• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Al3+ Doping on the Microstructure and Electrochemical Performance of Spinel LiMn2O4①

    2022-03-08 02:30:40XIETaoXiongRENPengWenYULinYuLIWeiDENGHaoJieJIANGJianBing
    結(jié)構(gòu)化學(xué) 2022年1期

    XIE Tao-Xiong REN Peng-Wen YU Lin-Yu LI Wei DENG Hao-Jie JIANG Jian-Bing

    (College of Packaging and Material Engineering, Hunan University of Technology, Zhuzhou 412007, China)

    ABSTRACT A series of spinel LiAlxMn2-xO4 (x ≤ 0.1) cathode materials was synthesized by controlled crystallization and solid state route with micro-spherical Mn3O4 as the precursor. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the crystal structure of the synthetic material and the microscopic morphology of the particles. It was found that Al3+ doping did not change the spinel structure of the synthesized materials, and the particles had better crystallinity. In the charge and discharge test of the synthesized materials, we found that Al3+ doping would slightly reduce the discharge capacity, but it could effectively improve the cyclic stability of the material. The initial capacity of LiAl0.04Mn1.96O4 is 121.6 mAh/g. After 100 cycles at a rate of 1 C (1 C = 148 mA/g), the capacity can still reach 112.9 mAh/g, and the capacity retention rate is 96.4%.Electrochemical impedance spectroscopy (EIS) suggests that Al3+ doping can effectively enhance the diffusion capacity of lithium ions in the material.

    Keywords: micro-spherical Mn3O4, cyclic stability, Al3+ doping, cathode materials;

    1 INTRODUCTION

    Lithium-ion batteries (LIBS) have attracted particular attention because of their high energy density, low self-discharge, excellent cycle performance, and long life[1].The spinel LiMn2O4(LMO) with a three-dimensional framework structure is an important cathode material for LIBS due to its good safety[2,3]. However, due to the dissolution of manganese and Jahn-Teller distortion in the electrode reaction process, the migration of Li+and the change of the valence state of manganese cation will be impeded[4-7], so that the cyclic performance of LMO in the charging-discharge cycle is rapidly reduced, especially the stability under high temperature cycle, which limits its application range[8-10].

    The physicochemical properties of LMO are largely determined by the properties of precursor. Electrolytic manganese dioxide (EMD) has been widely used as a precursor for the synthesis of LMO, but EMD contains a large amount of impurities such as Na+and SO42?, which will be remained in LMO and cause a sharp increase in electrochemical resistance and irreversible capacity loss during storage[11]. Spherical Mn3O4[Mn2+(Mn3+2)O4] (I41/amd)has a similar spinel structure like EMD, so it is suitable as a precursor for LMO[12-14]. The oxygen atoms are tightly packed with Mn2+ions in tetrahedral sites and Mn3+ions in the octahedral sites. In order to improve the physicochemical properties of LMO, researchers conducted a lot of studies and found that the doping of metal cation with valence state and radius close to Mn3+can effectively improve the crystal structure and electrochemical stability of LiMxMn2-xO4(M =Al, Mg, Co, Zn, Cr, Ni, Fe, Ti)[15-22]. Wang et al. synthesized Al-doped LMO samples by the sol-gel method. Galvanostatic charge-discharge tests showed that the Al-doped LMO samples exhibited an enhanced cycle performance. When the Al doping amount is 5%, the discharge capacity retention rate of the material at a rate of 1C is about 98.2%[23]. According to Cai et al., using absorbent cotton fiber as a carrier, a simple combustion method was used to synthesize an Al-doped LMO cathode material. It is found that the particle size and lattice parameters decrease with the increase of Al doping ratio. This phenomenon is conducive to the full contact between the electrolyte and the cathode materials and shortens the diffusion distance between Li+ions in the solid phase[24].

    In our previous paper, we successfully synthesized a uniform micro-spherical Mn3O4with high purity, good uniformity and low surface area by controlled crystallization[3]. The LMO synthesized with this material as a precursor has a lower ratio Surface area, thereby reducing the electrode-electrolyte contact area. To some extent, it inhibits the dissolution of manganese during high temperature storage and circulation[25]. On this basis, we report the influence of Al doping modification on the morphology and electrochemical performance of LMO.

    2 EXPERIMENTAL

    2. 1 Reagents

    Micro-spherical Mn3O4was synthesized by controlled crystallization method[3]. Other reagents were of analytical grade. The reagents used in the experiment are analytical grade Li2CO3and analytical grade NaOH produced by Meiji Chemical.

    2. 2 Apparatus

    To investigate the effect of aluminum mixing on LiAlxMn2-xO4(x≤ 0.1), the LiAlxMn2-xO4(x≤ 0.1)powder was characterized by X-ray diffraction (XRD,D/Max-TtriII, Japan), and its microscopic morphology was obtained by scanning electron microscope (SEM, JEOL JSM-6360LV).

