• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effective approaches to extending medium-term forecasting of persistent severe precipitation in regional models

    2018-05-24 01:41:43WANGDongHaiandZHAOYanFeng

    WANG Dong-Hai and ZHAO Yan-Feng

    aGuangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University,Guangzhou, China; bState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

    1. Introduction

    Persistent severe rainfall (PSR) events, with daily precipitation greater than 50 mm and durations of longer than three days (Bao 2007), are a highly damaging weather phenomenon. For example, a 12-day PSR event in the summer of 1998 caused disastrous flooding in the Yangtze River Valley, with direct economic losses of 250 billion Yuan RMB and a death toll of more than 3000 (Huang et al. 1998;Lu 2000). More recently, in January 2008, successive snow storms in southern China resulted in losses of 146 billion Yuan RMB and over 130 fatalities (Wang et al. 2009).Moreover, PSR events have been occurring with increasing frequency and at higher intensity in the last 60 years,especially since 1990 (Chen and Zhai 2013).

    Regional modeling is a key method for the forecasting of mesoscale circulation and precipitation, and an important means for the forecasting of disastrous weather(Jiao et al. 2006). How to use regional models to extend the medium-term forecasting of PSR events based on improved prediction of regional atmospheric circulation is an important avenue of meteorological research, not least because of the advantages it should bring to disaster prevention and mitigation (Brunet et al. 2010). Most previous studies in this regard have focused on the simulation of atmospheric low-frequency circulation via the combination of statistical and dynamical methods (Zhang et al. 1994; Wheeler and Hendon 2004; Chen, Wei and Gong 2012; Zhu and Li 2017a, 2017b), as well as correcting the forecasting error related to atmospheric circulation (Peng,Che, and Chang 2013) and precipitation (Liu et al. 2013).Meanwhile, little research has been conducted on the use of dynamic prediction methods for PSR from the medium-range forecasting perspective.

    In the last few years, based on current understanding of the formation mechanisms of PSR events (Zhao et al.2017) and the method of dynamic extended forecasting in regional models, studies have focused on analyzing the error sources of regional models and evaluating the predictability of multiscale circulation patterns, proposing improved dynamic forecasting methods for the different types of errors in regional models, and creating a theoretical framework for the dynamic extended medium-term forecasting of PSR events (Zhao et al. 2016; Zhao, Wang,and Xu 2017a, 2017b). Here, we summarize the main results from these attempts at improving dynamic extended forecasting.

    2. Methods

    The forecasting errors of a regional model mainly originate from the initial conditions (ICs) and the numerical forecast model itself. Methods geared toward improving these aspects operate in two main ways: minimizing the uncertainty of ICs by improving the observation and data assimilation system, and making the regional model more representative of the real atmosphere by increasing the resolution and improving the dynamical framework(Wang, Du, and Liu 2011). Most short-range forecast errors originate from the IC errors (Du 2002; Pappenberger et al. 2011), and the IC uncertainty causes the uncertainty in the weather forecast (Jung, Miller, and Palmer 2010).On the other hand, the errors of the model itself cover two main components: systematic error and random error (Reynolds, Satter field, and Bishop 2015). Among these, the systematic error results from de ficiencies in the model dynamical structure, such as the parameterization schemes, resolution, and lateral boundary conditions(LBCs). The systematic circulation errors of different predictive timescales vary in their origin (Lorenz 1982; Tibaldi and Molteni 1990; Skamarock 2004). For the forecasting of PSR events, reducing the IC and LBC errors is an effective approach to reducing the forecasting errors when using a high-resolution regional model (Zhao et al. 2016).

