• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets:A non-volatile memory nanostructure

    2022-02-24 09:38:04JianzhuoZhu朱鍵卓XinyuZhang張?chǎng)斡?/span>XingyuanLi李興元andQiumingPeng彭秋明
    Chinese Physics B 2022年2期
    關(guān)鍵詞:興元

    Jianzhuo Zhu(朱鍵卓), Xinyu Zhang(張?chǎng)斡?, Xingyuan Li(李興元), and Qiuming Peng(彭秋明)

    State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province,Yanshan University,Qinhuangdao 066004,China

    We design a nanostructure composing of two nanoscale graphene sheets parallelly immersed in water.Using molecular dynamics simulations,we demonstrate that the wet/dry state between the graphene sheets can be self-latched;moreover,the wet→dry/dry→wet transition takes place when applying an external electric field perpendicular/parallel to the graphene sheets(E⊥/E‖).This structure works like a flash memory device(a non-volatile memory): the stored information(wet and dry states)of the system can be kept spontaneously,and can also be rewritten by external electric fields.On the one hand,when the distance between the two nanosheets is close to a certain distance, the free energy barriers for the transitions dry→wet and wet→dry can be quite large.As a result, the wet and dry states are self-latched.On the other hand, an E⊥and an E‖will respectively increase and decrease the free energy of the water located in-between the two nanosheets.Consequently,the wet→dry and dry→wet transitions are observed.Our results may be useful for designing novel information memory devices.

    Keywords: wet/dry properties,non-volatile memory nanostructure,molecular dynamics simulations

    Wet/dry properties in nanoscale space play an important role in a number of increasingly relevant issues, such as protein folding/unfolding,[1]water or liquid processing,[2,3]catalysis,[4,5]water permeation in membrane channels,[6,7]as well as energy storage and conversion.[8—11]In this context, holding the wet/dry state and controlling the flow of water into and out of nanoscale slits are two key factors.The infiltration dynamics, the adsorption/desorption oscillation phenomenon, the critical effect on capillary infiltration,and the light-triggered wet transition phenomenon of water in mesoporous thin films have been respectively investigated through experimental studies.[12—15]Xiaoet al.reported a charge- and electric-field-induced water gating based on a nanochannel.[16]Revillaet al.studied the electrowetting phenomena on patterned poly(methylmethacrylate)surfaces using atomic force microscopy.[17]However, much detailed information at the molecular level cannot be obtained through experimental studies,which in turn can be acquired through simulation studies.[18—20]The wet/dry properties of a nanoscale slit have been investigated intensively using molecular dynamics (MD) simulations.[21—33]Huanget al.and Choudhuryet al.studied the wet/dry properties in-between two hydrophobic nanosheets.[21,24—26]They found that the wet and dry states of the system can be self-latched and the wet/dry properties were sensitive to the solute—solvent interaction.Vaitheeswaranetal.,Bratkoet al.and Englandet al.demonstrated that an external electric field had a great impact on the density of water molecules in-between two nanosheets.[27,30—32]

    In this paper,using MD simulations,we demonstrate the wet and dry states self-latching as well as the external electric fields triggered dry→wet and wet→dry transitions in-between two nanosheets immersed in water.When the distance between the two nanosheets is close to a certain distance, the free energy barriers for the transitions dry→wet and wet→dry can be quite large.[25]As a result, the wet and dry states can be self-latched.On the other hand, when an external electric field perpendicular/parallel to the nanosheets is applied, the free energy of the water molecules located in-between the two nanosheets is demonstrated to be increased/decreased.Therefore,the dry/wet state turns out to be the thermodynamic stable state, and the wet→dry/dry→wet transition takes place.This structure works like a flash memory device(a non-volatile memory): the wet and dry states stored in the system not only can be kept spontaneously,but also can be rewritten by external electric fields.

