• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermally stratified flow of hybrid nanofluids with radiative heat transport and slip mechanism: multiple solutions

    2022-02-18 11:26:04RaiSajjadSaifHashimMariaZamanandMuhammadAyaz
    Communications in Theoretical Physics 2022年1期

    Rai Sajjad Saif, HashimMaria Zaman and Muhammad Ayaz

    1 Department of Humanities and Sciences, School of Electrical Engineering and Computer Science(SEECS), National University of Sciences and Technology (NUST), Islamabad, Pakistan

    2 Department of Pure & Applied Mathematics, University of Haripur, 22620, Haripur, Pakistan

    3 Department of Mathematics & Statistics, Riphah International University Islamabad, Pakistan

    4 Department of Mathematics, Abdul Wali Khan University, Mardan, 23200, Pakistan

    Abstract Research on flow and heat transfer of hybrid nanofluids has gained great significance due to their efficient heat transfer capabilities.In fact,hybrid nanofluids are a novel type of fluid designed to enhance heat transfer rate and have a wide range of engineering and industrial applications.Motivated by this evolution, a theoretical analysis is performed to explore the flow and heat transport characteristics of Cu/Al2O3 hybrid nanofluids driven by a stretching/shrinking geometry.Further, this work focuses on the physical impacts of thermal stratification as well as thermal radiation during hybrid nanofluid flow in the presence of a velocity slip mechanism.The mathematical modelling incorporates the basic conservation laws and Boussinesq approximations.This formulation gives a system of governing partial differential equations which are later reduced into ordinary differential equations via dimensionless variables.An efficient numerical solver, known as bvp4c in MATLAB, is utilized to acquire multiple (upper and lower)numerical solutions in the case of shrinking flow.The computed results are presented in the form of flow and temperature fields.The most significant findings acquired from the current study suggest that multiple solutions exist only in the case of a shrinking surface until a critical/turning point.Moreover, solutions are unavailable beyond this turning point, indicating flow separation.It is found that the fluid temperature has been impressively enhanced by a higher nanoparticle volume fraction for both solutions.On the other hand, the outcomes disclose that the wall shear stress is reduced with higher magnetic field in the case of the second solution.The simulation outcomes are in excellent agreement with earlier research,with a relative error of less than 1%.

    Keywords: multiple numerical solutions, hybrid nanofluids, thermal radiation, thermal stratification, slip conditions, heat transfer

    1.Introduction

    The thermal performance of fluids employed for heat transport analysis is of main concern in various thermal processes used in industry.In recent years,several researchers put their efforts into improving the thermal performance of these processes by employing different techniques.Correspondingly,it was shown that the thermal features of ordinary fluids were substantially changed with the addition of nanosized particles of single type, known as nanoparticles.Such nanoparticles could be made up of oxides, carbides, carbon nanotubes,and metals.Nanofluids are a stable mixture of base fluid and suspended nanoparticles(up to 100 nm).Engine oil,water, and ethylene glycol may be taken as base fluids.As expected, nanofluids displayed higher heat dissipation performance.In addition, they have shown greater increases in their thermal physical characteristics, like thermal conductivity, etc.Treatment of cancer, medicine, transformer cooling, solar collectors, heat exchangers, nuclear reactor cooling, freezers, electronics cooling, and automobiles are just a few examples of nanofluid applications.Due to the successful performance of nanofluids in the heat transport mechanism, numerous studies have reported on the heat transfer of nanofluids.Choi [1] was the first one to spotlight the notion and implications of using nanoparticles in a conventional fluid to improve heat transfer.After that, Buongiorno [2] and Tiwari and Das [3] proposed two common hydrodynamic models for nanofluids.Buongiorno’s model considered the impacts of Brownian motion and thermophoresis.On the other hand, the Tiwari and Das model explored the nature of nanofluids by volume fraction considering the nanoparticles.Several authors, including Kuznetsov and Nield[4],Makinde and Aziz[5],Mustafa et al[6],Khan and Aziz [7], and Hashim and Khan [8], investigated the various physical characteristics of nanofluids using Buongiorno’s model.On the other hand, the single-phase model proposed by Tiwari and Das [3] has been applied by various authors.Rashad et al [9] utilized the numerical technique to explore the mixed convection flow of copper–water nanofluid in a rectangular cavity within a porous medium.The natural convection flow of an Al2O3/water nanofluid along with heat transport in an L-shaped enclosure has been presented by Mohebbi and Rashidi [10].Later,Bhatti et al [11] numerically investigated the 3D unsteady flow of a nanofluid with gyrotactic microorganisms driven by cylindrical geometry.Many researchers have explored the flow and heat transport properties in various geometries using nanofluids in recent years due to the effectiveness of nanofluids, including Hashim et al [12], Hamid et al [13], Hafeez et al [14], etc.

