• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe

    2022-02-24 08:58:58NadezdaKorepanovaLongGu顧龍MihaiDimaandHushanXu徐瑚珊
    Chinese Physics B 2022年2期

    Nadezda Korepanova Long Gu(顧龍) Mihai Dima and Hushan Xu(徐瑚珊)

    1Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China2School of Nuclear Science and Technology,University of Chinese Academy of Sciences,Beijing 101408,China3Institute for Physics and Nuclear Engineering,Bucharest 077125,Romania4School of Nuclear Science and Technology,Lanzhou University,Lanzhou 730000,China5Paul Scherrer Institute,Villigen 5232,Switzerland

    Kinetic behaviors of niobium and titanium carbide precipitates in iron are simulated with cluster dynamics. The simulations,carried out in austenite and ferrite for niobium carbides,and in austenite for titanium carbide,are analyzed for dependences on temperature, solute concentration, and initial cluster distribution. The results are presented for different temperatures and solute concentrations,compared to experimental data available. They show little impact of initial cluster distribution beyond a certain relaxation time and that highly dilute alloys with monomers only present a significantly different behavior from denser alloys or ones with different initial cluster distributions.

    Keywords: cluster dynamics,precipitates,precipitation kinetics,carbides

    1. Introduction

    Addition of titanium and niobium to steels in metallurgy is conducive to titanium/niobium carbide precipitates in solid solution due to their combination with the carbon present in steels. This process limits the formation of chromium carbides, thereby preventing intergranular corrosion.[1,2]Additionally, finely dispersed carbide precipitates increase alloy strength at low and high temperatures.[2,3]Nuclear-grade steels are required to meet higher additional standards, and the question of precipitate dynamics is raised with respect to their action as point defect recombination centers and sinks for helium, which reduces void swelling and helium embrittlement.[4–8]TiC/NbC precipitates tend to stabilize dislocation networks, and hence enhance creep resistance.[9,10]Titanium carbides are in particular attractive in this respect,which led to the development of 15-15Ti steel in the 1970s[11]for nuclear reactor applications. This steel exhibits excellent resistance to irradiation swelling and creep and has been chosen as a structural material for several generation-IV designs.

    To simulate the precipitation behavior of carbides we use cluster dynamics (CD), which is effective in predicting microstructural evolution in the material, having also minimal computing overhead for long time period simulations. In this method polyatomic clusters embedded in the solid solution exchange solute atoms by absorption or emission. Time evolution of cluster distributions is computed from differential equations coupled through monomer exchanges.

    In the case of iron, CD yields good results for Cu precipitates in ferrite[12]and MnSiNi precipitates in ferritemartensitic steel.[13]

    For NbC and TiC precipitates in steel, classical kinetic nucleation theory (CNT) has been used.[14–17]TiC precipitate modeling focuses more on precipitation–temperature–time (PTT) diagrams, rather than on time-evolution of mean radius,volume fraction,and number density.

    This paper is organized as follows:Section 2 gives a brief description of the CD method. Section 3 presents our simulation results for niobium carbides in austenite and ferrite for titanium carbide in austenite. Also,Section 3 presents a comparison of our results to existing experimental data. Section 4 summarizes our study.

    2. Methodology

    In cluster dynamics, alloys are treated as binary systems of an alloy matrix with clusters of solute atoms. Clusters grow or shrink through the absorption and emission of solute atoms,respectively. Time evolution of solute clusters is dictated by a set of differential equations (1) and (2), which assume that only the monomers are mobile. Small cluster mobility may result from a common drift of monomers, i.e., an assumption reasonable in dilute alloys:[18]

    wherenis the cluster size,Nmaxthe maximal cluster size,Cnthe uniform concentration of size-nclusters,C1the concentration of monomers,αnthe rate of monomer emission from size-nclusters,βnthe rate of monomer absorption by size-nclusters. The latter two can be calculated by

    whereis the atomic volume of the alloy matrix,rnthe radius of size-nclusters,Dthe thermal diffusion coefficient of solute atoms in the system,Athe geometrical factor,σthe interfacial energy between precipitates and matrix,the equilibrium concentration of solute atoms in the system,Tthe temperature in degrees Kelvin,andkthe Boltzmann constant. The radius of clusters with sizenis

    CD is a computationally efficient method. However,with increasingNmax100 it can become CPU-wise intensive.A traditional way to overcome this is to transform the differential equations into a Fokker–Planck partial differential equation[19,20]

    The discretization of the Fokker–Planck equation using the central difference method brings Eq.(6)into the following form:

    and the evolution of monomer concentration to

    Here,njis defined as follows:

    The above system is reduced to the initial differential equations fornj=j. This numerical scheme does not strictly conserve matter(as done by differential equations(1)and(2)).However,under carefully defined circumstances the losses are small and acceptable. To solve the above system we use in our study the ODEINT solver.[15]

    In this study we assume that the diffusion coefficient of titanium/niobium carbide is determined by the most resistive element,i.e.,we use the Ti and Nb diffusion coefficients in the simulations,correspondingly.