    The LiAlxMn2-xO4(x≤ 0.1) active material, acetylene black and binder polyvinyl fluoride (PVDF) (8:1:1, in wt%)were ground to a uniform mixture and then dissolved in N-methyl pyrrolidone (NMP) solvent and coated on the aluminum foil. After drying for 12 hours in a vacuum furnace at 120 ℃, the positive plate with a diameter of 10 mm was made after roller pressing. Lithium foil was used as the reference electrode. In an argon-filled glove box (water and oxygen concentration below 1 ppm), coin cells (CR2032) in order from the positive pole were assembled into the diaphragm (Celgard 2340 microporous membrane) to the reference electrode, and 1 mol·L?1LiPF6is dissolved in the solution of EC-DMC-EMC (1:1:1 volume ratio) as electrolyte.

    The electrochemical performance of the battery under different current densities within the voltage range of 3.0~4.3 V was tested by the battery test system (LAND CT2001A,Land Co. China) at ambient temperature and high temperature. Electrochemical impedance spectroscopy (EIS)measurements were performed on the cell with Model 2273A Electrochemical Instruments. The amplitude of the frequency AC signal is 10 mV, and the rate ranges from 0.1 Hz to 100 KHz.

    2. 3 Procedure

    LiAlxMn2-xO4(x≤ 0.1) was prepared by solid state route.Micro-spherical Mn3O4was prepared with MnSO4using the technology in our previous paper[3]. The synthesized micro-spherical Mn3O4, nano Al(OH)3and Li2CO3were mixed evenly and ground thoroughly in a high-efficiency mixing device. The resulting mixture was calcined in air at 750 ℃ for 12 hours at a heating rate of 10 ℃/min. After being naturally cooled to ambient temperature, the LiAlxMn2-xO4(x≤ 0.1) powder is finally obtained.

    3 RESULTS AND DISCUSSION

    3. 1 Structure and morphology of LiAlxMn2-xO4

    Fig. 1 shows the XRD pattern of LiMn2O4and synthetic LiAlxMn2-xO4(x≤ 0.1), respectively. All samples have eight distinct diffraction peaks in the order of (111), (311),(222), (400), (331), (511), (400) and (531), consistent with spinel LiMn2O4(JCPDS file No. 35-0782), and no other impurity peaks appear. This indicates that aluminum in the synthetic material replaces part of manganese and occupies the 16dposition of octahedron. The obtained samples have good crystallinity and are all pure phases. The structure of the synthesized material is the same as that of LiMn2O4with cubic spinel structure, and the space group isFd-3m.According to the diffraction pattern, the least-squares method is used to calculate the lattice parameters of the materials, and the results are shown in Fig. 2. With the increase of Al doping,the lattice parameter drops from 0.8241 to 0.8230 nm, which may be caused by two reasons: the radius of Al3+is 0.053 nm,which is smaller than that of Mn3+(0.066 nm); The Mn3+in the synthetic material is partially replaced by Al3+, which will increase the content of Mn4+to maintain charge balance, and the ionic radius of Mn4+is smaller than that of Mn3+. The lattice shrinkage of LiAlxMn2-xO4(x≤ 0.1) means that the binding force between the atoms inside the spinel increases,which reduces the expansion and contraction of the lattice volume during the intercalation/de-intercalation of lithium ions.

    Fig. 1. XRD pattern of LiAlxMn2-xO4 (x ≤ 0.1)

    Fig. 2. XRD pattern of LiAlxMn2-xO4 (x ≤ 0.1)

    Fig. 3 shows the SEM image of the samples. The popcornshaped primary particles are aggregated together to form spherical secondary particles with excellent crystal. Comparing the images with different doping contents, it can be seen that with the increase of Al doping content, the volume and particle state of the secondary particles do not change significantly, which indicates the influence of morphology and particle size on electrochemical performance can be roughly ruled out.

    Fig. 3. SEM images of LiAlxMn2-xO4: (a) x = 0, (b) x = 0.02, (c) x = 0.04, (d) x = 0.06, (e) x = 0.08, (f) x = 0.1

    3. 2 Electrochemical properties of LiAlxMn2-xO4

    Fig. 4 compares the initial galvanostatic charge-discharge profile curves of five groups of LiAlxMn2-xO4(x≤ 0.1) and LiMn2O4at room temperature. The voltage range is 3.0~4.3 V, and the discharge current is 0.1 C (14.8 mA/g). Obviously,all of them have two voltage platforms at 3.9 and 4.1 V,corresponding to the lithium ion intercalation/de-intercalation process. This feature is the same as spinel LiMn2O4. Table 1 shows initial galvanostatic charge-discharge capacity data of LiAlxMn2-xO4(x≤ 0.1). It can be seen from Table 1 that as Al doping increases, the charge and discharge capacity of the materials decrease. This phenomenon is caused by the decrease of active Mn3+ion content[26], so considering the high specific capacity of the material, the Al doping amount will not continue to increase.