    These days,the research community focuses on radiative heat transfer and flow processes in energy conversion systems that run at high temperatures, owing to their remarkable performance in a variety of fields of science, including satellites, missiles, various aircraft propulsion devices, gas turbines, and nuclear power plants.For a device operating at an above-average temperature where radiation from heated walls and working fluid is different, the effect of thermal radiation is highly important in the transfer of heat flow.Heat transfer features under the influence of thermal radiation have been investigated by several researchers.The influences of buoyancy force and thermal radiation on stagnation point flow past a stretching sheet were examined by Pal [15].Furthermore, Bidin and Nazar [16] numerically investigated the effects of thermal radiation on flow and heat transport analysis due to an exponentially extending surface.Later,Aziz [17] conducted a numerical study on the flow and heat transport mechanism for viscous fluid flow over an unsteady stretching surface.Pal and Mondal [18] analysed non-Darcy flow over a stretching plate incorporating thermal radiation effects.Dogonchi and Ganji[19]addressed the heat transport characteristics of a nanofluid past a stretching surface in the presence of thermal radiation.Lin et al[20]explored the flow and heat transport characteristics of copper–water nanofluid subject to thermal radiation and nanoparticle shape factor effects.Waqas et al [21] presented a numerical study to address the flow of non-Newtonian Carreau fluid subject to thermal radiation using revised nanofluid model.Later,Sheikholeslami et al[22]employed the control volume-based finite element numerical method to study the flow of a nanofluid through a wavy chamber with thermal radiation impacts.The closed-form solutions for two-dimensional flow and heat transfer analysis in the presence of thermal radiation past a vertical plate have been examined by Turkyilmazoglu [23].

    Stratification occurs because of temperature gradients or the mixture of multiple fluids having different densities in engineering and industrial mechanisms.Exploring the mechanism of thermal stratification during flow and heat transport in nanofluids is of tremendous physical interest.This process is essential in the disciplines of lake thermohydraulics, salinity and thermal stratification mechanisms in oceans, heat rejection into the surrounding environment via rivers, agriculture fields, volcanic flows, and industries such as reservoirs, industrial food and salinity, atmosphere involving heterogeneous mixtures,and groundwater reservoirs.As a pioneer, Yang et al [24] investigated the free convective flow of a thermally stratified fluid due to a non-isothermal plate.Ishak et al [25] examined the time-independent mixed convection flow through a stable stratified medium near a vertical flat plate.Cheng [26] employed the cubic spline collocation method to explore the impacts of double stratification on natural convection flow of a non-Newtonian fluid near a vertical wavy surface.Mukhopadhyay and Ishak [27]presented a numerical study to discuss the mixed convection axisymmetric flow of thermally stratified viscous fluid over a stretching cylinder.Mishra et al [28] conducted a numerical study to probe a steady flow due to a vertical surface subject to double stratified micropolar fluid.An identical study of nanofluid flow and heat transport with thermal stratification has been presented by Abbasi et al [29], Hayat et al [30],Eswaramoorthi et al [31], Jabeen et al [32].

    According to the literature review, there have been several investigations on the flow and transfer of hybrid nanofluids using various mechanisms.In most of these works, the authors have studied the hybrid nanofluid heat transport features by considering constant wall and free stream temperatures and computed single solutions by using analytical and numerical techniques.However, in a variety of real-world circumstances, these temperatures do not remain constant,and we must treat them as a function of space and time variables.Moreover, the energy transport phenomenon of a hybrid nanofluid driven by a stretching/shrinking geometry with variable temperatures has various realistic industrial,engineering and biomechanical applications, like polymer technology, blood flow, treatment of several diseases,metallurgical processes, and annealing and thinning of wires.As a result of these applications in numerous disciplines of science and technology, it is worthwhile to discuss and explore thermally stratified flow of hybrid nanofluids with thermal radiation.

    As per the authors’ knowledge and based on the open literature review,it is noticed that multiple numerical solutions for thermally stratified flow of hybrid nanofluid driven by a shrinking surface have not been reported yet.The core novelty of the current study is to perform a numerical simulation to predict the multiple solutions for thermally stratified flow of Cu ? Al2O3? hybri d nanomaterials along with heat transport analysis in the presence of thermal radiation and slip mechanism.In this research, the authors formulated the problem of two-dimensional time-dependent magnetohydrodynamic(MHD)hybrid nanofluid flow over a flat sheet with the help of conservation laws and Boussinesq approximations in the form of partial differential equations.Moreover, the current investigation employs an efficient and versatile numerical method,the bvp4c routine in MATLAB, to acquire the problem solutions.The outcomes are compared to those obtained without hybrid nanofluids as well as those obtained with nanofluids.

    2.Mathematical model

    2.1.Formulation and basic equations

    As shown in figure 1, the considered physical situation involves unsteady,two-dimensional,and incompressible flow of hybrid nanofluids past a flat surface with stretching and shrinking characteristics.During the mathematical formations, the following assumptions have been kept in mind:

    Figure 1.Flow geometry and coordinate system.