    The authors of Refs. [15,21] employed the “pipediffusion” effect, i.e., a faster solute diffusion along dislocations than in the lattice in general, for TiC/NbC precipitation kinetics. We include the effect of dislocations in the model,in Eq.(3),as a modified effective diffusivity:[15]

    whereDdislis the diffusion along dislocations (equal toDbulkαdisl, with theαdislcorrection factor defined according to Ref. [22] and presented in Table 1),Dbulkis the bulk diffusivity,Rcoreis the radius of the dislocation core, andρis the dislocation density. Figure 1 illustrates the effect of dislocations on diffusivity and how this changes with temperature.The figure shows the ratio of effective diffusivity to bulk diffusivity in austenitic steel for several values of dislocation densities. The ratio increases with dislocation density increasing and drops sharply with increasing temperature.

    Fig. 1. Effect of dislocation on diffusivity, i.e., the ratio of effective diffusivity to bulk diffusivity in austenite steel for several values of dislocation densities.

    The results of the simulation are the time-evolution of the mean radius,the volume fractionfv,and the number density of precipitatesNtot,calculated with the following equations.

    Mean radius

    whereis the atomic volume of precipitate,andthe mean size of precipitate clusters,

    with Δnj=nj ?nj?1,jcuttaken such thatrjcut= 1 nm for TEM data (given the resolution limit in Refs. [23,24], andrjcut=0.5 nm for SANS data).

    Volume fraction

    Number density

    withthe atomic volume of the matrix.

    In our study we use an initial cluster distribution described by

    whereC0is the concentration of the alloying element in steel,xthe part of the alloying element in monomer form,Mthe maximal cluster size assumed to exist in the steel at momentt=0. In the next section, we show the dependence of CD results on the initial state of the system.

    3. Results and discussion

    In this section, we present the results of our CD simulations for NbC and TiC in ferrite and austenite and compare them with experimental data from literature. The parameters used in the simulations are shown in Tables 1 and 2. Table 1 displays the material parameters for TiC, NbC, and iron matrix, and Table 2 gives references from which experimental data and conditions are taken.

    Table 1. Material parameters for titanium and niobium carbides and for the iron matrix.

    Table 2. Experimental datasets and the concentrations and temperatures at which they were measured.

    3.1. Niobium carbide

    Figures 2 and 3 show the dependence on the initial cluster distribution for the time-evolution of precipitate mean radius and number density. We assess this in order to verify the sensitivity of our simulations to the initial state of the system.The initial cluster distributions for our simulations are described by Eq.(15). Note in the figures that we index the radiusrMbyM,the maximal size of a cluster initially exists in the system. The cluster distributions used are described by Eq.(15),as well as by arbitrary distributions: Poisson-like,or step-function. The simulation results show to be the same for all distributions,warranting our use of Eq. (15) describing the initial distributions throughout our study.

    Figure 2 shows the time evolution of precipitate mean radius and number density in 4 distinct cases for which we vary the concentrations of monomers and other clusters (see Eq. (15), while keepingrMconstant. Complementary, Fig. 3 presents the time-evolution of the mean radius and number density in relation torM,for the same corresponding monomer concentrations. For comparison, Fig. 3 shows the simulation only for monomers.

    Fig.2. Dependence of simulation results on initial cluster distributions.T =950 °C,C(wt%Nb)=0.095.

    Fig. 3. Dependence of simulation results on initial cluster distributions and radius rM. T = 950 °C, C(wt%Nb)=0.095 (left graph),C(wt%Nb)=0.031(right graph).

    As shown in Figs. 2 and 3, the initial cluster distributions play a role only in the initial departure time (with the notable exception of the 0.031 wt%Nb-steel simulation, with monomers and very small clusters). After 1000 s the effect of the initial cluster distribution wanes and all simulations become indiscernable from one another. The exception case of 0.031 wt%Nb-steel with monomers and very small clusters is shown in Fig. 3. Its anomalous behavior is also observed for TiC inγ-Fe and NbC inα-Fe. This is likely due to the very few precipitation centers in very dilute alloys,which have the opportunity to grow faster than those in higher solute concentration alloys. The amount of such clusters remains however small (see upper panels in Fig. 3). If we introduce clusters with higher size in the initial distribution, the precipitate kinetic would follow the typical behavior.

