龔麗景, 賈杰, 孫民康, 趙小雅, 付鵬宇
短期間歇和急性低氧對(duì)大鼠快慢肌萎縮的影響及其作用機(jī)制*
龔麗景1,2, 賈杰3, 孫民康4, 趙小雅3, 付鵬宇5△
(1北京體育大學(xué)中國運(yùn)動(dòng)與健康研究院,北京 100084;2運(yùn)動(dòng)與體質(zhì)健康教育部重點(diǎn)實(shí)驗(yàn)室,北京 100084;3北京體育大學(xué)運(yùn)動(dòng)人體科學(xué)學(xué)院,北京 100084;4華東師范大學(xué)體育與健康學(xué)院,上海 200241;5西北工業(yè)大學(xué)體育部,陜西 西安710072)
探討不同低氧干預(yù)模式對(duì)大鼠快肌和慢肌萎縮的影響差異及可能的分子機(jī)制。24只10周齡雄性SD大鼠分為常氧對(duì)照組(C組)、短期間歇低氧組(IH組,于12.4% O2暴露8 h/d,持續(xù)4周)和急性低氧組(AH組,連續(xù)3 d暴露于12.4% O2),每組8只。干預(yù)后測定抓力,脛骨前?。═A,快?。┖捅饶眶~?。⊿OL,慢?。裰?,以及肌纖維橫截面積(FCSA)。Western blot法檢測嘌呤霉素(Puro)和泛素(Ub)的含量,計(jì)算蛋白質(zhì)累積量(Puro/Ub)。使用RNA測序法篩選兩種肌肉中IH/C組和AH/C組的差異表達(dá)基因,分析差異基因所富集的生物過程和通路,RT-qPCR驗(yàn)證關(guān)鍵差異基因表達(dá)。干預(yù)后,AH組相對(duì)抓力顯著低于C組,AH組TA和SOL相對(duì)濕重均高于IH組(<0.05),IH組和AH組TA和SOL的FCSA均顯著低于C組(<0.01)。IH組TA的蛋白質(zhì)累積量顯著高于C組,而AH組顯著低于IH組(<0.01);IH組SOL的蛋白質(zhì)累積量顯著低于C組,而AH組顯著高于IH組(<0.01)。IH組/C組TA的差異基因以上調(diào)為主,AH/C組SOL的差異基因亦以上調(diào)為主。TA中,IH組/C組上調(diào)基因的功能主要為抗氧化和糖代謝等,PPAR通路參與調(diào)節(jié);AH/C組上調(diào)基因的功能主要為快慢肌間的轉(zhuǎn)化、氧化應(yīng)激、炎癥和細(xì)胞死亡等。SOL中,IH/C組和AH/C組上調(diào)基因功能主要為細(xì)胞凋亡、免疫反應(yīng)和氧化應(yīng)激等,TNF、TGF-β和JAK-STAT通路參與調(diào)節(jié)。關(guān)鍵差異基因表達(dá)驗(yàn)證結(jié)果與測序結(jié)果一致。短期間歇低氧可能通過提高大鼠快?。═A)的抗氧化能力而抵抗萎縮;急性低氧可能通過增加氧化應(yīng)激、炎癥反應(yīng)和細(xì)胞凋亡過程促進(jìn)快肌(TA)和慢?。⊿OL)的萎縮。
間歇低氧;急性低氧;快?。宦?;肌萎縮
氧氣(O2)水平的降低,即低氧狀態(tài),出現(xiàn)在許多情況下,包括環(huán)境低氧(如暴露在高海拔地區(qū)),生理性和暫時(shí)性缺氧(如體育鍛煉),以及病理性缺氧[如慢性阻塞性肺疾?。╟hronic obstructive pulmonary disease,COPD)、慢性心力衰竭(chronic heart failure,CHF)和阻塞性睡眠呼吸暫停綜合征(obstructive sleep apnea syndrome,OSAS)]。氧分子對(duì)骨骼肌形態(tài)的影響已逐漸受到關(guān)注。世居平原的人群初到高原地區(qū),會(huì)導(dǎo)致肌纖維橫截面積(fiber cross-sectional area,F(xiàn)CSA)出現(xiàn)15%~20%下降[1];在海拔5 000 m的高原環(huán)境暴露8周會(huì)導(dǎo)致受試者肌肉丟失10%,且運(yùn)動(dòng)能力和肌肉力量也有所下降[2]。而動(dòng)脈血氧飽和度降低相關(guān)的心肺系統(tǒng)疾?。–OPD、CHF和OSAS)及其他疾病,如腫瘤惡病質(zhì),也可造成局部肌肉缺氧,進(jìn)而導(dǎo)致肌肉功能和質(zhì)量的丟失。
不同的低氧暴露方式,主要是低氧暴露時(shí)長的差異不同。骨骼肌在不同的低氧暴露時(shí)長下,會(huì)發(fā)生由預(yù)警期、抵抗期、失適應(yīng)期和服習(xí)期的轉(zhuǎn)變[2]。對(duì)于世居高原的人群,身體暴露在長期低氧的環(huán)境下,為服習(xí)狀態(tài),各機(jī)能已產(chǎn)生適應(yīng)。對(duì)于骨骼肌影響最大的兩種低氧模式分別為:急性低氧(acute hypoxia,AH)暴露和短期間歇低氧(intermittent hypoxia,IH)暴露。初入低氧環(huán)境,骨骼肌各機(jī)能狀態(tài)處于應(yīng)激狀態(tài),會(huì)發(fā)生一系列應(yīng)激改變以維持組織內(nèi)的氧穩(wěn)態(tài);而短期IH暴露一定程度上類似于缺氧復(fù)氧/缺血再灌注的生理/病理狀態(tài),會(huì)使骨骼肌在受到刺激的同時(shí)又產(chǎn)生一定程度的適應(yīng)。因此,這兩種低氧暴露下骨骼肌質(zhì)量和功能的改變值得深入研究。