    The model system with two identical rectangular graphene sheets immersed parallelly in water is shown in Fig.1.Graphene sheets of three different sizes were investigated.The dimensions of the small, medium, and large graphene sheets were 20×20, 29×33, and 39×41 nm2, respectively.The distance between the two graphene sheets(D)was 6.16, 6.26, or 6.36.Each atom on the graphene sheets was constrained by a harmonic potential(k=9000 kJ/mol·2)to the initial position.An uniform external electric field perpendicular or parallel to the graphene sheets (E⊥orE‖) with a strength of 0.1 or 0.2 V/nm was exerted on the system.The OPLSAA force field was used for the carbon atoms on the graphene sheets(the type of aromatic carbon),[34]and the extended simple point charge(SPC/E)water model was adopted to model the water molecules.[35]The carbon atoms on the graphene sheets were electrically neutral.The combination of SPC/E water model and graphene sheets has been widely used in classical MD simulations to study the properties of electrical double layer capacitors (EDLC).[36—40]Generally, an external electric field may polarize water molecules.Yehet al.has demonstrated in their work that the difference between the water structures respectively obtained through SPC/E water model and the polarizable water model is rather small under an electric field of less than ~2.8 V/,[41]which is larger than the electric field strength used in this work.Therefore,we may expect that the neglect of water polarizability will not visibly impact the response to the electric field at the field strength we study.In addition, the electrical conductivity of the graphene sheets cannot be modeled in classical MD simulations.Hence, like other researchers,[36—40]we only focus on the intersheet water when the two nanosheets are in the electrostatic equilibrium state, but not in the charging or discharging process.All the MD simulations were performed using the GROMACS 2019.1 simulation package[42]in an NPT ensemble (300 K, 1 bar), with periodic boundary conditions applied in all three directions.The temperature and pressure were maintained using the V-rescale thermostat and Berendsen pressure coupling schemes, respectively.[43,44]For each system, a 300-ns simulation with a time step of 1 fs was performed.The cut-off radii of both the short-range electrostatic and the van der Waals interactions were set to 1.2 nm.The particle mesh Ewald method was applied for calculation of the long-range electrostatic interactions.[45]

    Fig.1.Snapshot of a simulation system.

    Fig.2.(a) The water molecule number n(t) between two medium graphene sheets as a function of simulation time for different D and different initial conditions without an external electric field.The insets are the enlarged diagrams.(b) The water molecule number n(t) between two small graphene sheets as a function of simulation time for D=6.26 without an external electric field.

    The number of water molecules between two medium graphene sheets,n(t), was first studied.For the simulations,different initial conditions were launched for the intersheet regions: for some simulations,the intersheet regions were filled with water (“wet” initial condition); while the intersheet regions were empty for other simulations (“dry” initial condition).In Fig.2(a),we plotn(t)between two medium graphene sheets as a function of time for the systems with differentDand different initial conditions without an external electric field.In the simulation ofD=6.16with a wet initial condition, the system dries in the first 0.4 ns of the simulation,and it remains dry for the rest of the simulation(~299.6 ns);while in the simulation ofD=6.36with a dry initial condition, the system wets rapidly after the start of the simulation,and then it remains wet for the rest ~299.4 ns simulation.Thus, we may say that the dry and wet states are thermodynamically more stable for the systems ofD≤6.16andD≥6.36, respectively.For cases withD=6.26, however, simulations starting from wet initial conditions remain wet and simulations starting from dry initial conditions remain dry.From another perspective, in the case of the medium graphene sheets andD= 6.26, the system can keep the stored information (wet and dry states) spontaneously.The phenomenon of the self-latching of the wet and dry states has also been observed by Huanget al.[25]Both the theory and the simulation studies have demonstrated that there are free energy barriers for the dry→wet and wet→dry transitions in-between nanosheets.[24,25]In the simulations ofD=6.26, the free energy barriers for the transitions dry→wet and wet→dry are too large to be overcome during the 300-ns simulations.As a result, the wet and dry states of the system are self-latched.Furthermore, the free energy barriers for the dry→wet and wet→dry transitions are found to be increased with the solute size.[21,46]Figure 2(b)showsn(t)between two small graphene sheets forD=6.26without an external electric field.During the 300-ns simulation, the transition between the wet and dry states takes place several times, which indicates that the free energy barriers for the dry→wet and wet→dry transitions are lower than those between two medium graphene sheets.

    Figure 3(a) showsn(t) between two medium graphene sheets as a function of simulation time for the systemD=6.26with different external electric fields and with different initial conditions.The system with wet/dry initial state can be switched to the dry/wet state within 10 ns after the start of the simulation by anE⊥/E‖of 0.2 V/nm, and then the system remains dry/wet for the rest of simulation.However,if theE⊥andE‖are reduced to 0.1 V/nm,the wet→dry and dry→wet transitions will not take place during the simulations.This may imply that the dry/wet state is thermodynamically more stable at the presence of anE⊥/E‖.Nevertheless, only anE⊥/E‖larger than a certain value (the critical electric field strength) can help the system overcome the wet→dry/dry→wet transition free energy barrier.For the medium graphene sheets, the critical electric field strength should fall in the range of 0.1—0.2 V/nm.From the perspective of information storage, in the case of medium graphene sheets andD=6.26, the information stored in the system(wet and dry states)can be electrically rewritten.Figure 3(b)showsn(t)between two large graphene sheets as a function of simulation time for the systemD=6.26with different external electric fields and with different initial conditions.The wet→dry/dry→wet transition will not take place even under anE⊥/E‖of 0.2 V/nm for the system with two large graphene sheets, which also implies that the larger of the nanosheets,the higher of the wet→dry and dry→wet transition free energy barriers.[21,46]