    Therefore,in view of the Boussinesq approximations and above stated restrictions,the basic conservation equations for MHD unsteady flow of hybrid nanofluids subject to the Tiwari and Das[3]model can be acknowledged as(see Fang et al [33], Rohini et al [34], Devi and Devi [35], Ismail et al [36]):

    Continuity equation:

    Momentum equation:

    Energy equation:

    The following boundary conditions are put on the surface walls as well as on the free stream:

    Table 1.Thermo-physical characteristics of hybrid nanofluids and base fluid (see Khanafer et al [37], Oztop and Abu-Nada [38]).

    In the above equation, the subscript"hnf" represents the hybrid nanofluids, while"f" denotes the base fluid.

    The radiative heat fluxqrin equation (3) is depicted as:

    where(k*)signifies the Stefan–Boltzmann constant and coefficient of mean absorption.Now, pluggingqrfrom equation (7) into equation (3) , we get

    The dimensionless form of the modelled problem is obtained by utilizing the following subsequent transformations:

    Substituting equation (9) into equations (2) and (8), the following converted system of ordinary differential equations is derived:

    subject to the conditions

    The wall mass transfer velocity (or fluid suction velocity)becomes=S,whereSis a constant that specifies the wall mass transfer parameter, withS> 0 indicating suction,S< 0 indicating injection andS= 0 indicating impermeability.

    The other dimensionless parameters are written as

    In this analysis,the variables of physical curiosity are the drag force and the heat transfer rate,which are written in their dimensionless form as follows:

    3.Numerical method

    Figure 2.Variation of f″ (0) with magnetic parameter M againstλ.

    The governing set of ordinary differential equations (10) and(11) along with boundary conditions (12) is numerically integrated by employing the built-in MATLAB solver bvp4c.The flow and heat transport characteristics are observed by the virtue of non-dimensional velocity, temperature, skinfriction, and heat transfer rate computed by the above-mentioned numerical method.The main purpose of this analysis is to predict multiple solutions for flow fields in the case of a shrinking surface.These solutions can be achieved by two different sets of initial guesses which fulfil the far-field boundary conditions.In this method, higher-order non-linear ODEs are first converted into first-order differential equations by choosing suitable variables.For this,let us assumef=y1,f′ =y2,f″ =y3,θ=y4andθ′ =y5..The new system of first-order differential equations is given by

    and the boundary conditions become

    An important step in this methodology is to give a suitable finite value to(η= ∞), so that the field boundary conditions(17)are asymptotically satisfied.The tolerance criterion is set as 10?6to gain the correct numerical outcomes.

    4.Computed results

    4.1.Code validation

    To begin, tables 2 and 3 highlight the validity of the current results.In these table,the computed results of the skin-friction coefficient (upper and lower branch solutions) are compared with the published works of Wang et al[39],Mahapatra et al[40], Ismail et al [36] and Bachok et al [41].In this regard,remarkable consistency has been accomplished.This proves that the proposed model and present findings are accurate.

    ?

    ?

    Figure 3.Variation of ?θ′ (0) with radiation parameter R againstλ.

    4.2.Discussion

    Various numerical and graphical outcomes of the problem have been prepared and presented in detail.The simulated outcomes are displayed through velocity and temperature distributions together with the skin-friction coefficient and heat transfer rate for different flow parameters to better understand the flow and heat transport features, for instance,for magnetic parameterM, stretching/shrinking parameterλ,suction parameterS, velocity slip parameterα1, nanoparticle volume fractionsφ1andφ,2unsteadiness parameterβ, radiation parameterR, thermal stratification parameterst,heat generation/absorption parameterδand Prandtl numberPr.

    Figure 4.Variation of f″ (0) with suction parameterS againstλ.

    Figure 5.Variation of ?θ′ (0) with stratification parameter st againstλ.

    Figure 6.Velocity fieldsf ′(η) for distinct nanoparticle volume fractionφ.1

    Figure 2 is plotted to witness the impact of magnetic parameterMon wall shear stressf″ (0) against shrinking parameterλ.It is shown that a dual solution exists for shrinking parameter(λ< ?1) and suction parameter (S>2)when keeping all other parameters fixed.Further, we observed that these dual solutions occur up to a critical valueλcof the shrinking parameterλ.The critical valueλcplays an important role in predicting the nature of computed solutions.It is seen that a unique solution exists whenλ=λ cand dual solutions are possible forλ<λ cwhile no solution exists whenλ>λ.cThe respective critical valuesλcfor distinct magnetic parametersM=(0 , 0.2, 0.6) areλc= ?3.3556,?3.3840 and?3.4019, as displayed in figure 2.A significant decline in the critical value is noted with increasing value of the magnetic parameter which enhances the existence domain of dual solutions.From a physical point of view,this happens because greater values of the magnetic parameter create resistance in the flow, which results in smothering of the velocity,as shown in the first solution.Moreover,the value off″(0) with respect to the first solution is always increasing with increasing magnetic parameter.On the other hand, an opposite behaviour is depicted by the second solutions.The impact of radiation parameterRon heat transfer rate?θ′ (0)against shrinking parameterλis displayed in figure 3.Again,we depict the existence of dual solutions in the case of shrinking flow.The magnitude of the critical value∣λc∣increases with increasing radiation parameterR.The wall shear stressf″ (0) is plotted in figure 4 for distinct values of suction parameterSas a function of shrinking parameterλ.It is worth mentioning that dual solutions exists for the shrinking parameter(λ< 0) within a specific range of the suction parameter,i.e.S= 2.1, 2.3, 2.5.One can clearly see that the local wall shear stressf″ (0) increases with increasing suction parameter for the first solution, while it decreases in the case of the second solution.Figure 5 portrays the variation of local heat transfer rate?θ′ (0) with varying values of thermal stratification parameters.tWe observe that as the stratification parameter increases the rate of heat transfer decreases for both solutions.