此外,骨骼肌由具有不同代謝和收縮特性的纖維類型組成,可劃分為快縮酵解型肌肉——快肌和慢縮酵解型肌肉——慢肌。不同類型肌纖維由于代謝特征不同,其對(duì)低氧的敏感性也不同。研究顯示,在10% O2的低氧房中暴露24 h,可觀察到快肌出現(xiàn)損傷;在海拔4 000 m高原環(huán)境中暴露7周,可觀察到慢肌的丟失[3]。上述研究提示不同低氧模式對(duì)不同類型的骨骼肌將產(chǎn)生不同影響,但具體機(jī)制尚不清楚。本研究擬對(duì)比短期IH和AH對(duì)大鼠快?。垡悦劰乔凹。╰ibialis anterior muscle,TA)為代表]和慢?。垡员饶眶~肌(soleus muscle,SOL)為代表]的影響,并使用RNA測序法探究不同類型肌肉對(duì)不同低氧模式應(yīng)答的可能分子機(jī)制。
24只10周齡SPF級(jí)雄性Sprague-Dawley(SD)大鼠,初始體重為(326.00±10.75) g,購于北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司,許可證號(hào)為SCXK(京)2015-0001。適應(yīng)性喂養(yǎng)1周后,將大鼠隨機(jī)分為常氧對(duì)照組(control組,C組;=16),置于常氧環(huán)境中;IH組(=8),大鼠置于低氧房中;C組干預(yù)25 d后,再按體重隨機(jī)均分出8只作為AH組。其中,IH組大鼠每日置于12.4% O2(相當(dāng)于海拔4 000 m的高度)的低氧環(huán)境暴露8 h,持續(xù)4周;AH組大鼠生活在12.4% O2的低氧環(huán)境中(24 h/d),持續(xù)3 d[4-5]。大鼠飼喂國家標(biāo)準(zhǔn)大小鼠維持飼料,購于北京華阜康生物科技股份有限公司[許可證號(hào):SCXK-(京)2019-0008],飼養(yǎng)于北京體育大學(xué)動(dòng)物實(shí)驗(yàn)室[許可證號(hào):SYXK-(京)2016-0033]。本研究低氧環(huán)境采用空氣壓縮機(jī)、凍干機(jī)和制氮機(jī)共同作用,將產(chǎn)生的低氧氣體通入動(dòng)物實(shí)驗(yàn)室的低氧房內(nèi),為人工模擬的常壓低氧。經(jīng)過北京體育大學(xué)運(yùn)動(dòng)科學(xué)倫理審查委員會(huì)的批準(zhǔn)(批準(zhǔn)號(hào):2019038A)并按照實(shí)驗(yàn)動(dòng)物福利倫理原則進(jìn)行干預(yù)實(shí)驗(yàn)。記錄干預(yù)期間各組大鼠體重和攝食量。
干預(yù)結(jié)束后,用抓力儀(北京智鼠多寶生物科技有限公司)測定大鼠最大抓力值,測量3次,記錄最大值,并計(jì)算相對(duì)抓力(最大抓力/體重)。然后大鼠禁食24 h,腹腔注射2%戊巴比妥鈉(40 mg/kg)麻醉,雙能X射線體成分分析儀(Norland)測量大鼠體成分(包括體脂率和瘦體重)。每組隨機(jī)選6只大鼠,取材前30 min腹腔注射嘌呤霉素(puromycin,Puro; 40 nmol/g),所有大鼠麻醉后腹主動(dòng)脈取血處死,取同側(cè)TA和SOL,稱量濕重,計(jì)算相對(duì)濕重(濕重/體重)。一側(cè)肌肉分成兩份,一份置于RNAlater?穩(wěn)定液中,另一份置于液氮冷凍后,轉(zhuǎn)移至-80 ℃保存;另一側(cè)肌肉置于4%多聚甲醛中固定。
抗層粘連蛋白(laminin)抗體(貨號(hào)ab11575)購于Abcam;抗Puro抗體(貨號(hào)MABE343)和抗α-微管蛋白(α-tubulin)抗體(貨號(hào)T6074)購于Sigma;抗泛素(ubiquitin,Ub)抗體(貨號(hào)sc-8017)購于Santa Cruz;熒光標(biāo)記的山羊抗鼠IgG(貨號(hào)926-32210)、熒光標(biāo)記的山羊抗兔IgG(貨號(hào)926-68071)和封閉液(貨號(hào)927-60001)購自LI-COR Biosciences;FITC標(biāo)記的山羊抗鼠IgG(貨號(hào)GB22301)購于武漢賽維爾生物科技有限公司;二鹽酸Puro(貨號(hào)A1113803)、4%~12% Bis-Tris梯度膠、MES電泳緩沖液和NC膜等均購自Thermo Fisher Scientific;RT-qPCR試劑盒(SYBR Premix Ex TaqⅡ,貨號(hào)RR820A)購于TaKaRa;多聚甲醛、RIPA裂解液、抗原修復(fù)液和PBS等購自國內(nèi)公司。RNA提取、純化所用試劑等由深圳華大基因科技服務(wù)有限公司購買。
3.1肌肉FCSA測定將多聚甲醛固定的骨骼肌進(jìn)行乙醇、二甲苯梯度脫水、浸蠟和包埋等步驟;石蠟進(jìn)行5 μm切片,過二甲苯、梯度乙醇,蒸餾水沖洗后進(jìn)行抗原修復(fù)、淬滅自發(fā)熒光、血清封閉、孵育抗laminin抗體(1∶100稀釋)過夜、PBS洗滌、孵育FITC標(biāo)記的山羊抗鼠IgG 1 h,PBS洗滌,防淬滅熒光封片劑封片,鏡檢拍照,通過Image-Pro Plus 6.0軟件統(tǒng)計(jì)FCSA。