    In the case of the medium graphene sheets andD=6.26, the initial state (wet or dry state) can be selflatched during the 300-ns simulations.Furthermore, the wet→dry/dry→wet transition takes place when applying anE⊥/E‖of 0.2 V/nm.That is, anE⊥of 0.2 V/nm makes the system dry; while anE‖of 0.2 V/nm makes the system wet.Vaitheeswaranet al.demonstrated that anE⊥can decrease the density of water between two nanosheets.[30]However,Bratkoet al.demonstrated,in their paper,that anE⊥will increase the density of water between two nanosheets.[27]Englandet al.reported that the increase and decrease of the density of water between two nanosheets under anE⊥can respectively be obtained within their respective certain parameter regimes.[32]Since the distances between the two nanosheets in their works were at or above 8, they have not observed the dry state,and thus have not further observed the wet→dry and dry→wet transitions either.[27,30]Like the flash memory, in the case of the medium graphene sheets andD=6.26,the system can keep stored information (wet and dry states) spontaneously,and can also be electrically erased and reprogrammed.

    Fig.3.The water molecule number n(t)between two medium graphene sheets(a)and two large graphene sheets(b)as a function of simulation time for the system D=6.26 with different external electric fields and with different initial conditions.

    Then, we studied the orientation of the water molecules in-between two medium graphene sheets withD= 6.26when the system is wet.The orientation of the water molecules is characterized by the angles ω and θ.As illustrated in the inset of Fig.4(b),ω is defined as the angle between the water dipole (μ) and the +ydirection, and θ is the angle between the vector μ and the+zdirection.The distributions of angles ω and θ are respectively displayed in Figs.4(a)and 4(b).And the snapshots of the water molecules in the intersheet region under different external electric fields are shown in Figs.4(c)—4(e),respectively.When applying aE‖of 0.2 V/nm,the distribution of ω changes much,while the distribution of θ changes little.TheE‖induces the dipoles of the water molecules in the intersheet region to align along the direction ofE‖, and makes the orientation of the water molecules more ordered(see Fig.4(d)).If anE⊥of 0.2 V/nm is applied,the distribution of ω changes little,and the distribution of θ changes slightly.TheE⊥makes the water dipoles tilt slightly towards to the+zdirection.In addition, we calculated the number of water molecules (Nwater), the average number of hydrogen bond formed by a water molecule with other water molecules(NHB),and the average interaction potential of a water molecule with other water molecules (Pwater) in the intersheet region when the system is wet or dry (Table 1).Two water molecules are considered to form a hydrogen bond if the O···O distance is less than 0.35 nm,the H—O···O angle is smaller than 30°,as well as the H···O distance is less than 0.25 nm.[47,48]When the system is dry,theE⊥/E‖decreases/increases theNHB.SoPwateris reduced/enhanced, andNwateris decreased/increased as well.It should be noted that the very few water molecules in the intersheet region should result from the water molecules near the edges of the nanosheets.When the system is wet,both theE⊥and theE‖decrease theNHB.On the other hand, anE‖of 0.2 V/nm makes the orientation of the water molecules more ordered (see Fig.4(d)).The neater arrangement of water molecules may help the intersheet region accommodate more water molecules, which implies more neighbor water molecules for a water molecule in the intersheet region.More neighbor water molecules should be beneficial for the intersheet water to obtain a strongerPwater.No matter the intersheet region is wet or dry,anE⊥/E‖of 0.2 V/nm reduces/enhances thePwaterof water molecules in the intersheet region.As a consequence,the dry/wet state becomes thermodynamically more stable when anE⊥/E‖of 0.2 V/nm is applied.Therefore,the wet→dry/dry→wet transition takes place under anE⊥/E‖of 0.2 V/nm.

    Fig.4.Probability distributions of angles ω (a)and θ (b)as well as the snapshots(c)—(e)of water molecules in-between two medium graphene sheets with D=6.26 when the system is wet under different external electric fields.

    Table 1.Properties of water molecules in-between two medium graphene sheets with D=6.26 when the system is dry or wet.

