精品免费久久久久久久清纯 | 啦啦啦 在线观看视频| 久久中文字幕一级| 欧美日韩成人在线一区二区| 亚洲精品国产一区二区精华液| av免费在线观看网站| 18禁国产床啪视频网站| 十八禁网站免费在线| 国产午夜精品久久久久久| 久久精品国产亚洲av高清一级| 亚洲黑人精品在线| 中国美女看黄片| 亚洲熟女精品中文字幕| 精品国产一区二区久久| 女人精品久久久久毛片| 亚洲国产欧美在线一区| 人人澡人人妻人| 亚洲va日本ⅴa欧美va伊人久久| 一级a爱视频在线免费观看| 在线观看www视频免费| av免费在线观看网站| 亚洲国产成人一精品久久久| 国产无遮挡羞羞视频在线观看| 超碰成人久久| www.自偷自拍.com| 他把我摸到了高潮在线观看 | 久久久国产一区二区| 精品卡一卡二卡四卡免费| 国产精品99久久99久久久不卡| 丝袜喷水一区| 久久久水蜜桃国产精品网| 国产精品偷伦视频观看了| 国产亚洲午夜精品一区二区久久| 国产在视频线精品| 亚洲精品中文字幕在线视频| 国产精品香港三级国产av潘金莲| 香蕉丝袜av| 国产麻豆69| 黄色怎么调成土黄色| 国产亚洲av高清不卡| 精品视频人人做人人爽| 久久人妻福利社区极品人妻图片| tocl精华| 国产在线精品亚洲第一网站| 一级a爱视频在线免费观看| 丁香六月天网| 黄色视频不卡| 欧美在线一区亚洲| 亚洲精品乱久久久久久| 精品少妇久久久久久888优播| 精品少妇久久久久久888优播| 久久国产精品影院| 精品一区二区三卡| 香蕉丝袜av| 精品国产一区二区久久| 国产在线精品亚洲第一网站| 欧美日韩精品网址| 丁香欧美五月| 久久国产精品大桥未久av| 久久天躁狠狠躁夜夜2o2o| 男女之事视频高清在线观看| 国产一区二区三区综合在线观看| 欧美精品高潮呻吟av久久| 亚洲一区中文字幕在线| 最黄视频免费看| 最黄视频免费看| 搡老熟女国产l中国老女人| 午夜免费成人在线视频| 成年动漫av网址| 成年人免费黄色播放视频| 在线看a的网站| 麻豆国产av国片精品| 国产一区二区 视频在线| 色老头精品视频在线观看| 午夜免费成人在线视频| 国产欧美日韩精品亚洲av| 一边摸一边抽搐一进一小说 | 超色免费av| 婷婷丁香在线五月| av电影中文网址| 久久久久久人人人人人| 男女床上黄色一级片免费看| 黄色片一级片一级黄色片| 一本综合久久免费| 超碰97精品在线观看| 午夜福利欧美成人| 狠狠婷婷综合久久久久久88av| av福利片在线| 国产精品一区二区免费欧美| 老司机靠b影院| 精品国产乱码久久久久久男人| 久久香蕉激情| 丰满迷人的少妇在线观看| www日本在线高清视频| 91成人精品电影| 国产一区二区三区在线臀色熟女 | 一级毛片精品| 999久久久精品免费观看国产| 久久av网站| 一边摸一边抽搐一进一小说 | 国产国语露脸激情在线看| 精品国产乱子伦一区二区三区| 国产一区二区三区视频了| 人妻一区二区av| 麻豆国产av国片精品| 亚洲 欧美一区二区三区| 纯流量卡能插随身wifi吗| 日韩熟女老妇一区二区性免费视频| 国产麻豆69| 美国免费a级毛片| 色在线成人网| 免费观看av网站的网址| 精品久久蜜臀av无| 欧美 日韩 精品 国产| 男女之事视频高清在线观看| 精品一区二区三区四区五区乱码| 美女福利国产在线| 亚洲精品在线观看二区| 高清毛片免费观看视频网站 | 丰满饥渴人妻一区二区三| avwww免费| 男女边摸边吃奶| 黄片播放在线免费| 少妇粗大呻吟视频| 人人妻人人澡人人爽人人夜夜| 如日韩欧美国产精品一区二区三区| 窝窝影院91人妻| 女人被躁到高潮嗷嗷叫费观| 五月开心婷婷网| 成人国语在线视频| 国产成+人综合+亚洲专区| 波多野结衣av一区二区av| 性色av乱码一区二区三区2| 国产男女内射视频| 亚洲中文字幕日韩| 日本黄色日本黄色录像| 无人区码免费观看不卡 | 国产91精品成人一区二区三区 | 国产精品 欧美亚洲| 国产亚洲一区二区精品| av有码第一页| 亚洲成a人片在线一区二区| 国产精品国产高清国产av | 久久精品熟女亚洲av麻豆精品| 国产精品久久久久久人妻精品电影 | 桃花免费在线播放| 老司机深夜福利视频在线观看| 成年动漫av网址| 男女边摸边吃奶| 久久久久久久久免费视频了| 国产在线一区二区三区精| 中文字幕人妻丝袜制服| svipshipincom国产片| 热re99久久精品国产66热6| 日韩熟女老妇一区二区性免费视频| 日韩大片免费观看网站| 免费日韩欧美在线观看| a级片在线免费高清观看视频| 国产精品偷伦视频观看了| 日日摸夜夜添夜夜添小说| 男女午夜视频在线观看| 欧美精品一区二区大全| 黄色怎么调成土黄色| 97在线人人人人妻| 大型av网站在线播放| 亚洲成国产人片在线观看| 亚洲中文日韩欧美视频| 欧美在线黄色| 制服诱惑二区| 一区二区三区乱码不卡18| avwww免费| 