3.2Western blot法檢測蛋白質(zhì)表達(dá)分別取50 mg TA和SOL組織于離心管,加入500 μL含蛋白酶抑制劑的RIPA裂解液和適量氧化鋯研磨珠,置于組織勻漿機(jī)破碎;在4 ℃、13 523×g離心10 min,取上清液備用。BCA法測定上清液的蛋白濃度,調(diào)整上樣量為20 μg/μL,制備電泳樣品。在預(yù)制4%~12%梯度膠電泳分離蛋白,使用iBlot2干轉(zhuǎn)儀轉(zhuǎn)至NC膜上,封閉液封閉1 h,然后分別孵育Puro抗體(1:25 000稀釋)和Ub抗體(1∶1 000稀釋),同時(shí)孵育內(nèi)參照α-tubulin抗體(1∶5 000稀釋),4 ℃過夜,室溫孵育熒光山羊抗鼠和熒光山羊抗兔IgG,TBS洗滌,使用Image Studio 5.2軟件在近紅外雙色熒光成像系統(tǒng)(Odyssey CLX,LI-COR Biosciences)曝光,對(duì)條帶的信號(hào)值進(jìn)行相對(duì)定量分析。
3.3骨骼肌RNA測序及RT-qPCR驗(yàn)證關(guān)鍵差異表達(dá)基因提取TA和SOL組織總RNA,并進(jìn)行濃度和純度的檢測,純化總RNA中的mRNA,對(duì)RNA進(jìn)行片段化處理,然后進(jìn)行cDNA的合成,PCR富集文庫片段,熒光定量檢測文庫總濃度,采用第二代測序技術(shù),基于BGISEQ平臺(tái)進(jìn)行測序。對(duì)測序數(shù)據(jù)進(jìn)行過濾、質(zhì)量評(píng)估和比對(duì)結(jié)果評(píng)估,然后進(jìn)行表達(dá)量計(jì)算,分析差異表達(dá)基因,并對(duì)差異基因進(jìn)行富集分析(GO分析和KEGG Pathway分析),該部分在深圳華大基因科技服務(wù)有限公司完成。
根據(jù)測序后差異基因所富集的生物功能和差異倍數(shù),篩選下列8個(gè)關(guān)鍵基因進(jìn)行PCR驗(yàn)證。使用Primer 5軟件設(shè)計(jì)擴(kuò)增基因引物并在蘇州金唯智生物科技有限公司合成引物,引物序列見表1。采用SYBR Premix Ex TaqⅡ試劑盒進(jìn)行RT-qPCR。反應(yīng)體系為:10 μL SYBR Premix Ex TaqⅡ (2×),0.4 μL ROX Reference Dye Ⅱ,0.8 μL PCR上游引物(10 μmol/L),0.8 μL PCR下游引物(10 μmol/L),2 μL cDNA模板,6 μL RNase-free dH2O。采用2步法PCR擴(kuò)增標(biāo)準(zhǔn)程序:95 ℃預(yù)變性30 s,循環(huán)擴(kuò)增95 ℃ 5 s→60 ℃ 34 s(循環(huán)40次),添加溶解曲線。以β-tubulin為內(nèi)參照,采用2-ΔΔCt法計(jì)算目的基因的相對(duì)表達(dá)量。
表1 RT-qPCR引物序列
: glutathione-transferase alpha 1;: high mobility group nucleosome-binding domain 5; Slc4a1: solute carrier family 4 member 1; C4a: ; Ccl2: ; Sele: ; Il6: Il1b: .
所得實(shí)驗(yàn)數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。采用SPSS 22.0統(tǒng)計(jì)軟件進(jìn)行分析。不同時(shí)點(diǎn)體重、攝食量、體脂和瘦體重結(jié)果采用重復(fù)測量方差分析,每個(gè)時(shí)點(diǎn)組間比較采用單因素方差分析,以<0.05為差異有統(tǒng)計(jì)學(xué)意義。采用DESeq對(duì)基因表達(dá)進(jìn)行差異分析,篩選差異表達(dá)基因條件為:表達(dá)差異倍數(shù)(fold change)>2,顯著性<0.05。顯著富集的標(biāo)準(zhǔn)為<0.05。
干預(yù)期間,C組和IH組體重整體保持增長趨勢,干預(yù)后較干預(yù)前這兩組增長率分別為42.44%和38.56%,IH組體重在各時(shí)點(diǎn)均低于C組,但無顯著差異;AH組干預(yù)3 d期間呈下降趨勢,但各時(shí)點(diǎn)較C組無顯著差異,見圖1A。C組和IH組的攝食量在干預(yù)末期趨于接近,AH組攝食量在干預(yù)第2天明顯下降,干預(yù)第3天逐漸增加,但低于C組和IH組,見圖1B。干預(yù)期間,IH組體脂低于C組,且隨著低氧暴露時(shí)間的延長,IH組與C組差距逐漸增大,但無統(tǒng)計(jì)學(xué)意義,AH組體脂與C組相差不大,見圖1C。干預(yù)期間,IH和AH組瘦體重低于C組,但差異無統(tǒng)計(jì)學(xué)意義;干預(yù)后,AH組瘦體重顯著低于C組(<0.05),見圖1D。
Figure 1.The changes of body weight (A),food intake (B),body fat percentage (C) and lean body mass (D) of the rats during hypoxia intervention. Mean±SD. n=8. *P<0.05 vs C group.