    Table 1.Properties of water molecules in-between two medium graphene sheets with D=6.26 when the system is dry or wet.

    E⊥/E‖ (V/nm) Dry Wet Nwater NHB Pwater (kJ/mol) Nwater NHB Pwater (kJ/mol)0.2/0 1.728 1.779 —51.07 102.5 2.880 —79.01 0/0 2.224 1.839 —52.94 104.6 2.917 —80.90 0/0.2 3.040 1.920 —54.57 106.2 2.890 —81.70

    To conclude, the wet/dry properties in-between two nanoscale graphene sheets immerged in water have been studied using MD simulations.When having a proper size and a properD, the pair of graphene sheets can work like a flash memory device (a non-volatile memory): the wet and dry states between the nanosheets can be self-latched; moreover, the wet→dry/dry→wet transition will take place when anE⊥/E‖of proper magnitude is applied.The self-latching of the wet and dry states results from the large free energy barriers for the wet→dry and dry→wet transitions.On the other hand, anE⊥/E‖increases/decreases the free energy of the water located in the intersheet region, which makes the dry/wet state to be the thermodynamic stable state.Therefore,the wet→dry/dry→wet transition takes place.Our results may help understand information storage mechanisms of organism,and may also help people design novel information memory devices.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant No.11704328).