    Fig. 4. Initial charge-discharge curves of LiAlxMn2-xO4 (x ≤ 0.1)

    Table 1. Initial Charge-discharge Capacity for LiAlxMn2-xO4 (x ≤ 0.1)

    Table 2. Discharge Capacity for LiAlxMn2-xO4 (x ≤ 0.1) and LiMn2O4 after 100 Cycles at Rate of 1 C at Room Temperature

    Cycle stability is an important indicator that affects the application of lithium-ion batteries. Fig. 5 shows the LiAlxMn2-xO4(x≤ 0.1) and LiMn2O4cycle performance curves between 3.0 and 4.3 V with current density of 148 mA/g (1 C~ rate) at room temperature. As can be seen from Fig. 5, the initial discharge capacity of the sample decreased slightly with the increase of the doping amount of Al because Al had no electrochemical activity[27]. As the valence of the doping element Al and the substituted element Mn was close,the capacity loss was less. LiMn2O4has the highest initial capacity (120.9 mAh/g). After 100 cycles, the capacity decreases to 109.1 mAh/g and the capacity retention rate is 90.8%. However, with the increase of Al doping amount, the variation trend of the sample capacity retention rate was first increased and then decreased. When the doping amountx=0.04, the material capacity retention rate reached the highest of 96.4% (from 117.1 to 112.9 mAh/g). This indicates that Al doping of LiMn2O4can indeed improve the cyclic stability of the materials. Possible reasons for this phenomenon are: (1)Since the radius of Al3+(0.053 nm) is smaller than that of Mn3+(0.066 nm), the lattice parameters of Al doped materials are reduced, thus reducing the expansion and contraction of lattice volume caused by repeated insertion/detachment of lithium ions. Thus, the structural stability of spinel material is improved; (2) Al3+replaces part of Mn3+and the Jahn-Teller distortion is reduced accordingly.

    Fig. 6 is a cycle curve diagram of pure phase LiMn2O4and LiAl0.04Mn1.96O4at a charge-discharge rate of 1 C at 55 ℃.After 100 cycles, the pure phase LiMn2O4can obtain a discharge specific capacity of 99.2 mAh/g and a capacity retention rate of 82.9%, while LiAl0.04Mn1.96O4can still obtain a discharge specific capacity of 104.8 mAh/g and a capacity retention rate of 89.9%. Obviously, at a higher temperature (55 ℃), LiAl0.04Mn1.96O4still exhibits higher cycle stability. The excellent cycle performance is due to the relatively stable crystal structure which reduces the dissolution of manganese.

    Fig. 5. Discharge cycle curves for LiAlxMn2-xO4(x ≤ 0.1) and LiMn2O4 at rate of 1 C at room temperature

    Fig. 6. Discharge cycle curves for LiAl0.04Mn1.96O4 and LiMn2O4 at rate of 1 C at 55 ℃

    Rate performance is considered to be an important index for evaluating high-power and high-energy-density lithiumion battery cathode materials. We compared the rate performance of the pure phase LiMn2O4and LiAl0.04Mn1.96O4at varying rates at room temperature. The rate performance tests of the two materials were performed in the voltage range of 3~4.3 V. Fig. 7 presents charge/discharge profiles of the pure phase LiMn2O4and LiAl0.04Mn1.96O4at different current densities. Since the diffusion rate of lithium ions in the spinel structure is slow when the discharge rate is increased, the specific discharge capacity of these two materials decreases with increasing the discharge rate[28]. Fig. 8 shows the rate capability tests for the samples at different current densities.Obviously, LiAl0.04Mn1.96O4shows more excellent rate performance. When the discharge rate is increased to 5 C, the discharge specific capacity of LiAl0.04Mn1.96O4decreases to 113.3 mAh/g, which is 92.3% of the capacity at 0.1 C (122.7 mAh/g). The specific discharge capacity of LiMn2O4is reduced to 109.2 mAh/g, which is 86.9% of the capacity(125.7 mAh/g) at 0.1 C as the smaller particle size of LiAl0.04Mn1.96O4has more lithium reactive sites and shorter lithium ion diffusion paths. When the rate continues to decrease from 5 to 0.1 C, the discharge specific capacity of pure phase LiMn2O4and LiAl0.04Mn1.96O4can reach the initial 99.3% and 99.6%, respectively, indicating that both materials have good electrochemical reversibility.