干預(yù)后,IH組大鼠抓力和相對(duì)抓力均低于C組,但無顯著差異;AH組抓力與C組無顯著差異,而相對(duì)抓力顯著低于C組(<0.01),見圖2。
Figure 2.The comparison of grip strength (A) and relative grip strength (B) of the rats after hypoxia intervention. Mean±SD. n=8. **P<0.01 vs C group.
干預(yù)后,IH組和AH組TA濕重和相對(duì)濕重較C組無顯著差異,AH組TA相對(duì)濕重顯著高于IH組(<0.05),見圖3A、B;IH組和AH組SOL濕重較C組無顯著差異,AH組SOL相對(duì)濕重顯著高于IH組(<0.05),見圖3C、D。
Figure 3.The wet weight (A and C) and relative wet weight (B and D) of TA (A and B) and SOL (C and D) in the rats after hypoxia intervention. Mean±SD. n=8. #P<0.05 vs IH group.
作為基膜的主要結(jié)構(gòu)成分,laminin在細(xì)胞表面形成網(wǎng)絡(luò)結(jié)構(gòu),將細(xì)胞固定在基膜上,其免疫熒光染色可用于統(tǒng)計(jì)FCSA。干預(yù)后,TA和SOL的肌纖維laminin熒光染色結(jié)果顯示,在相同視野下,與C組相比,低氧干預(yù)后不規(guī)則狀肌纖維數(shù)目增多;計(jì)算得出,IH組和AH組TA和SOL的FCSA均顯著低于C組(<0.01),見圖4。
Figure 4.The fiber cross-sectional areas (FCSA) of TA and SOL in the rats after hypoxia intervention. Immunofluorescence staining of laminin (red) in TA and SOL was performed (scale bar=50 μm),and the FCSA of TA and SOL were calculated. Mean±SD. n=8. **P<0.01 vs C group.
用Puro結(jié)合多肽量表示肌肉中新合成蛋白質(zhì)總量,Ub標(biāo)記蛋白量表示蛋白質(zhì)分解總量,用Puro/Ub的比值來反映相對(duì)蛋白質(zhì)累積量。TA中,AH組Puro和Ub含量均顯著低于C和IH組(<0.05),見圖5A、C;IH組相對(duì)蛋白質(zhì)累積量顯著高于C組,AH組顯著低于IH組(<0.01),見圖5E。SOL中,IH組Puro含量顯著高于C組(<0.05),AH組Puro含量顯著低于C組(<0.05)和IH組(<0.01),見圖5B;IH組Ub含量顯著高于C組(<0.05),AH組Ub含量顯著低于IH組(<0.01),見圖5D;IH組相對(duì)蛋白質(zhì)累積量顯著低于C組(<0.05),AH組顯著高于IH組(<0.01),見圖5F。
Figure 5.The protein accumulation[puromycin (Puro)/ubiquitin(Ub)] in TA (A,C and E) and SOL (B,D and F) of the rats after hypoxia intervention. The expression of Puro and Ub was shown in green bands,and α-tubulin was shown in red bands. Mean±SD. n=6. *P<0.05,**P<0.01 vs C group; #P<0.05,##P<0.01 vs IH group.
TA中,IH/C組差異基因共有228個(gè),其中上調(diào)基因128個(gè),下調(diào)基因100個(gè);AH/C組差異基因共有380個(gè),其中上調(diào)基因289個(gè),下調(diào)基因91個(gè)。SOL中,IH/C組差異基因共有665個(gè),其中上調(diào)基因528個(gè),下調(diào)基因137個(gè);AH/C組差異基因共有487個(gè),其中上調(diào)基因275個(gè),下調(diào)基因212個(gè)。
TA中,IH/C組上調(diào)差異基因所富集的BP主要為谷胱甘肽代謝、糖代謝(胰島素應(yīng)答、葡萄糖穩(wěn)態(tài)狀態(tài)和代謝過程)和對(duì)糖皮質(zhì)激素的反應(yīng),見圖6A;IH/C組下調(diào)的BP主要為快慢肌之間的轉(zhuǎn)化、調(diào)節(jié)骨骼肌收縮和對(duì)過氧化氫的反應(yīng),見圖6B。AH/C組上調(diào)的BP主要為快慢肌之間的轉(zhuǎn)化、骨骼肌收縮、肌肉收縮、對(duì)過氧化氫的反應(yīng)、炎癥應(yīng)答、骨骼肌纖維發(fā)育和細(xì)胞死亡的調(diào)節(jié),見圖6C;AH/C組下調(diào)的BP主要為磷脂代謝過程、Smad蛋白信號(hào)轉(zhuǎn)導(dǎo)、肌管分化的正向調(diào)節(jié)、泛素蛋白連接酶結(jié)合和脂質(zhì)磷酸酶活性,見圖6D。
SOL中,IH/C組上調(diào)基因所富集的BP主要在細(xì)胞凋亡、骨骼肌細(xì)胞分化、白細(xì)胞介素1(interleukin-1,IL-1)應(yīng)答、血管生成、胰島素反應(yīng)、氧化應(yīng)激、ERK1/2正向調(diào)節(jié)等,見圖6E;IH/C組下調(diào)的BP與骨骼肌功能關(guān)聯(lián)性不強(qiáng),見圖6F。AH/C組上調(diào)的BP主要在細(xì)胞凋亡、骨骼肌細(xì)胞分化、免疫反應(yīng)[IL-1和腫瘤壞死因子(tumor necrosis factor,TNF)]、血管生成和胰島素反應(yīng)、氧化應(yīng)激等,見圖6G;AH/C組下調(diào)的BP主要在氧化還原反應(yīng)、蛋白聚合等,見圖6H。
Figure 6.The enriched biological processes (BP) of differentially expressed genes in TA and SOL of the rats after hypoxia intervention. A: the enriched BP of differentially up-regulated genes in TA between IH group and C group (IH/C); B: the enriched BP of down-regulated genes in TA between IH/C; C: the enriched BP of differentially up-regulated genes in TA between AH group and C group (AH/C); D: the enriched BP of down-regulated genes in TA between AH/C; E: the enriched BP of differentially up-regulated genes in SOL between IH/C; F: the enriched BP ofdown-regulated genes in SOL between IH/C; G: the enriched BP of differentially up-regulated genes in SOL between AH/C; H: the enriched BP of down-regulated genes in SOL between AH/C. n=3.