    猜你喜歡
    興元
    Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
    情系鄉(xiāng)村振興的最美老干部——艾興元
    An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
    Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
    Force-constant-decayed anisotropic network model: An improved method for predicting RNA flexibility
    A secure image protection algorithm by steganography and encryption using the 2D-TSCC*
    An image encryption algorithm based on improved baker transformation and chaotic S-box?
    Fractal sorting vector-based least significant bit chaotic permutation for image encryption?
    Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2*
    鳳凰淚
    金沙江文藝(2018年1期)2018-11-14 02:09:33
    中国美女看黄片| 精品日产1卡2卡| 卡戴珊不雅视频在线播放| 毛片一级片免费看久久久久| 看非洲黑人一级黄片| 久久鲁丝午夜福利片| 亚洲精品一卡2卡三卡4卡5卡| 午夜视频国产福利| 99热这里只有精品一区| 99在线视频只有这里精品首页| 午夜亚洲福利在线播放| 国产亚洲欧美98| 又黄又爽又刺激的免费视频.| 日韩大尺度精品在线看网址| 欧美色视频一区免费| 搡老妇女老女人老熟妇| 露出奶头的视频| 久久久久久久久久黄片| 日韩欧美精品v在线| 国产精品一区二区三区四区免费观看 | 色吧在线观看| 日韩一本色道免费dvd| 免费av不卡在线播放| av天堂中文字幕网| 看片在线看免费视频| 免费黄网站久久成人精品| 麻豆av噜噜一区二区三区| 夜夜爽天天搞| a级毛片a级免费在线| avwww免费| 看非洲黑人一级黄片| 色噜噜av男人的天堂激情| 欧美日韩综合久久久久久| 老熟妇乱子伦视频在线观看| 黄色欧美视频在线观看| 乱码一卡2卡4卡精品| 国产亚洲欧美98| 直男gayav资源| 欧美高清成人免费视频www| 小蜜桃在线观看免费完整版高清| 国产aⅴ精品一区二区三区波| 免费黄网站久久成人精品| 极品教师在线视频| 极品教师在线视频| 99热这里只有是精品在线观看| 如何舔出高潮| 欧美绝顶高潮抽搐喷水| 亚洲成人av在线免费| 搡老熟女国产l中国老女人| 国产色爽女视频免费观看| 看片在线看免费视频| 国产精品久久电影中文字幕| 最新在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 夜夜夜夜夜久久久久| 成年免费大片在线观看| 91在线精品国自产拍蜜月| 亚洲av第一区精品v没综合| 99国产精品一区二区蜜桃av| av女优亚洲男人天堂| 成人美女网站在线观看视频| 欧美+亚洲+日韩+国产| 国产国拍精品亚洲av在线观看| 丝袜美腿在线中文| 丝袜美腿在线中文| 舔av片在线| 舔av片在线| 黄色视频,在线免费观看| 国产精品日韩av在线免费观看| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜爱| 人妻久久中文字幕网| 成人高潮视频无遮挡免费网站| 亚洲精品成人久久久久久| 露出奶头的视频| 国产成人影院久久av| 国产国拍精品亚洲av在线观看| 我的女老师完整版在线观看| 在线免费观看的www视频| 久久人人爽人人爽人人片va| 国产欧美日韩一区二区精品| 日日摸夜夜添夜夜添av毛片| 婷婷六月久久综合丁香| 99九九线精品视频在线观看视频| 少妇猛男粗大的猛烈进出视频 | 蜜桃亚洲精品一区二区三区| 欧美极品一区二区三区四区| 国产成人a区在线观看| 久久久欧美国产精品| 成人永久免费在线观看视频| 欧美绝顶高潮抽搐喷水| 欧美日韩国产亚洲二区| 精品一区二区三区av网在线观看| 可以在线观看毛片的网站| 日韩在线高清观看一区二区三区| 人人妻人人看人人澡| 日韩一区二区视频免费看| 直男gayav资源| 国产色婷婷99| 国内久久婷婷六月综合欲色啪| av在线播放精品| 国产欧美日韩精品亚洲av| 我要搜黄色片| 夜夜爽天天搞| 在线看三级毛片| 久久久国产成人精品二区| 嫩草影院入口| 性色avwww在线观看| 美女 人体艺术 gogo| 久久午夜亚洲精品久久| 99在线视频只有这里精品首页| 