    Fig. 4. Comparison of simulation results with experimental data for NbC precipitates in austenitic stainless steel. The dots represent the experimental data of Ref. [23]. The simulations and experimental data are shown for Nb concentration of 0.031 wt%and 0.095 wt%at temperatures 900 °C and 950 °C.

    Comparing our simulations (Fig. 4) with experimental data for niobium carbide precipitates in austenitic iron[23]we find that in 0.031 wt%Nb-steel, 90%of niobium should exist as monomers. If we accept the 100%assertion of Ref.[23],the simulations would contradict with the available experimental data. We assume that the remaining 10% distributes in clusters withrM<1 nm,invisible in TEM.The exact dislocation density for the steel used by Hansenet al.[23]is unavailable,hence we adjust this parameter to agree with the experimental data. The result shows that the dislocation density of steel is in the range 1011–1012m?2. This concurs with the mention that the steel is well annealed.[23]Note that the pipe-diffusion effect for given dislocation density range and temperatures is negligible.

    For niobium carbide precipitates in ferrite,the simulation results and experimental data[16,34]are depicted in Fig.5. Our model with the set of parameters from Table 2 matches quite well with the experimental data of Refs. [16,34]. There appears less volume fraction, predicting faster clustering of the precipitates than the data. Figure 5 also shows better agreement with the experimental data at low temperatures versus high temperatures. This is likely due to the higher energy available at high temperatures, which activates the diffusion of small clusters along with monomers,whereas in our model only the monomers are mobile.

    Fig. 5. Simulation results for C(wt%Nb)=0.079 (left) and 0.040 (right) at temperatures 600 °C, 700 °C and 800 °C. The dots represent the experimental data of Refs.[16,34]. For C(wt%Nb)=0.040 at T =800 °C the simulated number density and volume fraction of precipitates are too small,and therefore invisible in the figures.

    3.2. Titanium carbide

    Simulation results for TiC precipitates in austenite and experimental data from Refs.[24,27,32,33]are presented in Figs. 6–8. Figure 6 displays the time evolution of mean particle diameter, with CD predicting a particle diameter ∝t1/3,regardless concentration,temperature,and dislocation density(except in 0.1 wt%Ti-steel–∝t1/2). Experimental data on the other hand exhibits two regions: an initial region, with mean diameter proportional to time exponent with factor 0.5–1.0;and a second region with the time exponent having a very low factor, practically a plateau. Although in Ref. [33] the secondary region was considered as ∝t1/3(reflecting the Ostwald ripening phenomenon controlled by bulk diffusion of Ti), the authors believed that the time exponent exhibits a much lower factor (likely due to other phenomena). The two regions are also clearly observed in the size distributions.

    The size distributions from experimental data[33]are shown in Fig.7. Although our model predicts a smaller mean diameter, the overall distribution shape of the sizes is strikingly similar to the experimental ones (up to 3610 s, after which the distributions start to differ). Additionally, in the insets in Fig. 7 the experimental and simulated size distributions are plotted such that both have the same mean diameter and maximal magnitude. The comparison of size distributions relative to the experiment[24]at 750°C(Fig.8)shows a similar change in size distribution. The small difference observed may suggest a competing mechanism controlling the growth of TiC precipitates.

    Fig. 6. Comparison of simulation results with experimental data for TiC precipitates in austenitic stainless steel. The dots represent the experimental data taken from Refs.[24,27,32,33].

    Fig.7.Size distributions from experiment[33]and simulation for different times at 900°C.The insets inside the graphs display the experimental and calculated distributions shifted such that both have the same mean particle diameter.The dot-dashed vertical line represents mean diameter.

    Fig.8.Size distributions from experiment[24]and simulation for different times at 750°C.The insets inside the graphs display the experimental and calculated distributions shifted such that both have the same mean particle diameter.The dot-dashed vertical line represents mean diameter.

    In Ref. [24] it is mentioned that the pinning of mobile dislocation affects TiC precipitates kinetics in the temperature range 650–900°C. However, CD applies only diffusioncontrolled growth of precipitate clusters.To overcome this obstacle, a model for time-evolution of mobile dislocation density needs to be introduced,alongside with the dependency of diffusion on mobile dislocation density. The verification of this assertion will be explored in subsequent studies. Note that the data itself is quite scarce for TiC precipitations. We feel that there is a need for broader experimental and theoretical work on TiC precipitates.