    Fig. 7. Charge/discharge curve of materials at different rates: (a) LiAl0.04Mn1.96O4, (b) LiMn2O4

    Fig. 8. Rate performance of the pure phase LiMn2O4 and LiAl0.04Mn1.96O4 in the voltage range of 3.0~4.3 V at room temperature

    The electrochemical performance of LiMn2O4and LiAl0.04Mn1.96O4was compared using AC impedance spectroscopy. Fig. 9 shows the Nyquist diagram of the two materials. The equivalent simulation circuit is shown in the illustration. A semicircle in the high frequency region and a straight line in the low frequency region constitute the impedance spectrum. The high frequency area reflects the charge transfer impedance and the double layer capacitance,while the low frequency area mainly reflects the lithium ion migration impedance, which is called Warburg impedance. In the equivalent circuit,RΩis the Ohmic resistance of the battery, including the total resistance of electrolyte, separator,conductive material, etc.;Rctrepresents the charge transfer resistance; CPE (Constant phase element) is used to replace the capacitor in order to fit the experimental data appropriately; CPE1 corresponds to the surface film capacitance in high-frequency semicircle; and CPE2 corresponds to double layer capacitance in the low-frequency line. TheRctof LiAl0.04Mn1.96O4and LiMn2O4are 41 and 869 Ω, respectively.This result shows that LiAl0.04Mn1.96O4is a high-quality material with lower electrochemical impedance and better electrochemical performance. This is mainly attributed to the reduction of the crystal cell volume and the shorter diffusion path of lithium ions in Al doped samples, which reduces the polarization of the material.

    Fig. 9. Impedance spectra of pure phase LiMn2O4 and LiAl0.04Mn1.96O4

    4 CONCLUSION

    We successfully synthesized LiAlxMn2-xO4(x≤ 0.1) by controlled crystallization with micro-spherical Mn3O4as the precursor. XRD and SEM results show that aluminum doping enters into the spinel crystal structure, partially replaces the 16dmanganese site, and the structure of the synthetic material is not changed. As the amount of Al doped increases,the lattice parameter of the synthesized sample decreases, and the content of active Mn3+decreases, so that the initial discharge capacity of the samples decreases. But Al doping can effectively improve the cycle stability of the material.After 100 cycles at the rate of 1 C at room temperature, the initial capacity and capacity retention rate of LiAl0.04Mn1.96O4are 117.1 mAh/g and 96.4%, respectively, and the capacity is 113.1 mAh/g at the rate of 5 C. When the temperature rises to 55 ℃, LiAl0.04Mn1.96O4can still obtain a discharge specific capacity of 104.8 mAh/g and a capacity retention rate of 89.9% at the rate of 1 C, showing excellent electrochemical performance.