人妻少妇偷人精品九色| 成人二区视频| 一个人看的www免费观看视频| 无遮挡黄片免费观看| 国产成人91sexporn| 亚洲av美国av| 欧美精品国产亚洲| 91在线精品国自产拍蜜月| 一区二区三区免费毛片| 国产精品嫩草影院av在线观看| 成年免费大片在线观看| 亚洲成av人片在线播放无| 久久人人精品亚洲av| 欧美zozozo另类| 国内久久婷婷六月综合欲色啪| 亚洲第一区二区三区不卡| 日本精品一区二区三区蜜桃| 欧美成人a在线观看| 热99re8久久精品国产| a级毛色黄片| 欧美极品一区二区三区四区| 国产欧美日韩精品一区二区| 久久草成人影院| 老司机午夜福利在线观看视频| 老女人水多毛片| 国产亚洲精品综合一区在线观看| 夜夜看夜夜爽夜夜摸| 国产高清激情床上av| 国产精品久久久久久久电影| 亚洲av中文字字幕乱码综合| av在线亚洲专区| 一夜夜www| 久久99热这里只有精品18| 国产黄a三级三级三级人| 中文字幕精品亚洲无线码一区| 国产伦在线观看视频一区| 精华霜和精华液先用哪个| 毛片一级片免费看久久久久| 午夜福利视频1000在线观看| 久99久视频精品免费| 乱系列少妇在线播放| 免费黄网站久久成人精品| 亚洲,欧美,日韩| 亚洲国产高清在线一区二区三| 日本与韩国留学比较| 插阴视频在线观看视频| 日本撒尿小便嘘嘘汇集6| 国产av一区在线观看免费| 欧美激情国产日韩精品一区| 国产男人的电影天堂91| 特大巨黑吊av在线直播| 午夜福利高清视频| 久久天躁狠狠躁夜夜2o2o| 蜜桃久久精品国产亚洲av| 亚洲国产日韩欧美精品在线观看| 免费看光身美女| 黄色配什么色好看| 国产熟女欧美一区二区| 国产精品无大码| 久久精品国产自在天天线| 亚洲精品色激情综合| 69人妻影院| 亚洲成av人片在线播放无| 精品一区二区三区av网在线观看| 老熟妇乱子伦视频在线观看| 18禁黄网站禁片免费观看直播| 国产av不卡久久| 亚洲五月天丁香| 日本撒尿小便嘘嘘汇集6| 亚洲av中文字字幕乱码综合| 午夜福利在线在线| 99riav亚洲国产免费| 欧美一级a爱片免费观看看| 免费看a级黄色片| 美女内射精品一级片tv| 日本在线视频免费播放| 国产精品99久久久久久久久| 亚洲av二区三区四区| 亚洲精品日韩在线中文字幕 | 亚洲三级黄色毛片| 看免费成人av毛片| 99国产极品粉嫩在线观看| 久久精品国产清高在天天线| 麻豆av噜噜一区二区三区| 精品不卡国产一区二区三区| 我要搜黄色片| 成年女人毛片免费观看观看9| 搡老熟女国产l中国老女人| av天堂中文字幕网| 国内精品美女久久久久久| 久久久成人免费电影| 欧美性猛交黑人性爽| 日本一二三区视频观看| 美女高潮的动态| 在线国产一区二区在线| 神马国产精品三级电影在线观看| 亚洲熟妇中文字幕五十中出| 在线观看美女被高潮喷水网站| 春色校园在线视频观看| 极品教师在线视频| 尾随美女入室| 少妇被粗大猛烈的视频| 毛片一级片免费看久久久久| 国产久久久一区二区三区| 丝袜喷水一区| 日韩成人伦理影院| 国产免费一级a男人的天堂| 国产一区二区在线观看日韩| 亚洲av美国av| 午夜老司机福利剧场| 极品教师在线视频| 搞女人的毛片| 国产亚洲91精品色在线| 国产午夜精品久久久久久一区二区三区 | av天堂中文字幕网| 亚洲精品成人久久久久久| 女生性感内裤真人,穿戴方法视频| 最近在线观看免费完整版| 蜜桃亚洲精品一区二区三区| 中文字幕av在线有码专区| 国产免费一级a男人的天堂| 一进一出好大好爽视频| 高清毛片免费观看视频网站| 观看免费一级毛片| 日韩成人伦理影院| 日韩av不卡免费在线播放| 亚洲性夜色夜夜综合| 成人性生交大片免费视频hd| 欧美国产日韩亚洲一区| 免费看光身美女| 国产精品一区二区性色av| 国产高清激情床上av| 女人十人毛片免费观看3o分钟| 97超级碰碰碰精品色视频在线观看| 免费一级毛片在线播放高清视频| 最新中文字幕久久久久| 99热6这里只有精品| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久久大av| 国产成人影院久久av| 欧美3d第一页| 亚洲在线自拍视频| 国产黄片美女视频| 国产蜜桃级精品一区二区三区| 亚洲av一区综合| 麻豆乱淫一区二区| 免费av观看视频| 国产午夜精品久久久久久一区二区三区 | 亚洲中文字幕日韩| 日韩欧美三级三区| 亚洲va在线va天堂va国产| 别揉我奶头 嗯啊视频| 亚洲性久久影院| 欧美日韩一区二区视频在线观看视频在线 | 成人亚洲欧美一区二区av| 国产精品福利在线免费观看| 毛片女人毛片| 欧美区成人在线视频| 亚洲高清免费不卡视频| 国产精品永久免费网站| 婷婷精品国产亚洲av| 国产av在哪里看| 深夜精品福利| 高清毛片免费观看视频网站| 国产探花在线观看一区二区| 全区人妻精品视频| 亚洲av.av天堂| 午夜福利在线观看吧| 欧美中文日本在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 