    Figure 7.Temperature fieldsθ (η) for distinct nanoparticle volume fractionφ.1

    The impacts of the volume fraction of copper nanoparticlesφ1on the velocity and temperature distributions for fixed values of other parameter are displayed in figures 6 and 7.The outcomes uncovered that the variation in nanoparticle volume fraction has less effect on velocity fields.However,figure 6 suggests that the fluid velocity shows a decreasing behaviour with higher nanoparticle volume fraction for both solutions.On the other hand, it is observed through figure 7 that a substantial rise in temperature distribution is noted for greater volume fraction.The velocity distributions off′(η)for various values of suction parameterSare plotted in figure 8.The plotted graphs show the existence of dual solutions for shrinking flow inside the boundary layer region.As expected, an enhancement in velocity profiles is seen for greaterSin the upper solutions, while the inverse is noted in the lower solutions.Figure 9 portrays the relationship between the dimensionless temperature profilesθ(η) and the nanoparticle volume fractionφ2within the boundary layer.It should be noted that both the temperature profiles and associated boundary layer thickness increase with growing values ofφ2.The velocity distributionsf′(η) for varyingMare illustrated in figure 10, which shows that as the magnetic parameterMincreases the velocity profiles show a decreasing trend for the second solution and the opposite is noted for the first solutions.The dual temperature profilesθ(η) for precise entries of the radiation parameterRare presented in figure 11.With an increment in radiation parameter, both solutions showed that the temperature distribution increases.On the other hand, the corresponding thermal boundary layer thickness is higher for the second solution.Figure 12 depicts the effect of velocity-slip parameterα1on the dual velocity profilesf′(η) inside the boundary layer region.Once again,an opposite behaviour is displayed by the first and second branch solutions within the boundary layer region.The larger values ofα1cause a reduction in fluid velocity for the first branch and enhance the fluid velocity in the second branch.Finally, figure 13 is outlined for the behaviour temperature distributionθ(η) under the influence of stratification parameters.tThe hybrid nanofluid temperature is seen to rise for increasing values of the thermal slip parameter.

    Figure 8.Velocity fieldsf ′(η) for distinct suction parameterS.

    Figure 9.Temperature fieldsθ (η) for distinct nanoparticle volume fractionφ.2

    Figure 10.Velocity fieldsf ′(η) for distinct magnetic parameter M.

    Figure 11.Temperature fieldsθ (η) for distinct radiation parameter R.

    Figure 12.Velocity fieldsf ′(η) for distinct velocity-slip parameter α.1

    Figure 13.Temperature fieldsθ (η) for distinct stratification parameter st.

    5.Main findings

    Numerical simulations for an unsteady thermally stratified flow of MHD hybrid nanofluid across a stretching/shrinking surface with thermal radiation and slip mechanism were carried out in this study.The main feature of the current study was the depiction of multiple branches,namely the upper and lower branch,for flow and temperature fields in the case of a shrinking surface.The following major outcomes can be summarized.

    1.As the suction parameter was increased, the existence domain of the dual solution was increased with higher critical values of the shrinking parameter.

    2.A higher skin-friction coefficient was noted for larger values of the magnetic parameter in the upper branch.

    3.At higher values of the stratification parameter, a substantial rise in fluid temperature was observed for both solutions.

    4.Higher values of the radiation and thermal stratification parameters decreased the Nusselt number for both the upper and lower branch solutions.

    5.A decreasing tendency was observed for velocity curves with increased values of the velocity-slip parameter in the case of the second solution.

    6.The hybrid nanofluid temperature was significantly increased by a greater thermal radiation parameter in both solutions.