    4. Conclusion

    In summary, we have applied cluster dynamics to model precipitation kinetics of niobium and titanium carbides in iron.The kinetic behaviors of NbC precipitates have been simulated for ferritic and austenitic iron matrices. Our simulation results are in agreement with the experimental data. We have analyzed our results for dependence on initial cluster distribution, where we consider various types of distributions and monomers concentration. The analysis has shown that the initial distribution plays a role only in the initial-time range. After this initial time,all simulations exhibit the same behavior.The analysis has also shown the“special”behavior of precipitates for the case of very dilute alloys with only monomers present: a fast growth of mean particle diameter, with small number densities. We therefore assume that dilute alloys have fewer precipitation centers, with less competition per center,allowing said centers to grow faster.

    For TiC on the other hand,the simulation results and experimental data differ somewhat more.This is indicative of another controlling mechanism besides diffusion. Such a mechanism could be mobile dislocation and its pining, which was suggested in Ref.[24]. We feel there is a need for more experimental and theoretical work to fully model titanium carbide precipitates kinetics.

    Acknowledgement

    N.Korepanova is grateful for the CAS-TWAS President’s Fellowship Programme for this doctoral fellowship (Grant No.2016CTF004).

    亚洲 欧美一区二区三区| 国产一区有黄有色的免费视频| 美国免费a级毛片| 国产99久久九九免费精品| 最新在线观看一区二区三区| 日韩人妻精品一区2区三区| 日韩三级视频一区二区三区| 国产主播在线观看一区二区| 男女午夜视频在线观看| 精品国产一区二区久久| 免费女性裸体啪啪无遮挡网站| 亚洲中文av在线| 欧美变态另类bdsm刘玥| 无遮挡黄片免费观看| 三上悠亚av全集在线观看| 婷婷成人精品国产| 久热爱精品视频在线9| 在线 av 中文字幕| 丰满少妇做爰视频| 久久久久久久久免费视频了| 午夜久久久在线观看| 亚洲精品乱久久久久久| 最黄视频免费看| 制服诱惑二区| 汤姆久久久久久久影院中文字幕| 狠狠狠狠99中文字幕| 十八禁网站网址无遮挡| 午夜福利,免费看| 