TA中,IH/C組上調(diào)差異基因所富集的通路主要為PPAR通路和谷胱甘肽代謝,見圖7A;IH/C組下調(diào)、AH/C組上調(diào)和AH/C組下調(diào)的通路與骨骼肌功能關(guān)聯(lián)性不強(qiáng),見圖7B~7D。SOL中,IH/C組上調(diào)基因所富集的通路主要為TNF通路、Janus激酶(Janus kinase,JAK)-信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子(signal transducer and activator of transcription,STAT)通路、胰島素抵抗和PI3K-Akt通路、TGF-β通路等,見圖7E;AH/C組上調(diào)的通路主要為TNF通路、JAK-STAT通路、PI3K-Akt通路、FoxO通路和TGF-β通路,見圖7F。IH/C組下調(diào)和AH/C組下調(diào)的通路與骨骼肌功能關(guān)聯(lián)性不強(qiáng),見圖7G、H。
Figure 7.The enriched pathways of differentially expressed genes in TA and SOL of the rats after hypoxia intervention. A: the enriched pathways of differentially up-regulated genes in TA between IH group and C group (IH/C); B: the enriched pathways of down-regulated genes in TA between IH/C; C: the enriched pathways of differentially up-regulated genes in TA between AH group and C group (AH/C); D: the enriched pathways of down-regulated genes in TA between AH/C; E: the enriched pathways of differentially up-regulated genes in SOL between IH/C; F: the enriched pathways of down-regulated genes in SOL between IH/C; G: the enriched pathways of differentially up-regulated genes in SOL between AH/C; H: the enriched pathways of down-regulated genes in SOL between AH/C. n=3.
根據(jù)TA和SOL對(duì)低氧干預(yù)后的BP和通路分析,分別從谷胱甘肽代謝、對(duì)過氧化氫的反應(yīng)、炎癥應(yīng)答和細(xì)胞凋亡調(diào)節(jié)等調(diào)控過程,選出8個(gè)差異表達(dá)基因進(jìn)行mRNA表達(dá)驗(yàn)證,見表2。RT-qPCR結(jié)果顯示,TA中,IH組谷胱甘肽-轉(zhuǎn)移酶α1(glutathione-transferase alpha 1,)和高遷移率族核小體結(jié)合域5(high mobility group nucleosome binding domain 5,)mRNA表達(dá)顯著高于C組(<0.01),見圖8A;AH組溶質(zhì)載體家族4成員1(solute carrier family 4 member 1,)和補(bǔ)體C4a(complement C4a,) mRNA表達(dá)顯著高于C組(<0.01),見圖8B。SOL中,IH組C-C趨化因子配體2(C-C motif chemokine ligand 2,)和E-選擇素(E-selectin,)mRNA表達(dá)顯著高于C組(<0.05或<0.01),見圖8C;AH組白細(xì)胞介素6(interleukin-6,)和白細(xì)胞介素1β(interleukin 1 beta,) mRNA表達(dá)顯著高于C組(<0.05),見圖8D。這說明RT-qPCR結(jié)果與測序一致,驗(yàn)證了測序結(jié)果的準(zhǔn)確性。
表2 關(guān)鍵差異基因信息
Figure 8.The mRNA expression of key differentially expressed genes in TA and SOL of the rats after hypoxia intervention detected by RT-qPCR. A: the mRNA expression of Gsta1 and Hmgn5 in TA of the rats in IH and C groups; B: the mRNA expression of Slc4a1 and C4a in TA of the rats in AH and C group; C: the mRNA expression of Ccl2 and Sele in SOL of the rats in IH and C groups; D: the mRNA expression of Il6 and Il1b in SOL of the rats in AH and C groups. Mean±SD. n=6. *P<0.05,**P<0.01 vs C group.