色噜噜av男人的天堂激情| 久久久精品欧美日韩精品| 97热精品久久久久久| 精品午夜福利视频在线观看一区| 久久久久久久久久成人| 蜜臀久久99精品久久宅男| 欧美zozozo另类| 老女人水多毛片| 成人高潮视频无遮挡免费网站| 国产精品久久久久久亚洲av鲁大| 久久久久久久久久黄片| 亚洲五月天丁香| 美女高潮的动态| 一区福利在线观看| 午夜激情欧美在线| 国产一级毛片七仙女欲春2| 亚洲无线在线观看| 亚洲不卡免费看| 在线a可以看的网站| av国产免费在线观看| 亚洲最大成人av| 一级黄片播放器| 日本熟妇午夜| 精品国产三级普通话版| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 成人av一区二区三区在线看| 综合色丁香网| 级片在线观看| 身体一侧抽搐| 一进一出好大好爽视频| 日韩高清综合在线| 亚洲在线自拍视频| 国产精品综合久久久久久久免费| 有码 亚洲区| 欧美xxxx性猛交bbbb| 中文字幕av在线有码专区| 18禁黄网站禁片免费观看直播| 99riav亚洲国产免费| 在线播放国产精品三级| 亚洲成av人片在线播放无| 国产免费一级a男人的天堂| 国产精品精品国产色婷婷| 中文字幕精品亚洲无线码一区| 亚洲精华国产精华液的使用体验 | 国产熟女欧美一区二区| 国产成人福利小说| 三级毛片av免费| 亚洲人成网站在线观看播放| 日本五十路高清| 亚洲七黄色美女视频| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品av在线| 村上凉子中文字幕在线| 一个人观看的视频www高清免费观看| 青春草视频在线免费观看| 欧美+亚洲+日韩+国产| 淫秽高清视频在线观看| 精品一区二区三区视频在线| 少妇的逼水好多| 一级a爱片免费观看的视频| 日韩成人av中文字幕在线观看 | 国产一级毛片七仙女欲春2| 人妻少妇偷人精品九色| 精品一区二区三区av网在线观看| 亚洲精品日韩在线中文字幕 | 国产精品,欧美在线| 成人性生交大片免费视频hd| 午夜日韩欧美国产| 精品国产三级普通话版| 国产淫片久久久久久久久| 波多野结衣巨乳人妻| 人人妻人人澡欧美一区二区| 一夜夜www| 国产aⅴ精品一区二区三区波| 免费av不卡在线播放| 日韩中字成人| 亚洲欧美清纯卡通| 国产伦精品一区二区三区四那| 亚洲国产精品sss在线观看| 俺也久久电影网| 国产激情偷乱视频一区二区| 久久久久久九九精品二区国产| 色综合站精品国产| 非洲黑人性xxxx精品又粗又长| 免费观看精品视频网站| 国产三级中文精品| 欧美一区二区亚洲| 久久精品国产亚洲av天美| 亚洲专区国产一区二区| 露出奶头的视频| 亚洲一区高清亚洲精品| 日韩在线高清观看一区二区三区| 久久人人精品亚洲av| 国产成人a∨麻豆精品| 国产乱人偷精品视频| 国产精品久久久久久久电影| АⅤ资源中文在线天堂| 久久精品国产亚洲网站| 白带黄色成豆腐渣| 亚洲精品粉嫩美女一区| 成人二区视频| av天堂中文字幕网| 亚州av有码| 亚洲成人久久爱视频| 国产精品一区二区三区四区免费观看 | 国产成人91sexporn| 欧美色欧美亚洲另类二区| 黄色一级大片看看| 国产一区亚洲一区在线观看| 如何舔出高潮| 一个人看视频在线观看www免费| 日韩精品有码人妻一区| 日本一二三区视频观看| 少妇熟女aⅴ在线视频| 国产精品av视频在线免费观看| 一进一出抽搐gif免费好疼| 99久久无色码亚洲精品果冻| 男女那种视频在线观看| 午夜福利在线在线| 亚洲高清免费不卡视频| 少妇的逼水好多| 热99在线观看视频| 99久久精品国产国产毛片| 久久久久久久久久成人| 久久婷婷人人爽人人干人人爱| 中国美女看黄片| 亚洲人成网站在线播放欧美日韩| 国内精品宾馆在线| 国产三级中文精品| 久久久国产成人免费| 别揉我奶头 嗯啊视频| 在线观看av片永久免费下载| 99久久无色码亚洲精品果冻| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 在现免费观看毛片| 日本熟妇午夜| 天堂动漫精品| 又爽又黄无遮挡网站| 欧美绝顶高潮抽搐喷水| 日韩强制内射视频| 十八禁国产超污无遮挡网站| 亚洲av五月六月丁香网| 寂寞人妻少妇视频99o| 露出奶头的视频| 精品人妻熟女av久视频| 日本熟妇午夜| 我要看日韩黄色一级片| 日韩,欧美,国产一区二区三区 | 男人舔女人下体高潮全视频| 干丝袜人妻中文字幕| 1000部很黄的大片| 夜夜爽天天搞| 国产欧美日韩精品一区二区| 一级a爱片免费观看的视频| 精品欧美国产一区二区三| 欧美+日韩+精品| 十八禁网站免费在线| 亚洲欧美精品综合久久99| 22中文网久久字幕| videossex国产| 一个人看视频在线观看www免费| 日韩av在线大香蕉| 永久网站在线| 国产视频内射| 日本 av在线| 久久久久久久亚洲中文字幕| 久久久久久大精品| 麻豆一二三区av精品| 