    PSR is different from normal rain events because the water vapor and thermodynamic conditions are produced in the context of weather systems with abnormal or less variation (Ding and Reiter 1982; Samel and Liang 2003; Niu, Zhang, and Jin 2012; Piaget et al. 2015). In the case of PSR, the rainfall duration and amount of precipitation are associated with anomalies of large-scale systems that favor the continuous con fluence of moist/warm and dry/cold air (Zhou and Yu 2005; Qian, Fu, and Yan 2007; Wang et al. 2009; Wang, Xia, and Liu 2011);also, the mesoscale convergence line is a good indicator of the area of severe precipitation (Qian, Shan, and Zhu 2012). As shown by evaluations of the forecasting of multiscale circulation patterns, large-scale circulation systems can be better predicted than smaller-scale disturbances (Lorenz 1969; Chen, Wei, and Gong 2010; Dong et al. 2015). Moreover, global models hold an advantage in predicting large-scale variation, while regional models are better in terms of simulating small-scale disturbances (Wang, Yu, and Wang 2012; Schwartz and Liu 2014; Grazzini and Vitart 2015). Thus, improving the efficiency of large-scale forecasts of the forcing fields whilst at the same time retaining the small-scale features in the regional domain is critical for better forecasting PSR events in regional models.

    The methods of spectral nudging (SN), lateral boundary filtering (LBF), and updated initial conditions (UIC)have been used in the regional Weather Research and Forecasting (WRF) model for PSR forecasting (Wang et al. 2016; Zhao et al. 2016; Zhao, Wang, and Xu 2017a,2017b). SN is a scale-selective interior constraint technique (von Storch, Langenberg, and Feser 2000; Miguez-Macho, Stenchikov, and Robock 2004) for the large-scale circulation in the regional model. It con fines itself to the higher altitudes and cases where the local convection at lower levels develop freely when the large-scale systems develop to deeper levels. SN has been applied in WRF(Miguez-Macho, Stenchikov, and Robock 2004, 2005; Liu et al. 2012; Glisan et al. 2013) and many other regional climate models, in regions such as North America(Kanamaru and Kanamitsu 2007; Spero et al. 2014), western Europe (Feser 2006), and East Asia (Cha and Lee 2009;Xu and Yang 2015), and its application has been shown to significantly improve the prediction of regional climate atmospheric circulation and precipitation forecasts. Zhao et al. (2016) and Zhao, Wang, and Xu (2017a, 2017b) used SN in WRF to improve the forecasting of PSR events in southern China. The nudging experiments were mainly against the horizontal winds, geopotential height and potential temperature above the planetary boundary layer with an interval of 6 h, starting from the initial time to the end time of the forecast, and the nudging fields were from the Global Forecast System (GFS) predictions(Figure 1).

    The LBF method refers to the use of low-pass filtering to retain the regional large-scale circulation from the GFS predictions (Figure 1). In Zhao et al. 2016; its application began in the third-day forecasts and harmonic filtering was selected for spatial field scale separation. The filtering wave selection was based on the dynamical features of the regional large-scale circulation for PSR events (Zhao et al.2017), and the high-frequency waves were reserved by 50%. For the ICs, the UIC method is effective at retaining the large-scale forecasts of the GFS predictions and the small-scale features of the WRF forecasts, by using multi-scale blending (MSB) (Zhao, Wang, and Xu 2017a, 2017b)for 15-day forecasts in WRF. The UIC method was applied to forecasts every three days based on the SN method, with a 12-h running-in period (Figure 1). SN was applied in the first three days, MBS was executed at 2.5 days, and then a new SN was initiated after 12 h of model adaptation.The 15-day forecasts comprised five three-day forecasts.

    Figure 1. Flow diagram of the SN, LBF, and UIC forecast.

    3. Sample case studies

    The methods of the SN and LBF were used in Zhao et al.(2016) to forecast three PSR events during the pre- flood(0000 UTC 19 to 0000 UTC 22 May 2013) and post- flood(0000 UTC 15 to 0000 UTC 19 July 2012) season in South China, and during the Mei-yu period over the Yangtze River Valley (0000 UTC 5 to 0000 UTC 8 July 2013). The anomaly correlation coefficient (ACC) of the 500-hPa geopotential height fields for the different forecast lead times are shown in Figure 2. The improvement by the SN and SN + LBF methods during the PSR periods was re flected mainly in lower-value phases of the ACC at 1–5-day lead times(Figure 2(a)–(c)), whereas the improvement by the LBF was more obvious at 7–11-day lead times (Figure 2(d)–(f)). The averaged ACCs for PSR periods over the different forecast lead times showed that the SN and SN + LBF methods produced stable enhancement, with the SN + LBF method yielding a better forecast at 7–11-day lead times. All the improvements of the new forecasts methods were based on the better GFS forecasts.