    色噜噜av男人的天堂激情| 午夜福利在线在线| 久久精品人妻少妇| 国产一级毛片七仙女欲春2| 午夜福利高清视频| 日韩欧美 国产精品| 成年版毛片免费区| 中文字幕av在线有码专区| 日韩在线高清观看一区二区三区| 99精品在免费线老司机午夜| 亚洲第一电影网av| 成人亚洲精品av一区二区| 成年av动漫网址| 午夜精品国产一区二区电影 | 久久久久久九九精品二区国产| 亚洲精品日韩在线中文字幕 | 91av网一区二区| 久久精品国产自在天天线| 欧美不卡视频在线免费观看| 国产黄色视频一区二区在线观看 | 寂寞人妻少妇视频99o| 亚洲欧美精品自产自拍| 一进一出抽搐gif免费好疼| 亚洲av中文av极速乱| 日韩欧美精品v在线| 五月伊人婷婷丁香| 国产三级在线视频| 国产av在哪里看| 少妇丰满av| 久久久久久久久久黄片| 久久久精品欧美日韩精品| 一个人免费在线观看电影| 性色avwww在线观看| 在线看三级毛片| av女优亚洲男人天堂| 国产69精品久久久久777片| 亚洲人成网站在线播| 特大巨黑吊av在线直播| 欧美潮喷喷水| 日本三级黄在线观看| 国产伦精品一区二区三区四那| 久久久久国产网址| 寂寞人妻少妇视频99o| 成人国产麻豆网| 哪里可以看免费的av片| 美女xxoo啪啪120秒动态图| 校园人妻丝袜中文字幕| 久久午夜福利片| 美女cb高潮喷水在线观看| 国产麻豆成人av免费视频| 欧美丝袜亚洲另类| 麻豆乱淫一区二区| 免费看av在线观看网站| 精品人妻一区二区三区麻豆 | 国产一级毛片七仙女欲春2| 12—13女人毛片做爰片一| 成人毛片a级毛片在线播放| 亚洲一区二区三区色噜噜| 日本黄大片高清| 久久久久久九九精品二区国产| 国产三级在线视频| 亚洲精品色激情综合| 亚洲最大成人av| 日产精品乱码卡一卡2卡三| 精品熟女少妇av免费看| 看黄色毛片网站| 亚洲国产精品久久男人天堂| 在线天堂最新版资源| 国产久久久一区二区三区| 午夜影院日韩av| 国产熟女欧美一区二区| 免费在线观看影片大全网站| eeuss影院久久| 国产精品一区二区三区四区久久| 午夜亚洲福利在线播放| 男人的好看免费观看在线视频| 夜夜夜夜夜久久久久| 亚洲精品乱码久久久v下载方式| 日本三级黄在线观看| 国产欧美日韩精品一区二区| 免费av不卡在线播放| 成人三级黄色视频| 精品久久久久久久久av| 日日摸夜夜添夜夜爱| 午夜激情福利司机影院| 观看免费一级毛片| 国内精品一区二区在线观看| 成人毛片a级毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 久久久a久久爽久久v久久| 中文字幕av在线有码专区| 日本成人三级电影网站| 男女啪啪激烈高潮av片| 搡女人真爽免费视频火全软件 | 99久久精品国产国产毛片| 晚上一个人看的免费电影| 亚洲在线观看片| 免费无遮挡裸体视频| 久久热精品热| 亚洲av.av天堂| 欧美一区二区亚洲| 国产淫片久久久久久久久| 亚洲欧美精品综合久久99| 人妻丰满熟妇av一区二区三区| a级一级毛片免费在线观看| 日韩在线高清观看一区二区三区| 亚洲电影在线观看av| av国产免费在线观看| 久久精品影院6| 国产精华一区二区三区| 国产v大片淫在线免费观看| 免费人成在线观看视频色| 看片在线看免费视频| 欧美+日韩+精品| 国内精品一区二区在线观看| 亚洲一区二区三区色噜噜| 一级a爱片免费观看的视频| 国产精品日韩av在线免费观看| 高清毛片免费观看视频网站| 国产精品美女特级片免费视频播放器| 九九爱精品视频在线观看| 午夜视频国产福利| 亚洲成人av在线免费| 日日啪夜夜撸| 99热只有精品国产| 欧美性感艳星| 国内精品宾馆在线| 亚洲av不卡在线观看| 小蜜桃在线观看免费完整版高清| 欧美区成人在线视频| 最好的美女福利视频网| 长腿黑丝高跟| 久久午夜福利片| 校园春色视频在线观看| 亚洲国产日韩欧美精品在线观看| 在线天堂最新版资源| 少妇丰满av| 天美传媒精品一区二区| 国产美女午夜福利| 免费观看精品视频网站| 亚洲最大成人中文| 波多野结衣高清无吗| 久久久久久久久久黄片| 少妇裸体淫交视频免费看高清| 人妻少妇偷人精品九色| 中文字幕久久专区| 变态另类成人亚洲欧美熟女| 久久精品国产自在天天线| 欧美性猛交╳xxx乱大交人| 亚洲精品国产av成人精品 | 婷婷精品国产亚洲av在线| 天堂动漫精品| 亚洲va在线va天堂va国产| 国产精品伦人一区二区| 免费一级毛片在线播放高清视频| 黄色日韩在线| 亚洲成人精品中文字幕电影| 