亚洲视频免费观看视频| 精品视频人人做人人爽| 亚洲第一av免费看| 99国产极品粉嫩在线观看| 美女视频免费永久观看网站| 老司机在亚洲福利影院| 亚洲专区字幕在线| 亚洲欧美一区二区三区久久| 怎么达到女性高潮| 黄色怎么调成土黄色| 久久久久精品国产欧美久久久| 国产单亲对白刺激| 首页视频小说图片口味搜索| 黄片大片在线免费观看| 一区二区av电影网| 亚洲熟女精品中文字幕| 最新的欧美精品一区二区| 交换朋友夫妻互换小说| 国产免费福利视频在线观看| 视频区欧美日本亚洲| 精品少妇黑人巨大在线播放| 99精品欧美一区二区三区四区| 宅男免费午夜| 欧美激情 高清一区二区三区| 国产91精品成人一区二区三区 | 欧美乱妇无乱码| 麻豆av在线久日| 久久免费观看电影| 老鸭窝网址在线观看| 亚洲一码二码三码区别大吗| 久久99一区二区三区| 在线看a的网站| 满18在线观看网站| 久久精品国产亚洲av高清一级| 亚洲国产精品一区二区三区在线| 肉色欧美久久久久久久蜜桃| 久久人妻熟女aⅴ| 国产亚洲精品久久久久5区| 免费高清在线观看日韩| 久久人妻福利社区极品人妻图片| 国产精品自产拍在线观看55亚洲 | 成人国产一区最新在线观看| 嫩草影视91久久| 免费看a级黄色片| 十八禁高潮呻吟视频| 嫩草影视91久久| 免费看a级黄色片| 国产一区有黄有色的免费视频| 日韩 欧美 亚洲 中文字幕| 精品一区二区三卡| 亚洲精品久久成人aⅴ小说| 男女无遮挡免费网站观看| 一进一出好大好爽视频| 国产精品国产av在线观看| av视频免费观看在线观看| 一进一出好大好爽视频| 人人妻人人爽人人添夜夜欢视频| 欧美黑人精品巨大| 他把我摸到了高潮在线观看 | 色综合欧美亚洲国产小说| 老司机福利观看| 国产成人啪精品午夜网站| 国产精品欧美亚洲77777| 99热国产这里只有精品6| 亚洲av国产av综合av卡| 欧美亚洲 丝袜 人妻 在线| a级毛片在线看网站| 视频在线观看一区二区三区| 又大又爽又粗| 久久午夜亚洲精品久久| 欧美成人午夜精品| av国产精品久久久久影院| 窝窝影院91人妻| 一本综合久久免费| 色婷婷久久久亚洲欧美| 黄网站色视频无遮挡免费观看| 亚洲精品在线美女| 亚洲精品在线美女| 18禁观看日本| 色在线成人网| 成年动漫av网址| 国产精品国产av在线观看| 亚洲成av片中文字幕在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲av电影在线进入| 亚洲av日韩在线播放| 18在线观看网站| 两性夫妻黄色片| 国产麻豆69| 亚洲avbb在线观看| 淫妇啪啪啪对白视频| 看免费av毛片| 美女福利国产在线| 久久久久网色| 九色亚洲精品在线播放| 国产精品亚洲一级av第二区| 飞空精品影院首页| 亚洲成人免费av在线播放| 少妇精品久久久久久久| 精品国产一区二区三区四区第35| kizo精华| 国产精品.久久久| 久久人妻熟女aⅴ| 亚洲一区二区三区欧美精品| 亚洲色图 男人天堂 中文字幕| 国产成人一区二区三区免费视频网站| 可以免费在线观看a视频的电影网站| svipshipincom国产片| 午夜免费鲁丝| 99久久99久久久精品蜜桃| 99国产精品一区二区三区| 一级a爱视频在线免费观看| 天堂俺去俺来也www色官网| 精品国产超薄肉色丝袜足j| 在线亚洲精品国产二区图片欧美| 十八禁高潮呻吟视频| 啦啦啦免费观看视频1| 在线永久观看黄色视频| 91精品三级在线观看| 国产精品一区二区在线观看99| 中文字幕另类日韩欧美亚洲嫩草| 电影成人av| 最黄视频免费看| 久久久国产一区二区| 色视频在线一区二区三区| 亚洲国产欧美网| 欧美日韩av久久| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美色中文字幕在线| 1024香蕉在线观看| 大陆偷拍与自拍| 免费看十八禁软件| 在线观看免费午夜福利视频| 在线av久久热| 成人影院久久| 欧美乱码精品一区二区三区| 亚洲中文字幕日韩| 91字幕亚洲| 国产在线观看jvid| 久久av网站| 亚洲性夜色夜夜综合| 免费看十八禁软件| 一进一出抽搐动态| 两人在一起打扑克的视频| 多毛熟女@视频| 91大片在线观看| 国产精品 欧美亚洲| √禁漫天堂资源中文www| 