由于結(jié)構(gòu)、功能和代謝特征的差異,快慢肌對(duì)低氧的應(yīng)答存在差異。本研究中,短期IH雖然降低了快肌纖維為主的TA的FCSA,但整體上對(duì)TA影響不大。差異基因所富集的BP可知,SOL中IH/C組中上調(diào)基因數(shù)目(665個(gè))遠(yuǎn)高于TA(228個(gè)),提示短期IH可能對(duì)慢肌作用產(chǎn)生更大的影響。IH干預(yù)可導(dǎo)致胰腺β細(xì)胞功能紊亂,并導(dǎo)致胰島素靶器官骨骼肌發(fā)生胰島素抵抗[6]。此外,快肌蛋白質(zhì)的分解可被低氧特異性激活,并伴隨著糖皮質(zhì)激素受體及其靶基因表達(dá)的增加[7],而糖皮質(zhì)激素可抑制血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)的表達(dá),減少血管的生成,降低快肌對(duì)缺氧的適應(yīng)性[8]。TA中,IH/C組上調(diào)基因富集于糖代謝(胰島素應(yīng)答、葡萄糖穩(wěn)態(tài)狀態(tài)和葡萄糖代謝過程)和糖皮質(zhì)激素的代謝過程,因?yàn)槠咸烟抢谜系K會(huì)誘導(dǎo)肌萎縮。以上提示,IH對(duì)TA產(chǎn)生一定的影響,但在此過程中,抗氧化物質(zhì)谷胱甘肽代謝基因[如和)]和過氧化物酶體增殖物激活受體(peroxisome proliferator-activated receptor,PPAR)信號(hào)通路也上調(diào)。谷胱甘肽是骨骼肌中氧化還原穩(wěn)態(tài)重要的還原劑,其缺失不僅會(huì)誘導(dǎo)肌萎縮的發(fā)生,還會(huì)導(dǎo)致骨骼肌中糖利用的障礙以及脂質(zhì)沉積[9]。而增加PPARα的表達(dá)可通過抑制核因子κB(nuclear factor-κB,NF-κB)的活化,以降低炎癥反應(yīng),從而減輕肌萎縮進(jìn)程[10-11]。上述結(jié)果提示TA可通過激活谷胱甘肽代謝和PPAR通路抵抗糖代謝紊亂和糖皮質(zhì)激素的代謝以短期IH誘導(dǎo)的肌萎縮。
AH對(duì)TA促萎縮的作用更為明顯,分析TA中AH/C組的差異基因可知,快慢肌之間的轉(zhuǎn)化、氧化應(yīng)激(對(duì)過氧化氫的反應(yīng))和炎癥應(yīng)答相關(guān)基因表達(dá)上調(diào)。快慢肌之間轉(zhuǎn)化的差異表達(dá)基因,多為慢肌結(jié)構(gòu)相關(guān)基因,慢肌以豐富的線粒體、肌紅蛋白含量和毛細(xì)血管密度為特征,以保持肌肉較充分的氧供應(yīng)[12]。說明AH下,快肌可通過增加慢肌結(jié)構(gòu)相關(guān)基因的表達(dá)以減少低氧應(yīng)激對(duì)肌肉的損傷。研究顯示,AH暴露可以增加核因子E2相關(guān)因子2(nuclear factor E2-related factor 2,Nrf2)-過氧化氫酶通路的表達(dá),從而促進(jìn)肌萎縮的發(fā)生[13-14]。而本研究中對(duì)過氧化氫的反應(yīng)相關(guān)基因(如)mRNA表達(dá)上調(diào),說明AH具有增加骨骼肌中氧化應(yīng)激的作用。此外,AH暴露還可通過增加炎癥應(yīng)答基因(如)以促進(jìn)肌萎縮。研究顯示,AH可增加脯氨酰羥化酶3(prolyl hydroxylase 3,PHD3)的表達(dá)[15],而PHD3高表達(dá)可介導(dǎo)炎癥信號(hào)通路而影響骨骼肌中蛋白質(zhì)的轉(zhuǎn)運(yùn),從而促進(jìn)肌萎縮的發(fā)生[16]。上述結(jié)果提示,AH可通過增加氧化應(yīng)激和炎癥應(yīng)答等,促進(jìn)快肌的萎縮,相對(duì)抓力下降。
兩種低氧干預(yù)模式都誘發(fā)了SOL的萎縮,且作用機(jī)制類似。在IH/C組和AH/C組中SOL的上調(diào)差異基因富集于細(xì)胞凋亡、免疫反應(yīng)(如IL-1和TNF的細(xì)胞應(yīng)答)、血管生成、胰島素反應(yīng)、氧化應(yīng)激等過程。這些因素都可以促進(jìn)肌萎縮的發(fā)生。細(xì)胞凋亡是骨骼肌蛋白質(zhì)分解的重要途徑[17],可促進(jìn)增齡性等肌萎縮的發(fā)生。研究顯示,治療骨骼肌萎縮的一個(gè)有前景的策略是減少活性氧簇(reactive oxygen species,ROS)和緩解氧化應(yīng)激,而過氧化物損傷是引起細(xì)胞凋亡的關(guān)鍵[18];此外糖皮質(zhì)激素水平的增加也可促進(jìn)細(xì)胞凋亡的進(jìn)程[19],進(jìn)而誘導(dǎo)肌纖維數(shù)量和體積的降低。IL-1和TNF是促進(jìn)肌萎縮的發(fā)生與促進(jìn)炎癥反應(yīng)密切相關(guān)[20]。在肌萎縮側(cè)索硬化小鼠病程進(jìn)展,骨骼肌和脊髓中TNF-α和IL-1β發(fā)揮著重要的作用[21]。此外,JAK-STAT信號(hào)通路可通過調(diào)節(jié)泛素蛋白酶體系統(tǒng)、自噬溶酶體系統(tǒng)及microRNA參與低氧促進(jìn)肌萎縮的進(jìn)程[22]。本研究中、、和等mRNA水平上調(diào),提示短期IH暴露和AH暴露均可通過增加氧化應(yīng)激、炎癥反應(yīng)和細(xì)胞凋亡過程促進(jìn)慢?。⊿OL)的萎縮。
綜上所述,不同的低氧暴露方式對(duì)大鼠不同肌纖維類型骨骼肌代謝的影響不同。短期IH暴露可能通過提高大鼠快肌抗氧化能力而抵抗萎縮;而AH可能通過增加大鼠氧化應(yīng)激、炎癥反應(yīng)和細(xì)胞凋亡過程促進(jìn)快肌和慢肌的萎縮。
[1] Mizuno M,Savard GK,Areskog NH,et al. Skeletal muscle adaptations to prolonged exposure to extreme altitude: a role of physical activity?[J]. High Alt Med Biol,2008,9(4): 311-317.