国产成人福利小说| 久久久久国内视频| 国产单亲对白刺激| 国产欧美日韩精品一区二区| 免费av不卡在线播放| 波多野结衣高清无吗| 天堂动漫精品| 亚洲五月天丁香| 国产精品伦人一区二区| 大又大粗又爽又黄少妇毛片口| 精品熟女少妇av免费看| 国产精品久久久久久精品电影| 久久久久久久久大av| 成人午夜高清在线视频| 中文字幕精品亚洲无线码一区| 国内精品久久久久精免费| 国内精品一区二区在线观看| 99国产极品粉嫩在线观看| 精品久久国产蜜桃| 久久午夜亚洲精品久久| 久久人妻av系列| 国产亚洲精品av在线| 国产亚洲精品久久久久久毛片| 色噜噜av男人的天堂激情| 中文字幕熟女人妻在线| 国产片特级美女逼逼视频| 国内久久婷婷六月综合欲色啪| 真人做人爱边吃奶动态| 亚洲一区二区三区色噜噜| 草草在线视频免费看| 国产精品爽爽va在线观看网站| 成人av在线播放网站| 久久久久久久亚洲中文字幕| 99久久九九国产精品国产免费| 美女大奶头视频| 偷拍熟女少妇极品色| 三级毛片av免费| 午夜久久久久精精品| av天堂中文字幕网| 免费av毛片视频| 亚洲婷婷狠狠爱综合网| 国产69精品久久久久777片| 在线播放无遮挡| 国产高清视频在线播放一区| 亚洲av.av天堂| 亚洲最大成人手机在线| 又爽又黄a免费视频| h日本视频在线播放| 国产精品无大码| 日日干狠狠操夜夜爽| 老司机福利观看| 国产精品一区二区三区四区免费观看 | 亚洲图色成人| 国产白丝娇喘喷水9色精品| 国产一区二区在线观看日韩| 免费人成视频x8x8入口观看| 91精品国产九色| 欧美激情国产日韩精品一区| 久久国产乱子免费精品| 久久综合国产亚洲精品| 久久人人爽人人片av| 少妇的逼水好多| 国产精品一区二区性色av| 久久精品影院6| 乱系列少妇在线播放| 日韩大尺度精品在线看网址| 一级黄色大片毛片| 日产精品乱码卡一卡2卡三| 亚洲精品国产成人久久av| 最近2019中文字幕mv第一页| 国内精品久久久久精免费| 国产一级毛片七仙女欲春2| 日韩三级伦理在线观看| 日本一二三区视频观看| 乱码一卡2卡4卡精品| 高清午夜精品一区二区三区 | 免费电影在线观看免费观看| 精品欧美国产一区二区三| 黄色欧美视频在线观看| 91久久精品电影网| 九色成人免费人妻av| 国产中年淑女户外野战色| 又爽又黄a免费视频| 日本成人三级电影网站| av免费在线看不卡| 美女cb高潮喷水在线观看| 十八禁国产超污无遮挡网站| 成年版毛片免费区| 久久中文看片网| 麻豆国产av国片精品| 欧美另类亚洲清纯唯美| av福利片在线观看| 丰满的人妻完整版| 亚洲欧美清纯卡通| 真实男女啪啪啪动态图| 99视频精品全部免费 在线| 色吧在线观看| 日本一二三区视频观看| 真实男女啪啪啪动态图| 神马国产精品三级电影在线观看| 精品久久国产蜜桃| 在线免费观看不下载黄p国产| 午夜日韩欧美国产| 国产男靠女视频免费网站| 18禁在线播放成人免费| 在线看三级毛片| 亚洲欧美日韩东京热| 国产成人91sexporn| 国产成人影院久久av| 日本一本二区三区精品| 色哟哟哟哟哟哟| 露出奶头的视频| 欧洲精品卡2卡3卡4卡5卡区| 天天一区二区日本电影三级| 草草在线视频免费看| 亚州av有码| 久久精品国产亚洲网站| 国产白丝娇喘喷水9色精品| 亚州av有码| 最近的中文字幕免费完整| 尾随美女入室| 久久精品夜夜夜夜夜久久蜜豆| 女生性感内裤真人,穿戴方法视频| 女人被狂操c到高潮| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 久久精品夜色国产| 不卡视频在线观看欧美| 国产精品av视频在线免费观看| 禁无遮挡网站| 国产亚洲精品av在线| 婷婷六月久久综合丁香| 欧美色视频一区免费| 99热精品在线国产| 人人妻人人澡欧美一区二区| 亚洲av第一区精品v没综合| 最近最新中文字幕大全电影3| 天天躁夜夜躁狠狠久久av| 91在线精品国自产拍蜜月| 精品久久久久久久久久免费视频| 国产精品久久久久久亚洲av鲁大| 狠狠狠狠99中文字幕| 国产在线精品亚洲第一网站| 最好的美女福利视频网| 97热精品久久久久久| 中文字幕av在线有码专区| 男人舔女人下体高潮全视频| 18禁裸乳无遮挡免费网站照片| 一级毛片aaaaaa免费看小| 无遮挡黄片免费观看| 精品久久久久久久末码| 成人精品一区二区免费| 国产午夜精品久久久久久一区二区三区 | 亚洲精品乱码久久久v下载方式| 国产精品亚洲一级av第二区| 国产一区二区激情短视频| 久久久国产成人精品二区| 