久久久久国产一级毛片高清牌| 国产一区二区 视频在线| 中文字幕精品免费在线观看视频| 国产日韩欧美视频二区| 成人国产一区最新在线观看| 日韩欧美一区视频在线观看| 欧美激情极品国产一区二区三区| 夜夜爽天天搞| 一进一出抽搐动态| 搡老乐熟女国产| 咕卡用的链子| 国产视频一区二区在线看| 亚洲美女黄片视频| 美女高潮喷水抽搐中文字幕| 黄频高清免费视频| 中文字幕人妻熟女乱码| 成人三级做爰电影| 久久国产亚洲av麻豆专区| 一级黄色大片毛片| 国产深夜福利视频在线观看| 国产不卡av网站在线观看| 啦啦啦免费观看视频1| 男女无遮挡免费网站观看| 亚洲精品美女久久av网站| 国产成人精品无人区| 精品国产乱码久久久久久小说| av网站在线播放免费| 日日夜夜操网爽| 一级a爱视频在线免费观看| 国产野战对白在线观看| 高清视频免费观看一区二区| 久久精品国产亚洲av高清一级| 一区在线观看完整版| 国产男女内射视频| 国产免费视频播放在线视频| 亚洲三区欧美一区| 亚洲欧美色中文字幕在线| 亚洲精品粉嫩美女一区| 一级片免费观看大全| 国产单亲对白刺激| 国精品久久久久久国模美| 亚洲精品成人av观看孕妇| 亚洲av成人不卡在线观看播放网| av视频免费观看在线观看| 麻豆av在线久日| 久久久国产一区二区| 亚洲欧美一区二区三区久久| 亚洲国产成人一精品久久久| videos熟女内射| 啦啦啦 在线观看视频| 国产色视频综合| 久久久精品94久久精品| 午夜91福利影院| 麻豆乱淫一区二区| 亚洲专区中文字幕在线| 他把我摸到了高潮在线观看 | 成人18禁高潮啪啪吃奶动态图| 免费日韩欧美在线观看| 18禁观看日本| 男女床上黄色一级片免费看| 69av精品久久久久久 | 欧美亚洲日本最大视频资源| 久久亚洲精品不卡| 国产一区二区激情短视频| 免费观看人在逋| 午夜精品久久久久久毛片777| 亚洲国产欧美在线一区| 亚洲精品av麻豆狂野| 女同久久另类99精品国产91| h视频一区二区三区| 91av网站免费观看| 欧美日韩福利视频一区二区| 欧美成人免费av一区二区三区 | 欧美日韩视频精品一区| 国产精品久久电影中文字幕 | 一本色道久久久久久精品综合| 久久热在线av| 国产精品99久久99久久久不卡| 日韩制服丝袜自拍偷拍| 人妻 亚洲 视频| 肉色欧美久久久久久久蜜桃| 极品人妻少妇av视频| 亚洲精品av麻豆狂野| 精品国产亚洲在线| 亚洲国产看品久久| 久久中文字幕人妻熟女| 精品一区二区三区四区五区乱码| 黄色怎么调成土黄色| 侵犯人妻中文字幕一二三四区| 精品一品国产午夜福利视频| 丝袜美腿诱惑在线| 精品国产一区二区久久| 精品少妇久久久久久888优播| 法律面前人人平等表现在哪些方面| 老司机深夜福利视频在线观看| 欧美+亚洲+日韩+国产| 99re6热这里在线精品视频| 丝袜人妻中文字幕| 欧美国产精品一级二级三级| 老司机在亚洲福利影院| 美女午夜性视频免费| 狠狠狠狠99中文字幕| 夜夜夜夜夜久久久久| 中文字幕高清在线视频| 999精品在线视频| 日韩欧美三级三区| 又大又爽又粗| 中文字幕最新亚洲高清| 变态另类成人亚洲欧美熟女 | 99re在线观看精品视频| 亚洲av第一区精品v没综合| 亚洲精品乱久久久久久| 午夜福利影视在线免费观看| 精品亚洲成a人片在线观看| 日韩熟女老妇一区二区性免费视频| 99精品久久久久人妻精品| 黄片播放在线免费| av免费在线观看网站| av欧美777| 满18在线观看网站| 亚洲avbb在线观看| 97人妻天天添夜夜摸| 热99久久久久精品小说推荐| 欧美精品一区二区大全| 成年女人毛片免费观看观看9 | 一区二区av电影网| 中文字幕av电影在线播放| 91字幕亚洲| 国产男女超爽视频在线观看| 99精品久久久久人妻精品| 50天的宝宝边吃奶边哭怎么回事| 久久婷婷成人综合色麻豆| 人人妻人人爽人人添夜夜欢视频| 国产精品成人在线| 久久久久久久久免费视频了| bbb黄色大片| 日韩有码中文字幕| 国产高清国产精品国产三级| 少妇 在线观看| 他把我摸到了高潮在线观看 | 国产成人精品久久二区二区免费| 99久久人妻综合| 久久国产精品大桥未久av| 日本一区二区免费在线视频| 男男h啪啪无遮挡| 午夜免费成人在线视频| 亚洲性夜色夜夜综合| 