    ORCID iDs

    三级毛片av免费| 亚洲人与动物交配视频| 桃色一区二区三区在线观看| 可以在线观看毛片的网站| 日韩中文字幕欧美一区二区| 黄色女人牲交| 亚洲av第一区精品v没综合| 可以在线观看的亚洲视频| 成人一区二区视频在线观看| 999久久久精品免费观看国产| 久久这里只有精品中国| 国产成人精品久久二区二区91| 成年免费大片在线观看| 欧美乱码精品一区二区三区| 男人舔女人的私密视频| 变态另类丝袜制服| 亚洲欧美日韩高清专用| 淫妇啪啪啪对白视频| 国产精品亚洲一级av第二区| 午夜免费观看网址| 日韩高清综合在线| 老司机福利观看| 国产成+人综合+亚洲专区| www.自偷自拍.com| 女生性感内裤真人,穿戴方法视频| 免费观看的影片在线观看| 欧美另类亚洲清纯唯美| 老司机在亚洲福利影院| 久久精品aⅴ一区二区三区四区| а√天堂www在线а√下载| 色视频www国产| 真人做人爱边吃奶动态| 亚洲av成人不卡在线观看播放网| 综合色av麻豆| 免费在线观看亚洲国产| 久久久久免费精品人妻一区二区| 2021天堂中文幕一二区在线观| 久久久国产精品麻豆| 久久久国产成人免费| 久久久精品大字幕| 12—13女人毛片做爰片一| 深夜精品福利| 午夜精品久久久久久毛片777| 最近最新中文字幕大全电影3| 亚洲专区国产一区二区| 色吧在线观看| 禁无遮挡网站| 91老司机精品| 人妻夜夜爽99麻豆av| 欧美黑人欧美精品刺激| 成人性生交大片免费视频hd| 看片在线看免费视频| 国内少妇人妻偷人精品xxx网站 | 中文字幕最新亚洲高清| 国产精品98久久久久久宅男小说| 久久99热这里只有精品18| 成人特级av手机在线观看| 日韩精品中文字幕看吧| 免费看光身美女| 亚洲午夜精品一区,二区,三区| 一区二区三区激情视频| 99re在线观看精品视频| 丰满的人妻完整版| 长腿黑丝高跟| 综合色av麻豆| 91久久精品国产一区二区成人 | 国产精品av视频在线免费观看| 久久精品影院6| 观看美女的网站| 在线观看午夜福利视频| 久99久视频精品免费| 特大巨黑吊av在线直播| 99热这里只有是精品50| 亚洲成av人片在线播放无| 网址你懂的国产日韩在线| 精品电影一区二区在线| 黄色女人牲交| 亚洲色图 男人天堂 中文字幕| 中文字幕久久专区| 好男人电影高清在线观看| 午夜福利免费观看在线| x7x7x7水蜜桃| 亚洲最大成人中文| 丰满的人妻完整版| av女优亚洲男人天堂 | а√天堂www在线а√下载| 成人亚洲精品av一区二区| 欧美日韩瑟瑟在线播放| 国产高清激情床上av| 免费看十八禁软件| 人妻丰满熟妇av一区二区三区| 人妻夜夜爽99麻豆av| 成年女人永久免费观看视频| 国产亚洲欧美98| www日本在线高清视频| 色噜噜av男人的天堂激情| 日韩欧美免费精品| 最近最新免费中文字幕在线| 国产aⅴ精品一区二区三区波| 人人妻人人看人人澡| 老汉色∧v一级毛片| 老汉色av国产亚洲站长工具| 97超级碰碰碰精品色视频在线观看| 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 男人的好看免费观看在线视频| 精品一区二区三区av网在线观看| 日韩欧美 国产精品| 一个人免费在线观看的高清视频| 美女高潮的动态| 亚洲国产精品合色在线| 18禁国产床啪视频网站| 嫁个100分男人电影在线观看| 高潮久久久久久久久久久不卡| 一区二区三区高清视频在线| 免费看美女性在线毛片视频| 精品99又大又爽又粗少妇毛片 | 狂野欧美白嫩少妇大欣赏| 久久精品国产综合久久久| 久久久国产欧美日韩av| 国模一区二区三区四区视频 | 99国产综合亚洲精品| 99久久综合精品五月天人人| 亚洲精品一卡2卡三卡4卡5卡| 美女黄网站色视频| 三级毛片av免费| 超碰成人久久| 亚洲,欧美精品.| 可以在线观看的亚洲视频| 亚洲无线观看免费| 香蕉av资源在线| 香蕉国产在线看| 中文字幕av在线有码专区| 无遮挡黄片免费观看| 极品教师在线免费播放| 国产精品 欧美亚洲| 999久久久精品免费观看国产| 琪琪午夜伦伦电影理论片6080| 欧美色欧美亚洲另类二区| 超碰成人久久| 99精品欧美一区二区三区四区| 国产精品美女特级片免费视频播放器 | 日本黄大片高清| 免费在线观看亚洲国产| 日韩高清综合在线| 美女高潮的动态| 天堂影院成人在线观看| 可以在线观看毛片的网站| 悠悠久久av| 亚洲av电影在线进入| 特大巨黑吊av在线直播| 人妻夜夜爽99麻豆av| 99国产综合亚洲精品| 