    Figure 2. Averaged anomaly correlation coefficients of the 500-hPa geopotential height fields for Domain 1 (15°–55°N, 70°–130°E) at lead times of (a) 1 day, (b) 3 days, (c) 5 days, (d) 7 days, (e) 9 days, and (f) 11 days prior to three PSR events in the pre- flood season in South China, the post- flood season in South China, and the Mei-yu period over the Yangtze–Huaihe river basin, respectively. The abscissa is the forecasting day, with the last four days for the PSR period (beginning at the dotted line). Source: Zhao et al. (2016).

    Figure 3. Accumulative rainfall distribution of PSR during 0000 UTC 30 June to 0000 UTC 6 July 2016 for the observation (OBS), and in the forecast experiments at different lead times ((a1–a3) 3 days; (b1–b3) 5 days; (c1–c3) 7 days) and using the different experiment schemes((a1–c1) control (CTL); (a2–c2) SN + UIC). Panels a3–c3 are the NCEP GFS forecasts. Source: Zhao, Wang, and Xu (2017a).

    The SN and UIC methods (SN + UIC) were used to investigate one of the most devastating flooding events in China since 1998: the case during 0000 UTC 30 June to 0000 UTC 6 July 2016 (Zhao, Wang, and Xu 2017a) (Figure 3). The SN + UIC approach improved the rain band’s range of this PSR event (above 100 mm) at 5–7-day lead times (Figure 3(b2)–(c2)), and the accumulated rainfall above 200 mm at the 3-day lead time (Figure 3(a2)). In addition, the larger the magnitude and longer the lead time, the more obvious the improvement. For the GFS forecasts, the rain band’s range of accumulated rainfall from 50 to 100 mm was wider than that in the observation, and the accumulated rainfall above 100 mm was not forecasted well at 3–5-day lead times (Figure 3(a3)–(b3)). The improvement by the SN + UIC method was based on the new ICs, which combines the advantages of the GFS and WRF forecasts and then improves the accumulated rainfall (especially heavy rainfall) and the rain band’s range forecasts. Furthermore, the SN + UIC method decreased the root-mean-square error (RMSE) for the related meteorological variables in the PSR period, such as the geopotential height, relative humidity, and temperature.

    Numerical predictions of four PSR events during the pre- flood season in South China (case 1, 0000 UTC 12 May–0000 UTC 15 May 2011; case 2, 0000 UTC 4 June–0000 UTC 8 June 2011; case 3, 0000 UTC 6 May–0000 UTC 10 May 2013; and case 4, 0000 UTC 19 May–0000 UTC 22 May 2013) were also investigated using the SN + UIC method (Zhao, Wang, and Xu 2017b). The results showed that the SN + UIC approach improved the prediction of daily precipitation for moderate, heavy, and torrential rain(10–100 mm d?1) (Figure 4). The improvement in the 24-h precipitation threat score by using the SN + UIC method was mainly re flected at 3–7-day lead times for moderate and heavy rain (10–49.9 mm d?1) (Figure 4(b)–(d)), and achieved slightly better forecasts in terms of the relative improvement rate of RMSE for accumulated rainfall (6.2%)and relative humidity (5.67%).

    4. Concluding remarks

    This paper summarizes the improvements generated by a selection of methods (SN, LBF, and UIC) in extending the forecasting of PSR events in China using the WRF model.In addition, relevant case simulations are analyzed and verified.

    The improvements for precipitation generated by these methods are mainly re flected at lead times of 3–7 days for moderate and heavy rain forecasts; plus, the larger the magnitude and longer the lead time, the more significant the improvement–especially when using the SN + UIC approach. For regional large-scale circulation, the improvement through use of SN is apparent mainly in the lower-value phases of the ACC at 1–5-day lead times, while the improvement via the LBF method is more obvious at 7–11-day lead times. In addition, the SN + UIC method decreases the RMSE for the geopotential height, relative humidity,and temperature in the PSR period, and the improvements for the relative humidity may make a greater contribution to the better performance of the SN + UIC method in the precipitation forecasts.