18禁裸乳无遮挡动漫免费视频| 9191精品国产免费久久| 97在线人人人人妻| 91av网站免费观看| av网站在线播放免费| 亚洲欧美日韩另类电影网站| 免费在线观看完整版高清| 日本av免费视频播放| 精品国产乱子伦一区二区三区| 老司机靠b影院| 国产在线免费精品| 极品人妻少妇av视频| 一本综合久久免费| 天天影视国产精品| 亚洲国产欧美一区二区综合| av一本久久久久| 亚洲成人免费电影在线观看| 欧美黄色片欧美黄色片| 欧美日韩视频精品一区| 亚洲色图综合在线观看| 久久久久久人人人人人| 亚洲人成77777在线视频| 国产97色在线日韩免费| 在线十欧美十亚洲十日本专区| 巨乳人妻的诱惑在线观看| av超薄肉色丝袜交足视频| www.熟女人妻精品国产| 亚洲专区国产一区二区| 亚洲视频免费观看视频| 欧美成狂野欧美在线观看| 啦啦啦在线免费观看视频4| 黑人巨大精品欧美一区二区蜜桃| 国产av精品麻豆| 老司机午夜福利在线观看视频 | 男女午夜视频在线观看| 国产伦人伦偷精品视频| 亚洲国产欧美在线一区| 久热爱精品视频在线9| 1024香蕉在线观看| 波多野结衣一区麻豆| 欧美日韩av久久| 国产精品.久久久| 午夜成年电影在线免费观看| 国产高清视频在线播放一区| 国产一区二区三区在线臀色熟女 | 好男人电影高清在线观看| 国产精品九九99| 两人在一起打扑克的视频| 成年人午夜在线观看视频| 一进一出好大好爽视频| 国产黄频视频在线观看| 精品国内亚洲2022精品成人 | 一级毛片女人18水好多| 成人国产一区最新在线观看| 欧美日韩亚洲综合一区二区三区_| 国产单亲对白刺激| 亚洲专区国产一区二区| 精品乱码久久久久久99久播| 国产熟女午夜一区二区三区| 国产免费视频播放在线视频| 亚洲成人免费av在线播放| 满18在线观看网站| 亚洲情色 制服丝袜| 亚洲熟女毛片儿| 五月开心婷婷网| 大片电影免费在线观看免费| 动漫黄色视频在线观看| 岛国毛片在线播放| 99精品欧美一区二区三区四区| 免费人妻精品一区二区三区视频| 日本av免费视频播放| 免费一级毛片在线播放高清视频 | 啦啦啦在线免费观看视频4| 人人妻,人人澡人人爽秒播| 69av精品久久久久久 | 亚洲美女黄片视频| 国产精品 国内视频| 一级毛片精品| 波多野结衣av一区二区av| 久久免费观看电影| 国产免费视频播放在线视频| 日本欧美视频一区| 久久精品亚洲av国产电影网| 热re99久久国产66热| 国产又爽黄色视频| a级毛片在线看网站| 精品卡一卡二卡四卡免费| 精品国产超薄肉色丝袜足j| 欧美黑人欧美精品刺激| 别揉我奶头~嗯~啊~动态视频| 多毛熟女@视频| 国产成人欧美| 叶爱在线成人免费视频播放| av又黄又爽大尺度在线免费看| 一边摸一边做爽爽视频免费| 亚洲人成77777在线视频| 在线播放国产精品三级| 中文字幕制服av| 男女之事视频高清在线观看| 最新美女视频免费是黄的| 日本五十路高清| 啪啪无遮挡十八禁网站| 精品国产乱子伦一区二区三区| 国产又色又爽无遮挡免费看| 一区在线观看完整版| av电影中文网址| 在线永久观看黄色视频| 一本色道久久久久久精品综合| 天堂俺去俺来也www色官网| 极品教师在线免费播放| 黄色丝袜av网址大全| 天天躁夜夜躁狠狠躁躁| 色精品久久人妻99蜜桃| 久久 成人 亚洲| 日韩精品免费视频一区二区三区| 电影成人av| 亚洲色图综合在线观看| 亚洲国产看品久久| 中文字幕人妻熟女乱码| 美女国产高潮福利片在线看| 十八禁网站免费在线| 精品欧美一区二区三区在线| 丝袜在线中文字幕| 天天操日日干夜夜撸| 久久青草综合色| 国产在线观看jvid| 啪啪无遮挡十八禁网站| 国产亚洲午夜精品一区二区久久| 999久久久国产精品视频| 久久免费观看电影| 精品少妇内射三级| 另类亚洲欧美激情| 三级毛片av免费| 亚洲欧美激情在线| 国产精品.