日本三级黄在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久性视频一级片| 国产亚洲精品一区二区www| 国产精品香港三级国产av潘金莲| 一级作爱视频免费观看| 国产伦一二天堂av在线观看| 国产欧美日韩一区二区三| 精品一区二区三区视频在线 | 日韩欧美精品v在线| 老鸭窝网址在线观看| 怎么达到女性高潮| 97人妻精品一区二区三区麻豆| 中亚洲国语对白在线视频| 国产激情欧美一区二区| 国产精品香港三级国产av潘金莲| 成年人黄色毛片网站| 韩国av一区二区三区四区| 少妇丰满av| a在线观看视频网站| 天堂av国产一区二区熟女人妻| 亚洲美女黄片视频| 久久久色成人| 757午夜福利合集在线观看| 1024香蕉在线观看| 国产97色在线日韩免费| 国产99白浆流出| 舔av片在线| 美女扒开内裤让男人捅视频| 三级国产精品欧美在线观看 | 免费av不卡在线播放| АⅤ资源中文在线天堂| 人妻久久中文字幕网| 婷婷亚洲欧美| 五月伊人婷婷丁香| 亚洲性夜色夜夜综合| 黄色 视频免费看| 日本黄大片高清| 美女高潮喷水抽搐中文字幕| 国产精品久久久久久人妻精品电影| 丝袜人妻中文字幕| 午夜精品在线福利| 精品久久久久久成人av| 欧美高清成人免费视频www| 黄色 视频免费看| 国产主播在线观看一区二区| 一夜夜www| x7x7x7水蜜桃| 真人做人爱边吃奶动态| 日韩免费av在线播放| 亚洲熟妇中文字幕五十中出| 久久久久国内视频| 国产激情久久老熟女| 中文资源天堂在线| 好男人电影高清在线观看| 成人特级av手机在线观看| 亚洲成av人片免费观看| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久久久99蜜臀| 免费看日本二区| 欧美日韩黄片免| 51午夜福利影视在线观看| 两个人看的免费小视频| 99re在线观看精品视频| 午夜激情福利司机影院| 亚洲国产高清在线一区二区三| 国产精品女同一区二区软件 | 天堂√8在线中文| 99久国产av精品| 麻豆久久精品国产亚洲av| 精品免费久久久久久久清纯| 可以在线观看毛片的网站| 亚洲片人在线观看| 99热6这里只有精品| 黑人巨大精品欧美一区二区mp4| 亚洲狠狠婷婷综合久久图片| 91老司机精品| 九九久久精品国产亚洲av麻豆 | 999精品在线视频| 99国产综合亚洲精品| 久久久久久久久免费视频了| 热99在线观看视频| 国产精品亚洲av一区麻豆| 国产99白浆流出| 狠狠狠狠99中文字幕| 啦啦啦观看免费观看视频高清| 一级a爱片免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 久久久久国产精品人妻aⅴ院| 国产成人福利小说| 天堂影院成人在线观看| 一a级毛片在线观看| 成人av在线播放网站| 亚洲欧美日韩东京热| 哪里可以看免费的av片| 制服人妻中文乱码| 午夜a级毛片| 非洲黑人性xxxx精品又粗又长| 日本成人三级电影网站| 久久久久久久精品吃奶| 成人永久免费在线观看视频| 久久久久久国产a免费观看| 伦理电影免费视频| 国产真人三级小视频在线观看| 别揉我奶头~嗯~啊~动态视频| 婷婷精品国产亚洲av| 中文字幕熟女人妻在线| 国产精品电影一区二区三区| 男女做爰动态图高潮gif福利片| 亚洲成a人片在线一区二区| 国产极品精品免费视频能看的| 国产高清有码在线观看视频| 小蜜桃在线观看免费完整版高清| 中文字幕人妻丝袜一区二区| 精品久久久久久久久久久久久| 男女午夜视频在线观看| 国产成人一区二区三区免费视频网站| 免费在线观看影片大全网站| 久久中文字幕一级| 国产1区2区3区精品| 久久久成人免费电影| 首页视频小说图片口味搜索| 一区二区三区高清视频在线| 两性夫妻黄色片| 国产乱人伦免费视频| 亚洲九九香蕉| 亚洲av成人一区二区三| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 美女午夜性视频免费| 欧美色欧美亚洲另类二区| 我的老师免费观看完整版| 亚洲五月天丁香| 国产熟女xx| 长腿黑丝高跟| 久久久精品大字幕| www日本黄色视频网| 99热6这里只有精品| 国产一区二区三区视频了| 啪啪无遮挡十八禁网站| 日韩精品中文字幕看吧| 亚洲av熟女| 亚洲无线观看免费| 亚洲性夜色夜夜综合| 脱女人内裤的视频| 亚洲av成人av| 怎么达到女性高潮| 亚洲av成人av| 人妻丰满熟妇av一区二区三区| 黄色女人牲交| 老司机福利观看| 亚洲美女黄片视频| 亚洲一区高清亚洲精品| 女人高潮潮喷娇喘18禁视频| x7x7x7水蜜桃| 欧美又色又爽又黄视频| 成人av在线播放网站| 亚洲国产高清在线一区二区三| 母亲3免费完整高清在线观看| 久久精品亚洲精品国产色婷小说| 香蕉丝袜av| 精品久久久久久久人妻蜜臀av| 国产高清视频在线观看网站| 精品一区二区三区av网在线观看| 99精品欧美一区二区三区四区| 国产精品永久免费网站| 久久这里只有精品中国| 日本在线视频免费播放| 国产主播在线观看一区二区| 日本三级黄在线观看| 99re在线观看精品视频| 美女扒开内裤让男人捅视频| 午夜福利欧美成人| 亚洲av电影不卡..