    Figure 4. Averaged threat scores at lead times of (a) 1 day, (b) 3 days, (c) 5 days and (d) 7 days prior to four PSR events during the pre- flood season in South China based on different methods. Source: Zhao, Wang, and Xu (2017b).

    Case studies show that achieving a more efficient use of large-scale forecasts of the global model whilst at the same time retaining the small-scale features in the regional domain is critical for better forecasting PSR events in China using a regional model. In view of the universality of the principles behind the improvements generated by the methods mentioned in this paper, it should be possible to apply them in other regional models for extending the forecasting range for PSR events and other disastrous weather, thus further enhancing disaster prevention and mitigation capabilities. Future work should focus on identifying the optimum con figuration of parameterization schemes and investigating in detail the function of the methods mentioned here, as well as designing a new skill score that can be used for better quantitative verification and analysis. Finally, more cases and long-term statistical studies in different areas with more in-depth dynamic and thermodynamic analysis are needed to fully assess the advantages of these methods of improvement.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This study was jointly supported by the National Natural Science Foundation of China [grant number 41775097], [grant number 91437221], the National Key Basic Research Program of China [grant number 2012CB417204], and the China Special Fund for Meteorological Research in the Public Interest [grant number GYHY201506002].

    References

    Bao, M. 2007. “The Statistical Analysis of the Persistent Heavy Rain in the Last 50 Years over China and Their Backgrounds on the Large-scale Circulation.”Chinese Journal of Atmospheric Sciences (in Chinese)31: 779–792.

    Brunet, G., M. Shapiro, B. Hoskins, M. Moncrieff, R. Dole, G. N.Kiladis, B. Kirtman, et al. 2010. “Collaboration of the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction.”Bulletin of the American Meteorological Society91: 1397–1406.

    Cha, D. H., and D. K. Lee. 2009. “Reduction of Systematic Errors in Regional Climate Simulations of the Summer Monsoon over East Asia and the Western North Pacific by Applying the Spectral Nudging Technique.”Journal of Geophysical Research114: D14108.

    Chen, G. J., F. Y. Wei, and Y. F. Gong. 2012. “An Extended-range Forecast Method for the Persistent Heavy Rainfall over the Yangtze Huaihe River Valley in Summer Based on the Lowfrequency Oscillation Characteristics.”Chinese Journal of Atmospheric Sciences (in Chinese)36: 633–644.

    Chen, G. J., F. Y. Wei, and Y. F. Gong. 2010. “Assessing the Extended Range Forecast Error of NCEP/CFS in the Summer of East Asia.”Journal of Applied Meteorological Science (in Chinese)21:659–670.

    Chen, Y., and P. M. Zhai. 2013. “Persistent Extreme Precipitation Events in China during 1951–2010.”Climate Research57:143–155.

    Ding, Y. H., and E. R. Reiter. 1982. “A Relationship between Planetary Waves and Persistent Rain- and Thunderstorms in China.”Theoretical & Applied Climatology31: 221–252.

    Dong, Y., S. D. Liu, D. H. Wang, Y. F. Zhao. 2015. “Assessment on Forecasting Skills of GFS Model for Two Persistent Rainfalls over Southern China GFS.”Meteorological Monthly Science (in Chinese)41: 45–51.

    Du, J. 2002. “Present Situation and Prospects of Ensemble Numerical Prediction.”Journal of Applied Meteorological Science (in Chinese)13: 16–28.

    Feser, F. 2006. “Enhanced Detectability of Added Value in Limited-area Model Results Separated into Different Spatial Scales.”Monthly Weather Review134: 2180–2190.

    Glisan, J. M., W. J. Gutowski, J. J. Cassano, M. E. Higgins. 2013.“Effects of Spectral Nudging in WRF on Arctic Temperature and Precipitation Simulations.”Journal of Climate26: 3985–3999.

    Grazzini, F., and F. Vitart. 2015. “Atmospheric Predictability and Rossby Wave Packets.”Quarterly Journal of the Royal Meteorological Society141: 2793–2802.