[2] Millet GP,Debevec T,Brocherie F,et al. Commentaries on viewpoint: human skeletal muscle wasting in hypoxia: a matter of hypoxic dose?[J]. J Appl Physiol,2017,122(2):409-411.
[3] Itoh K,Itoh M,Taguchi S,et al. Effects of hypobaric-hypoxia on the total number and histochemical properties of the soleus muscle fibers and motoneurons in the rat[J]. Nihon Seirigaku Zasshi,1988,50(4): 163-168.
[4]于加倍,胡揚(yáng),李燕春,等. 4周爬梯抗阻訓(xùn)練對(duì)低氧誘導(dǎo)大鼠骨骼肌萎縮的影響[J]. 中國實(shí)驗(yàn)動(dòng)物學(xué)報(bào),2018,26(4):448-453.
Yu JB,Hu Y,Li YC,et al. Effects of 4-week resistance training on hypoxia-induced skeletal muscleatrophy in rats[J]. Acta Lab Anim Sci Sin,2018,26(4):448-453.
[5] Favier FB,Britto FA,F(xiàn)reyssenet DG,et al. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology[J]. Cell Mol Life Sci,2015,72(24):4681-4696.
[6] Ryan S. Adipose tissue inflammation by intermittent hypoxia: mechanistic link between obstructive sleep apnoea and metabolic dysfunction[J]. J Physiol,2017,595(8):2423-2430.
[7] Lunde IG,Anton SL,Bruusgaard JC,et al. Hypoxia inducible factor 1 links fast-patterned muscle activity and fast muscle phenotype in rats[J]. J Physiol,2011,589(Pt 6):1443-1454.
[8] Wüst RC,Jaspers RT,Van Heijst AF,et al. Region-specific adaptations in determinants of rat skeletal muscle oxygenation to chronic hypoxia[J]. Am J Physiol Heart Circ Physiol,2009,297(1):H364-H374.
[9] Yang Y,Liao Z,Xiao Q. Metformin ameliorates skeletal muscle atrophy in Grx1 KO mice by regulating intramuscular lipid accumulation and glucose utilization[J]. Biochem Biophys Res Commun,2020,533(4):1226-1232.
[10] Dai J,Xiang Y,F(xiàn)u D,et al.L. attenuates denervated skeletal muscle atrophy via PPARα/NF-κB pathway[J]. Front Physiol,2020,11:580223.
[11] 薄海,彭朋,秦永生,等. 低氧復(fù)合運(yùn)動(dòng)對(duì)大鼠骨骼肌線粒體含量的影響[J]. 中國病理生理雜志,2014,30(8):1461-1466.
Bo H,Peng P,Qin YS,et al. Effect of hypoxia combined with exercise training on mitochondrial content in skeletal muscle of rats[J]. Chin J Pathophysiol,2014,30(8):1461-1466.
[12] 山萌,王文靜,葛寶,等. 甘肅鼢鼠適應(yīng)低氧的肌纖維類型和代謝特征[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,44(10):18-24.
Shan M,Wang WG,Ge B,et al. Muscle fiber types and metabolic characteristics of Gansu zokor () in adaptation to hypoxia[J]. J Northwest Agric For Univ (Nat Sci Ed),2016,44(10):18-24.
[13] Gallego-Selles A,Martin-Rincon M,Martinez-Canton M,et al. Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise to exhaustion in normoxia,severe acute hypoxia and post-exercise ischaemia: influence of metabolite accumulation and oxygenation[J]. Redox Biol,2020,36:101627.
[14] Ji W,Wang L,He S,et al. Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle[J]. PLoS One,2018,13(12):e0208474.
[15] Fujita N,Markova D,Anderson DG,et al. Expression of prolyl hydroxylases (PHDs) is selectively controlled by HIF-1 and HIF-2 proteins in nucleus pulposus cells of the intervertebral disc: distinct roles of PHD2 and PHD3 proteins in controlling HIF-1α activity in hypoxia[J]. J Biol Chem,2012,287(20):16975-16986.
[16] Li F,Yin C,Ma Z,et al. PHD3 mediates denervation skeletal muscle atrophy through Nf-κB signal pathway[J]. Faseb J,2021,35(4):e21444.
[17] Zhang Y,Pan X,Sun Y,et al. The molecular mechanisms and prevention principles of muscle atrophy in aging[J]. Adv Exp Med Biol,2018,1088:347-368.