欧美不卡视频在线免费观看| 丰满人妻一区二区三区视频av| 国产片特级美女逼逼视频| 国产探花极品一区二区| 国产伦精品一区二区三区视频9| 午夜爱爱视频在线播放| 在线国产一区二区在线| 国产伦精品一区二区三区视频9| 人妻少妇偷人精品九色| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区久久| 性欧美人与动物交配| 女同久久另类99精品国产91| 丰满乱子伦码专区| 成年av动漫网址| 三级国产精品欧美在线观看| 99九九线精品视频在线观看视频| 亚洲久久久久久中文字幕| 免费在线观看影片大全网站| 亚洲av熟女| 国产欧美日韩精品一区二区| 3wmmmm亚洲av在线观看| 好男人在线观看高清免费视频| 一个人看视频在线观看www免费| 丰满的人妻完整版| 久久久久性生活片| av.在线天堂| 免费大片18禁| 老女人水多毛片| 2021天堂中文幕一二区在线观| 亚洲欧美清纯卡通| 欧美人与善性xxx| 国产精品一区二区三区四区久久| 成年女人毛片免费观看观看9| 国产高潮美女av| 久久午夜福利片| 可以在线观看毛片的网站| 搡老岳熟女国产| 国产精品一区www在线观看| 看免费成人av毛片| 床上黄色一级片| 亚洲av不卡在线观看| 国产三级中文精品| 久久久久国内视频| 色5月婷婷丁香| 一进一出好大好爽视频| 国产精品一二三区在线看| 国产女主播在线喷水免费视频网站 | АⅤ资源中文在线天堂| 极品教师在线视频| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 男女那种视频在线观看| 亚洲国产精品sss在线观看| 亚洲欧美日韩高清专用| 亚洲最大成人中文| 丰满乱子伦码专区| 中文在线观看免费www的网站| 国产精品福利在线免费观看| 最近手机中文字幕大全| 伊人久久精品亚洲午夜| 国产一区二区亚洲精品在线观看| 欧美另类亚洲清纯唯美| 日本五十路高清| 最近在线观看免费完整版| 人妻制服诱惑在线中文字幕| 国产精品日韩av在线免费观看| 精品人妻一区二区三区麻豆 | 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 最新中文字幕久久久久| 秋霞在线观看毛片| 日本黄大片高清| 毛片一级片免费看久久久久| 日日摸夜夜添夜夜添小说| 九九久久精品国产亚洲av麻豆| 一级黄片播放器| 亚洲第一区二区三区不卡| 男女视频在线观看网站免费| 人妻丰满熟妇av一区二区三区| 最新中文字幕久久久久| 少妇熟女欧美另类| 精品熟女少妇av免费看| 69av精品久久久久久| 天堂av国产一区二区熟女人妻| 村上凉子中文字幕在线| 午夜精品在线福利| 搞女人的毛片| 成年女人永久免费观看视频| 亚洲不卡免费看| 久久久午夜欧美精品| 插阴视频在线观看视频| 黄色配什么色好看| 91久久精品国产一区二区三区| 乱码一卡2卡4卡精品| 久久这里只有精品中国| 日本黄色片子视频| 天天躁夜夜躁狠狠久久av| 最后的刺客免费高清国语| 欧美人与善性xxx| 成年女人永久免费观看视频| 别揉我奶头 嗯啊视频| av中文乱码字幕在线| 日韩亚洲欧美综合| 国语自产精品视频在线第100页| 麻豆国产97在线/欧美| 亚洲av电影不卡..在线观看| 12—13女人毛片做爰片一| 一本久久中文字幕| 亚洲av五月六月丁香网| 俄罗斯特黄特色一大片| 99精品在免费线老司机午夜| 国产伦精品一区二区三区视频9| 一进一出抽搐动态| 午夜福利在线观看免费完整高清在 | 国产真实伦视频高清在线观看| 乱系列少妇在线播放| 成人特级黄色片久久久久久久| 精品免费久久久久久久清纯| 乱码一卡2卡4卡精品| 国产 一区精品| 麻豆乱淫一区二区| 在线天堂最新版资源| 久久韩国三级中文字幕| 国产伦精品一区二区三区四那| 91麻豆精品激情在线观看国产| 国产久久久一区二区三区| 少妇人妻一区二区三区视频| 日本一二三区视频观看| 看免费成人av毛片| 久久久久久伊人网av| 精品福利观看| 色综合站精品国产| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 午夜激情欧美在线| 国产精品久久久久久久电影| 少妇猛男粗大的猛烈进出视频 | 久久久国产成人精品二区| 色哟哟哟哟哟哟| 亚洲va在线va天堂va国产| 国产精品一区二区三区四区免费观看 | 国产真实乱freesex| 三级男女做爰猛烈吃奶摸视频| 超碰av人人做人人爽久久| 18+在线观看网站| 国国产精品蜜臀av免费| 