国产亚洲91精品色在线| 国产久久久一区二区三区| 人人妻,人人澡人人爽秒播| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩高清在线视频| 特大巨黑吊av在线直播| 欧美成人精品欧美一级黄| 中文字幕av成人在线电影| 69人妻影院| 欧美一级a爱片免费观看看| 村上凉子中文字幕在线| 少妇人妻精品综合一区二区 | 亚洲人成网站在线播| 22中文网久久字幕| 搡老妇女老女人老熟妇| 真实男女啪啪啪动态图| 日本色播在线视频| 亚洲欧美中文字幕日韩二区| 亚洲色图av天堂| a级毛片a级免费在线| 欧洲精品卡2卡3卡4卡5卡区| 久久久午夜欧美精品| 给我免费播放毛片高清在线观看| 人人妻人人澡人人爽人人夜夜 | 99久久九九国产精品国产免费| 久久精品人妻少妇| 日韩欧美精品免费久久| 大香蕉久久网| 日韩亚洲欧美综合| 久久人人精品亚洲av| 色尼玛亚洲综合影院| АⅤ资源中文在线天堂| 一个人看视频在线观看www免费| 在线观看午夜福利视频| 国产老妇女一区| 精品久久久久久久末码| 伦理电影大哥的女人| 久久精品综合一区二区三区| 久久久久精品国产欧美久久久| 国产三级在线视频| 麻豆成人午夜福利视频| 99视频精品全部免费 在线| a级毛片免费高清观看在线播放| 天堂网av新在线| 亚洲自偷自拍三级| 别揉我奶头 嗯啊视频| 国产真实伦视频高清在线观看| 久久精品国产亚洲av天美| 亚洲内射少妇av| 日韩国内少妇激情av| 男女视频在线观看网站免费| 伦理电影大哥的女人| 国产高清有码在线观看视频| 亚洲丝袜综合中文字幕| 久久99热这里只有精品18| 成人二区视频| 天天躁夜夜躁狠狠久久av| 午夜爱爱视频在线播放| 女同久久另类99精品国产91| 日韩欧美免费精品| 中国美白少妇内射xxxbb| 久久久久久久午夜电影| 啦啦啦观看免费观看视频高清| 亚洲av成人av| 国产探花极品一区二区| 男人和女人高潮做爰伦理| 色在线成人网| 精品99又大又爽又粗少妇毛片| 热99在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品久久久久久一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 真人做人爱边吃奶动态| 亚洲熟妇中文字幕五十中出| 精品人妻一区二区三区麻豆 | 欧美性猛交黑人性爽| 看片在线看免费视频| 九九热线精品视视频播放| 亚洲成av人片在线播放无| 18禁在线无遮挡免费观看视频 | 如何舔出高潮| 国产国拍精品亚洲av在线观看| 少妇熟女aⅴ在线视频| 亚洲欧美日韩高清专用| av国产免费在线观看| 亚洲三级黄色毛片| 亚洲欧美日韩卡通动漫| 变态另类成人亚洲欧美熟女| 日本一二三区视频观看| 一个人看视频在线观看www免费| 老熟妇仑乱视频hdxx| 久久国内精品自在自线图片| 中文亚洲av片在线观看爽| 亚洲四区av| 22中文网久久字幕| 国产成人aa在线观看| 亚洲精品亚洲一区二区| 欧美成人a在线观看| 小说图片视频综合网站| 日韩欧美精品免费久久| 在线天堂最新版资源| 麻豆国产av国片精品| 欧美一区二区精品小视频在线| 秋霞在线观看毛片| 精华霜和精华液先用哪个| 国内久久婷婷六月综合欲色啪| 日韩欧美三级三区| 午夜视频国产福利| 免费观看人在逋| .国产精品久久| 亚洲四区av| 99国产极品粉嫩在线观看| 亚洲天堂国产精品一区在线| 亚洲av一区综合| 午夜福利在线观看免费完整高清在 | 人妻制服诱惑在线中文字幕| 波多野结衣高清作品| 青春草视频在线免费观看| 色综合站精品国产| 欧美人与善性xxx| 六月丁香七月| 精品一区二区三区人妻视频| 在线看三级毛片| 亚洲一区二区三区色噜噜| 在线看三级毛片| eeuss影院久久| 天堂影院成人在线观看| 国产国拍精品亚洲av在线观看| 亚洲欧美成人精品一区二区| 嫩草影院新地址| 免费av不卡在线播放| 亚洲四区av| 国产爱豆传媒在线观看| 国产精品一二三区在线看| 亚洲美女视频黄频| 久久亚洲国产成人精品v| 亚洲av免费高清在线观看| 男人舔女人下体高潮全视频| 人人妻人人看人人澡| 99久久精品国产国产毛片| 少妇被粗大猛烈的视频| 18+在线观看网站| 午夜福利视频1000在线观看| 3wmmmm亚洲av在线观看| 真人做人爱边吃奶动态| 亚洲欧美清纯卡通| 色噜噜av男人的天堂激情| 午夜免费男女啪啪视频观看 | 国产精品乱码一区二三区的特点| 国产精品美女特级片免费视频播放器| 丰满的人妻完整版| 一个人看视频在线观看www免费| 国产精品美女特级片免费视频播放器| 国产私拍福利视频在线观看| 久久久久国产网址| 中文字幕精品亚洲无线码一区| 久久久成人免费电影| 99久久精品一区二区三区| 99九九线精品视频在线观看视频| 老熟妇乱子伦视频在线观看| 好男人在线观看高清免费视频| 99国产极品粉嫩在线观看| 成人亚洲精品av一区二区| 成人亚洲欧美一区二区av|