久久久| 成人影院久久| 亚洲美女黄片视频| 久久午夜亚洲精品久久| av电影中文网址| 国产精品二区激情视频| 老司机福利观看| 久久人人97超碰香蕉20202| 男女边摸边吃奶| 搡老熟女国产l中国老女人| 欧美黑人欧美精品刺激| 婷婷丁香在线五月| 欧美+亚洲+日韩+国产| 久久天躁狠狠躁夜夜2o2o| 一本大道久久a久久精品| 99在线人妻在线中文字幕 | 女警被强在线播放| 亚洲欧美日韩另类电影网站| 久久人妻福利社区极品人妻图片| 色尼玛亚洲综合影院| 丝袜喷水一区| 最黄视频免费看| 亚洲专区国产一区二区| 91av网站免费观看| av国产精品久久久久影院| 国产主播在线观看一区二区| 99久久精品国产亚洲精品| 热re99久久精品国产66热6| 国产精品久久久久久人妻精品电影 | 在线av久久热| 久久婷婷成人综合色麻豆| 亚洲国产欧美一区二区综合| 国产成+人综合+亚洲专区| 大香蕉久久网| 最近最新中文字幕大全电影3 | 久久久久久久精品吃奶| 成人精品一区二区免费| 宅男免费午夜| 2018国产大陆天天弄谢| 亚洲美女黄片视频| 黄色片一级片一级黄色片| 妹子高潮喷水视频| 纵有疾风起免费观看全集完整版| 真人做人爱边吃奶动态| 午夜福利,免费看| √禁漫天堂资源中文www| 丝袜喷水一区| 一级片免费观看大全| 黄色a级毛片大全视频| avwww免费| 精品欧美一区二区三区在线| 91字幕亚洲| 国产精品久久久久久人妻精品电影 | 欧美国产精品一级二级三级| www.熟女人妻精品国产| 国产精品久久久久久精品电影小说| 黑丝袜美女国产一区| 亚洲精品久久午夜乱码| 宅男免费午夜| 欧美中文综合在线视频| 涩涩av久久男人的天堂| 久久久精品国产亚洲av高清涩受| 999久久久精品免费观看国产| 欧美变态另类bdsm刘玥| 精品午夜福利视频在线观看一区 | 啦啦啦 在线观看视频| www.精华液| 国产男靠女视频免费网站| 热99re8久久精品国产| 999精品在线视频| 亚洲一区二区三区欧美精品| 国产精品久久久久久精品电影小说| 91av网站免费观看| 一区二区三区国产精品乱码| 精品少妇黑人巨大在线播放| 欧美精品av麻豆av| 国产xxxxx性猛交| 成年女人毛片免费观看观看9 | 少妇裸体淫交视频免费看高清 | 免费不卡黄色视频| 丝瓜视频免费看黄片| 视频区图区小说| 国产欧美日韩一区二区三区在线| 欧美成狂野欧美在线观看| 老熟妇乱子伦视频在线观看| 男女之事视频高清在线观看| 日韩免费高清中文字幕av| 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 99在线人妻在线中文字幕 | 老鸭窝网址在线观看| 国产单亲对白刺激| 成人精品一区二区免费| 91精品三级在线观看| 9色porny在线观看| 宅男免费午夜| 免费av中文字幕在线| 午夜福利欧美成人| 精品欧美一区二区三区在线| 丁香欧美五月| 亚洲精品乱久久久久久| 午夜福利视频在线观看免费| 操美女的视频在线观看| www.自偷自拍.com| 精品熟女少妇八av免费久了| 亚洲国产欧美日韩在线播放| tocl精华| 国产无遮挡羞羞视频在线观看| 天天操日日干夜夜撸| 不卡av一区二区三区| 免费女性裸体啪啪无遮挡网站| 亚洲成人手机| 午夜福利免费观看在线| 久久国产亚洲av麻豆专区| 国产午夜精品久久久久久| 日本av手机在线免费观看| 美女高潮喷水抽搐中文字幕| 黑人欧美特级aaaaaa片| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 日韩欧美三级三区| 亚洲精品久久午夜乱码| 19禁男女啪啪无遮挡网站| 亚洲精品av麻豆狂野| 女性生殖器流出的白浆| 亚洲av片天天在线观看| 极品教师在线免费播放| 久久精品亚洲精品国产色婷小说| 精品国产乱码久久久久久男人| 我要看黄色一级片免费的| 狠狠狠狠99中文字幕| 精品福利观看| 亚洲av国产av综合av卡| 国产日韩欧美视频二区| 欧美精品一区二区免费开放| 妹子高潮喷水视频| 后天国语完整版免费观看| 老汉色∧v一级毛片| 欧美日韩一级在线毛片| 国产深夜福利视频在线观看| 国产97色在线日韩免费| 日韩成人在线观看一区二区三区| 老司机午夜福利在线观看视频 | 90打野战视频偷拍视频| 色综合婷婷激情| 人人妻人人澡人人爽人人夜夜| 9191精品国产免费久久| 精品国产乱码久久久久久男人| 不卡av一区二区三区| 纵有疾风起免费观看全集完整版| av免费在线观看网站| 免费人妻精品一区二区三区视频| 欧美日韩黄片免| 99热国产这里只有精品6| 99国产极品粉嫩在线观看| 成人国语在线视频| 啦啦啦免费观看视频1| 国产成人啪精品午夜网站|