[18] Wang D,Yang Y,Zou X,et al. Antioxidant apigenin relieves age-related muscle atrophy by inhibiting oxidative stress and hyperactive mitophagy and apoptosis in skeletal muscle of mice[J]. J Gerontol A Biol Sci Med Sci,2020,75(11): 2081-2088.
[19] Chen H,Ma J,Ma X. Administration of tauroursodeoxycholic acid attenuates dexamethasone-induced skeletal muscle atrophy[J]. Biochem Biophys Res Commun,2021,570:96-102.
[20] 陳天貴,高磊,李天博,等. 脈絡(luò)寧局部灌注對(duì)擠壓傷綜合征模型豬Wnt/β-catenin和Notch信號(hào)通路的影響[J].中國病理生理雜志,2020,36(12):2220-2226.
Chen TG,Gao L,Li TB,et al. Effect of Mailuoning local perfusion on Wnt/β-catenin and Notch signaling pathways in crush injury syndrome model pigs[J]. Chin J Pathophysiol,2020,36(12):2220-2226.
[21]李昊,劉少波,王紹曄,等. 肌萎縮側(cè)索硬化癥小鼠骨骼肌和脊髓TNF-α、IL-1β表達(dá)變化[J]. 濰坊醫(yī)學(xué)院學(xué)報(bào),2020,42(5):360-362.
Li H,Liu SB,Wang SY,et al. TNF-α and IL-1β expression in skeletal muscle and spinal cord of amyotrophic lateral sclerosis mice[J]. Acta Acad Med Weifang,2020,42(5):360-362.
[22] 桑亞洲,張艷,陳玉龍,等. JAK/STAT3介導(dǎo)腫瘤惡病質(zhì)肌肉萎縮及藥物干預(yù)研究進(jìn)展[J]. 中國比較醫(yī)學(xué)雜志,2021,31(7):118-124.
Sang YZ,Zhang Y,Chen YL,et al. JAK/STAT3 mediated muscle atrophy in cancer cachexia and drug intervention[J]. Chin J Comp Med,2021,31(7):118-124.
Effects of short-term intermittent and acute hypoxia on fast- and slow-twitch muscle atrophy in rats and its mechanism
GONG Li-jing1,2,JIA Jie3,SUN Min-kang4,ZHAO Xiao-ya3,F(xiàn)U Peng-yu5△
(1,,100084,;2,,,100084,;3,,100084,;4,,200241,;5,,710072,)
To investigate the effects of different hypoxia intervention modes on fast- and slow-twitch muscle atrophy in rats and the possible molecular mechanism.Twenty-four 10-week-old male SD rats were divided into normoxic control group (C group),short-term intermittent hypoxia group (IH group,exposed to 12.4% oxygen for 8 h/d for 4 weeks) and acute hypoxia group (AH group,living in hypoxic room with 12.4% oxygen for 3 d),with 8 rats in each group. After intervention,the holding power,wet weight of tibialis anterior muscle (TA,fast-twitch muscle) and soleus muscle (SOL,slow-twitch muscle),and muscle fiber cross-sectional area (FCSA) were tested. The content of puromycin (Puro) and ubiquitin (Ub) was measured by Western blot,and the protein accumulation (Puro/Ub) was calculated. Differentially expressed genes in IH/C group and AH/C group were screened by RNA sequencing. The enriched biological processes and pathways of these genes were analyzed. The expression of key differential genes was verified by RT-qPCR.After intervention,the relative holding power in AH group was significantly lower than that in C group (<0.01). The relative wet weight of TA and SOL in AH group was higher than that in IH group (<0.05). The FCSA of TA and SOL in IH group and AH group were significantly lower than those in C group (<0.01). The protein accumulation of TA in IH group was significantly higher than that in C group,while that in AH group was significantly lower than that in IH group (<0.01). The protein accumulation of SOL in IH group was significantly lower than that in C group,while that in AH group was significantly higher than that in IH group (<0.01). The differential genes of TA in IH/C group were mainly up-regulated,and the differential genes of SOL in AH/C group were mainly up-regulated. In TA,the up-regulated genes in IH/C group were mainly enriched in antioxidant and glucose metabolism,and PPAR signaling pathway was involved. The up-regulated genes in AH/C group were mainly enriched in the transformation between fast- and slow-twitch muscle,oxidative stress,inflammation and cell death. In SOL,the up-regulated genes in IH/C group and AH/C group were mainly enriched in apoptosis,immune response and oxidative stress,and the TNF,TGF-β and JAK-STAT pathways were involved. The key differentially expressed genes verified by RT-qPCR were consistent with the results of sequencing.Short-term intermittent hypoxia exposure may resist atrophy by increasing the antioxidant capacity of fast-twitch muscle (TA) in rats,while acute hypoxia may promote the atrophy of fast-twitch muscle (TA) and slow-twitch muscle (SOL) by increasing the capacity of oxidative stress,inflammatory response and apoptosis in rats.
Intermittent hypoxic exposure; Acute hypoxic exposure; Slow-twitch muscle; Fast-twitch muscle; Muscle atrophy
R685; R363
A
10.3969/j.issn.1000-4718.2022.02.007
1000-4718(2022)02-0238-12
2021-09-26
2021-11-08
[基金項(xiàng)目]中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助課題(校2020057; No. 2019PT003)
Tel: 15201124914; E-mail: 1402884452@qq.com
(責(zé)任編輯:盧萍,羅森)