在线观看| 国产一区二区在线观看日韩 | 久久午夜综合久久蜜桃| 免费电影在线观看免费观看| 欧美大码av| 久久婷婷人人爽人人干人人爱| 精品久久蜜臀av无| 日韩 欧美 亚洲 中文字幕| 最新在线观看一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 99久国产av精品| 日韩成人在线观看一区二区三区| x7x7x7水蜜桃| 国产三级在线视频| 美女高潮的动态| 国产av在哪里看| 免费在线观看亚洲国产| 日本与韩国留学比较| 久久这里只有精品19| 18禁观看日本| x7x7x7水蜜桃| 午夜福利18| xxxwww97欧美| 色在线成人网| 人妻久久中文字幕网| 啦啦啦免费观看视频1| 国产单亲对白刺激| 97人妻精品一区二区三区麻豆| 国产69精品久久久久777片 | 国产 一区 欧美 日韩| 午夜免费观看网址| 亚洲在线观看片| 88av欧美| 窝窝影院91人妻| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 日韩欧美免费精品| 欧美日韩瑟瑟在线播放| 欧美黑人巨大hd| 成年版毛片免费区| 日韩高清综合在线| 欧美日韩黄片免| 久久久色成人| 好男人电影高清在线观看| 黄色片一级片一级黄色片| 欧美+亚洲+日韩+国产| 午夜激情福利司机影院| 亚洲成人精品中文字幕电影| 91麻豆av在线| 国产一区在线观看成人免费| 精品久久久久久成人av| 91麻豆精品激情在线观看国产| 99久久成人亚洲精品观看| 亚洲美女视频黄频| 制服人妻中文乱码| 99在线人妻在线中文字幕| 脱女人内裤的视频| 噜噜噜噜噜久久久久久91| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 一个人看的www免费观看视频| 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| 好男人在线观看高清免费视频| av在线蜜桃| 午夜精品久久久久久毛片777| 精品电影一区二区在线| 色视频www国产| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人啪精品午夜网站| 男女做爰动态图高潮gif福利片| 丰满人妻熟妇乱又伦精品不卡| 99久久精品热视频| 天堂网av新在线| 国产黄a三级三级三级人| 可以在线观看毛片的网站| 九九热线精品视视频播放| 色综合婷婷激情| 久久久精品欧美日韩精品| 国产亚洲精品一区二区www| 一夜夜www| 老司机在亚洲福利影院| 禁无遮挡网站| 大型黄色视频在线免费观看| 欧美色欧美亚洲另类二区| 在线视频色国产色| 午夜成年电影在线免费观看| 在线免费观看的www视频| 亚洲在线自拍视频| 淫秽高清视频在线观看| 少妇熟女aⅴ在线视频| 一个人观看的视频www高清免费观看 | 久久婷婷人人爽人人干人人爱| 日韩欧美国产在线观看| 国产av不卡久久| 中文字幕高清在线视频| 性色av乱码一区二区三区2| 国内精品一区二区在线观看| 日韩高清综合在线| 一区二区三区高清视频在线| 成年免费大片在线观看| 久久亚洲精品不卡| 99热这里只有是精品50| 久久久久久大精品| 无限看片的www在线观看| 欧美zozozo另类| 在线观看66精品国产| 青草久久国产| www.自偷自拍.com| 老司机福利观看| 免费av毛片视频| 日韩大尺度精品在线看网址| 极品教师在线免费播放| 国产又色又爽无遮挡免费看| 亚洲色图 男人天堂 中文字幕| 国产97色在线日韩免费| 中文字幕高清在线视频| 综合色av麻豆| 精品久久蜜臀av无| 国产真人三级小视频在线观看| 男插女下体视频免费在线播放| 精品不卡国产一区二区三区| 亚洲熟妇中文字幕五十中出| 国产 一区 欧美 日韩| 国产主播在线观看一区二区| 色av中文字幕| 日韩 欧美 亚洲 中文字幕| 亚洲精品456在线播放app | 美女午夜性视频免费| 成人18禁在线播放| 99在线人妻在线中文字幕| 韩国av一区二区三区四区| 