久久香蕉激情| 一本大道久久a久久精品| 久久精品aⅴ一区二区三区四区| 亚洲人成电影观看| 9191精品国产免费久久| 精品人妻在线不人妻| 国产色视频综合| 男男h啪啪无遮挡| 欧美老熟妇乱子伦牲交| 99国产精品免费福利视频| 国产欧美日韩综合在线一区二区| 又黄又粗又硬又大视频| 国产精品免费一区二区三区在线 | 精品视频人人做人人爽| 免费观看a级毛片全部| 不卡av一区二区三区| kizo精华| 久久久精品国产亚洲av高清涩受| 手机成人av网站| 久久性视频一级片| 99精品在免费线老司机午夜| 免费少妇av软件| a在线观看视频网站| 免费一级毛片在线播放高清视频 | 久久久久久久大尺度免费视频| 精品国产一区二区三区久久久樱花| 亚洲国产欧美在线一区| 黄色 视频免费看| 大型av网站在线播放| 免费在线观看日本一区| 亚洲精品在线观看二区| 亚洲人成电影观看| 香蕉久久夜色| 一本一本久久a久久精品综合妖精| 精品午夜福利视频在线观看一区 | 国产日韩欧美在线精品| 在线观看免费日韩欧美大片| 中文字幕精品免费在线观看视频| 久久久欧美国产精品| 精品一区二区三区四区五区乱码| 老司机在亚洲福利影院| 亚洲av日韩精品久久久久久密| 亚洲精品国产色婷婷电影| 91字幕亚洲| 久久精品91无色码中文字幕| 色播在线永久视频| 热99久久久久精品小说推荐| 亚洲伊人久久精品综合| 建设人人有责人人尽责人人享有的| 肉色欧美久久久久久久蜜桃| 亚洲欧美日韩高清在线视频 | 国产色视频综合| 夜夜骑夜夜射夜夜干| 在线天堂中文资源库| 美女扒开内裤让男人捅视频| 中文字幕制服av| 亚洲精品自拍成人| 久久国产亚洲av麻豆专区| 一进一出好大好爽视频| 国产精品亚洲av一区麻豆| 欧美 日韩 精品 国产| 夜夜爽天天搞| 美国免费a级毛片| 老司机影院毛片| 91大片在线观看| 日韩视频在线欧美| 免费在线观看黄色视频的| 激情在线观看视频在线高清 | 人妻一区二区av| 色综合欧美亚洲国产小说| 黑人巨大精品欧美一区二区mp4| 国产精品.久久久| 成人影院久久| 精品亚洲成国产av| 操出白浆在线播放| 亚洲精品成人av观看孕妇| 免费观看av网站的网址| 久久99热这里只频精品6学生| 欧美在线黄色| 菩萨蛮人人尽说江南好唐韦庄| 丰满饥渴人妻一区二区三| 国产免费福利视频在线观看| 精品高清国产在线一区| 少妇被粗大的猛进出69影院| 自拍欧美九色日韩亚洲蝌蚪91| 精品一区二区三区视频在线观看免费 | 亚洲avbb在线观看| 老熟妇仑乱视频hdxx| 日韩大码丰满熟妇| 曰老女人黄片| 中文字幕人妻丝袜制服| 亚洲色图综合在线观看| 亚洲视频免费观看视频| 欧美日韩亚洲国产一区二区在线观看 | 国产成人精品无人区| 在线观看舔阴道视频| 亚洲中文av在线| 精品少妇久久久久久888优播| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| av天堂在线播放| 精品国产乱码久久久久久小说| 丰满饥渴人妻一区二区三| 国产成人精品无人区| 欧美人与性动交α欧美软件| 老司机影院毛片| 99国产精品99久久久久| 男女床上黄色一级片免费看| 国产精品一区二区在线不卡| 国产av一区二区精品久久| av网站在线播放免费| 亚洲欧美色中文字幕在线| 免费在线观看黄色视频的| 动漫黄色视频在线观看| 18在线观看网站| 夜夜骑夜夜射夜夜干| 黑丝袜美女国产一区| 久久 成人 亚洲| 亚洲精品粉嫩美女一区| 欧美精品av麻豆av| 久热这里只有精品99| 色综合欧美亚洲国产小说| 妹子高潮喷水视频| 俄罗斯特黄特色一大片| 亚洲午夜理论影院| 岛国毛片在线播放| 中文字幕av电影在线播放| 国产欧美亚洲国产| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美三级三区| 成人18禁在线播放| 欧美变态另类bdsm刘玥| www.熟女人妻精品国产| avwww免费| 精品久久蜜臀av无| 丁香欧美五月| 久久精品国产99精品国产亚洲性色 | 青草久久国产| 亚洲精品中文字幕在线视频| 成人黄色视频免费在线看| 亚洲精品在线美女| tocl精华| 日韩免费av在线播放| 精品国产一区二区久久| 纯流量卡能插随身wifi吗| 欧美成狂野欧美在线观看| 不卡一级毛片| 美女主播在线视频| 狠狠精品人妻久久久久久综合| 99热国产这里只有精品6| 韩国精品一区二区三区| 国产麻豆69| 国产日韩欧美亚洲二区| 老司机午夜福利在线观看视频 | 91精品三级在线观看| 精品少妇久久久久久888优播| 欧美黄色片欧美黄色片| 丰满迷人的少妇在线观看| 国产欧美日韩精品亚洲av| 亚洲 欧美一区二区三区| 成人免费观看视频高清| 亚洲午夜理论影院| 亚洲精品中文字幕一二三四区 | 亚洲性夜色夜夜综合| 成人精品一区二区免费| 国产有黄有色有爽视频|