级片在线观看| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 日韩欧美 国产精品| 春色校园在线视频观看| 网址你懂的国产日韩在线| 超碰av人人做人人爽久久| 国产激情偷乱视频一区二区| 久久精品影院6| 乱码一卡2卡4卡精品| 久久精品国产亚洲av香蕉五月| 欧美极品一区二区三区四区| 自拍偷自拍亚洲精品老妇| 热99re8久久精品国产| 欧美区成人在线视频| 久久午夜福利片| 一个人看视频在线观看www免费| 我要看日韩黄色一级片| 国产伦精品一区二区三区四那| 亚洲av免费在线观看| 国产在视频线在精品| 男女下面进入的视频免费午夜| 男人狂女人下面高潮的视频| av天堂在线播放| 热99re8久久精品国产| 又粗又爽又猛毛片免费看| 国产欧美日韩一区二区精品| 在线天堂最新版资源| 亚洲精品影视一区二区三区av| 亚洲欧美日韩东京热| 天美传媒精品一区二区| 成人永久免费在线观看视频| a级毛片a级免费在线| 少妇的逼水好多| 日韩强制内射视频| 97超碰精品成人国产| 亚洲无线在线观看| 成人欧美大片| 波多野结衣高清作品| 亚洲第一电影网av| 在线观看一区二区三区| 一级av片app| 日本五十路高清| 99热6这里只有精品| 日韩精品青青久久久久久| 老司机影院成人| 成人毛片a级毛片在线播放| 51国产日韩欧美| 22中文网久久字幕| 国产精品一区www在线观看| 亚洲成人久久性| 成人av在线播放网站| 国产免费一级a男人的天堂| 毛片女人毛片| 我的老师免费观看完整版| 国产精品嫩草影院av在线观看| 国产精品久久久久久久电影| 亚洲五月天丁香| 免费av不卡在线播放| 国产精品久久视频播放| 中文资源天堂在线| 超碰av人人做人人爽久久| 波多野结衣巨乳人妻| 狂野欧美激情性xxxx在线观看| 看片在线看免费视频| 国产一区二区激情短视频| 国产激情偷乱视频一区二区| 国产精品日韩av在线免费观看| 麻豆一二三区av精品| 91久久精品国产一区二区三区| 看黄色毛片网站| a级毛片a级免费在线| 在线播放无遮挡| 最近视频中文字幕2019在线8| 小蜜桃在线观看免费完整版高清| 麻豆国产97在线/欧美| 真人做人爱边吃奶动态| 女生性感内裤真人,穿戴方法视频| 美女被艹到高潮喷水动态| 长腿黑丝高跟| 可以在线观看毛片的网站| 色哟哟·www| 真人做人爱边吃奶动态| 狂野欧美激情性xxxx在线观看| 国产精品不卡视频一区二区| 激情 狠狠 欧美| 伊人久久精品亚洲午夜| 卡戴珊不雅视频在线播放| 亚洲专区国产一区二区| 插阴视频在线观看视频| 亚洲一区二区三区色噜噜| 麻豆成人午夜福利视频| 大型黄色视频在线免费观看| 少妇人妻精品综合一区二区 | 成人永久免费在线观看视频| 成人午夜高清在线视频| 在线a可以看的网站| 午夜精品在线福利| 国产精品久久久久久亚洲av鲁大| 精品无人区乱码1区二区| 日本五十路高清| 性欧美人与动物交配| 亚洲欧美成人综合另类久久久 | 一级毛片久久久久久久久女| 国产成人freesex在线 | 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 日本黄色视频三级网站网址| 亚洲国产色片| 亚洲真实伦在线观看| 成年免费大片在线观看| 18禁黄网站禁片免费观看直播| 一卡2卡三卡四卡精品乱码亚洲| 久久这里只有精品中国| 乱码一卡2卡4卡精品| 五月玫瑰六月丁香| 国产精品野战在线观看| 欧美性猛交╳xxx乱大交人| 不卡视频在线观看欧美| 亚洲精品影视一区二区三区av| 精品一区二区三区视频在线观看免费| 久久久国产成人免费| 亚洲精品一区av在线观看| 女的被弄到高潮叫床怎么办| 丰满的人妻完整版| 亚洲在线自拍视频| 床上黄色一级片| 亚洲无线观看免费| 精品免费久久久久久久清纯| 国产精品1区2区在线观看.| 久久九九热精品免费| 日韩一本色道免费dvd| 国产亚洲欧美98| 人人妻人人澡欧美一区二区| 国产真实乱freesex| 日本与韩国留学比较| 亚洲人成网站在线播| 十八禁网站免费在线| 久久人妻av系列| 欧美一区二区国产精品久久精品| 久久久久久久久久成人| 卡戴珊不雅视频在线播放| 欧美三级亚洲精品| 美女 人体艺术 gogo| 搡老岳熟女国产| 国产视频内射| 日本 av在线| 国产色爽女视频免费观看| 淫秽高清视频在线观看| 国产精品99久久久久久久久| 99久久无色码亚洲精品果冻| 国产极品精品免费视频能看的| 可以在线观看的亚洲视频| 国产一区二区三区av在线 |