99国产精品一区二区蜜桃av| 中文字幕久久专区| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| 青草久久国产| 国产男靠女视频免费网站| 成人亚洲精品av一区二区| 色吧在线观看| 亚洲午夜理论影院| 亚洲国产欧美一区二区综合| 国产高清视频在线播放一区| 精品久久蜜臀av无| 88av欧美| 国产伦一二天堂av在线观看| 这个男人来自地球电影免费观看| 久久久久久人人人人人| 欧美成人免费av一区二区三区| 18禁国产床啪视频网站| 亚洲av成人一区二区三| a级毛片在线看网站| 国产极品精品免费视频能看的| 精品熟女少妇八av免费久了| 色在线成人网| 观看免费一级毛片| 精品久久久久久久毛片微露脸| 婷婷亚洲欧美| 别揉我奶头~嗯~啊~动态视频| 亚洲成人精品中文字幕电影| 制服人妻中文乱码| 国产精品自产拍在线观看55亚洲| 国产精品99久久99久久久不卡| 久久久国产成人免费| 亚洲欧美日韩无卡精品| 国产高清三级在线| 偷拍熟女少妇极品色| 国产精品一区二区精品视频观看| 久9热在线精品视频| 色在线成人网| 久久热在线av| 国内毛片毛片毛片毛片毛片| 亚洲熟女毛片儿| 国内精品久久久久久久电影| 草草在线视频免费看| 脱女人内裤的视频| 成人午夜高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 精品熟女少妇八av免费久了| 一a级毛片在线观看| 日韩大尺度精品在线看网址| 亚洲av第一区精品v没综合| 亚洲国产高清在线一区二区三| 免费在线观看亚洲国产| 在线永久观看黄色视频| 亚洲中文日韩欧美视频| 久久精品91无色码中文字幕| 97碰自拍视频| 高清在线国产一区| 亚洲无线在线观看| 网址你懂的国产日韩在线| 欧美日韩一级在线毛片| 国产真人三级小视频在线观看| 夜夜躁狠狠躁天天躁| 国内毛片毛片毛片毛片毛片| 欧美三级亚洲精品| 久久精品国产99精品国产亚洲性色| 久久精品国产清高在天天线| 看片在线看免费视频| cao死你这个sao货| 国产爱豆传媒在线观看| 欧美中文综合在线视频| 久久精品综合一区二区三区| 成年版毛片免费区| 午夜激情欧美在线| 国产免费av片在线观看野外av| 成人精品一区二区免费| 中亚洲国语对白在线视频| 成人国产一区最新在线观看| 亚洲第一电影网av| a级毛片a级免费在线| h日本视频在线播放| 无人区码免费观看不卡| 日韩欧美一区二区三区在线观看| 亚洲国产欧美网| 丝袜人妻中文字幕| 亚洲美女黄片视频| 欧美一级a爱片免费观看看| 我要搜黄色片| 麻豆久久精品国产亚洲av| 成人三级做爰电影| 琪琪午夜伦伦电影理论片6080| 黄色日韩在线| xxxwww97欧美| 99精品欧美一区二区三区四区| 不卡av一区二区三区| 麻豆成人午夜福利视频| 色噜噜av男人的天堂激情| 看片在线看免费视频| 国产精品久久视频播放| 日本与韩国留学比较| 91老司机精品| 99国产精品一区二区蜜桃av| 大型黄色视频在线免费观看| av黄色大香蕉| 日本免费a在线| 12—13女人毛片做爰片一| 蜜桃久久精品国产亚洲av| 亚洲国产欧美人成| 又紧又爽又黄一区二区| 欧美3d第一页| 中文字幕人妻丝袜一区二区| 国产精品一区二区三区四区免费观看 | 很黄的视频免费| 国产精品免费一区二区三区在线| 国产成+人综合+亚洲专区| 男人和女人高潮做爰伦理| 亚洲国产看品久久| 国产1区2区3区精品| 久久久久国内视频| 国产成人系列免费观看| 国产激情偷乱视频一区二区| 欧美xxxx黑人xx丫x性爽| 亚洲乱码一区二区免费版| 午夜精品一区二区三区免费看| 欧美zozozo另类| 日韩欧美国产一区二区入口| 国产人伦9x9x在线观看| 男女之事视频高清在线观看| 亚洲专区中文字幕在线| 制服人妻中文乱码| 狠狠狠狠99中文字幕| 伊人久久大香线蕉亚洲五| 国产又黄又爽又无遮挡在线| 一夜夜www| 日韩人妻高清精品专区| 最新美女视频免费是黄的| 亚洲七黄色美女视频| 国产三级中文精品| 制服人妻中文乱码| 最近最新中文字幕大全免费视频| 此物有八面人人有两片| 国产在线精品亚洲第一网站| 免费人成视频x8x8入口观看| 亚洲精品一区av在线观看| 欧美一级a爱片免费观看看| 欧美黑人巨大hd| 村上凉子中文字幕在线| 亚洲 欧美一区二区三区| 亚洲精品久久国产高清桃花| 亚洲自拍偷在线| 国产1区2区3区精品| 亚洲五月婷婷丁香| 国产又色又爽无遮挡免费看| 91在线观看av| 国产淫片久久久久久久久 | 久久精品91蜜桃| 国产激情久久老熟女| 精品国产乱码久久久久久男人|