    Huang, R. H., Y. H. Xu, P. F. Wang, L. T. Zhou. 1998. “The Features of the Catastrophic Flood over the Changjiang River Basin during the Summer of 1998 and Cause Exploration.”Climatic and Environmental Research (in Chinese)3: 300–313.

    Jiao, H. Y., J. D. Gong, B. Zhou, S. R. Zhao. 2006. “An Overview of the Development of Weather Forecasting.”Journal of Applied Meteorological Science (in Chinese)17: 594–602.

    Jung, T., M. Miller, and T. Palmer. 2010. “Diagnosing the Origin of Extended-range Forecast Errors.”Monthly Weather Review138: 2434–2446.

    Kanamaru, H., and M. Kanamitsu. 2007. “Scale-selective Bias Correction in a Downscaling of Global Analysis Using a Regional Model.”Monthly Weather Review135: 334–350.

    Liu, L., J. Chen, L. Cheng, C. Z. Lin, and Z. P. Wu. 2013. “Study of the Ensemble-Based Forecast of Extremely Heavy Rainfalls in China:Experiments for July 2011 Cases.”Acta Meteorologica Sinica (in Chinese)71: 853–866.

    Liu, P., A. P. Tsimpidi, Y. Hu, B. Stone, A. G. Russell, and A. Nenes.2012. “Differences between Downscaling with Spectral and Grid Nudging Using WRF.”Atmospheric Chemistry and Physics12: 3601–3610.

    Lorenz, E. N. 1969. “The Predictability of a Flow Which Possesses Many Scales of Motion.”Tellus21: 289–307.

    Lorenz, E. N. 1982. “Atmospheric Predictability Experiments with a Large Numerical Model.”Tellus34: 505–513.

    Lu, R. Y. 2000. “Anomalies in the Tropics Associated with the Heavy Rainfall in East Asia during the Summer of 1998.”Advances in Atmospheric Sciences17: 205–220.

    Miguez-Macho, G., G. L. Stenchikov, and A. Robock. 2004.“Spectral Nudging to Eliminate the Effects of Domain Position and Geometry in Regional Climate Model Simulations.”Journal of Geophysical Research109: 1025–1045.

    Miguez-Macho, G., G. L. Stenchikov, and A. Robock. 2005.“Regional Climate Simulations over North America:Interaction of Local Processes with Improved Large-scale Flow.”Journal of Climate18: 1025–1045.

    Niu, R. Y., Z. G. Zhang, and R. H. Jin. 2012. “The Atmospheric Circulation Features of Two Persistent Heavy Rainfalls over Southern China in the Summer of 2010.”Journal of Applied Meteorological Science (in Chinese)23: 385–394.

    Pappenberger, F., H. Cloke, A. Persson, and D. Demeritt. 2011.“‘HESS Opinions’ on Forecast (in) Consistency in a Hydrometeorological Chain. Curse or Blessing?.”Hydrology and Earth System Sciences15: 2391–2400.

    Peng, X., Y. Che, and J. Chang. 2013. “A Novel Approach to Improve Numerical Weather Prediction Skills by Using Anomaly Integration and Historical Data.”Journal of Geophysical Research Atmospheres118: 8814–8826.

    Piaget, N., P. Froidevaux, P. Giannakaki, F. Gierth, O. Martius,M. Riemer, G. Wolf, C. M. Grams. 2015. “Dynamics of a Local Alpine Flooding Event in October 2011. Moisture Source and Large-Scale Circulation.”Quarterly Journal of the Royal Meteorological Society141: 1922–1937.

    Qian, W. H., J. Fu, and Z. Yan. 2007. “Decrease of Light Rain Events in Summer Associated with a Warming Environment in China during 1961–2005.”Geophysical Research Letters34: L11705.

    Qian, W. H., X. L. Shan, and Y. F. Zhu. 2012. “Capability of Regionalscale Transient Wind Anomalies to Indicate Regional Heavy Rains.”Chinese Journal of Geophysics (in Chinese)55: 1513–1522.

    Reynolds, C. A., E. A. Satter field, and C. H. Bishop. 2015. “Using Forecast Temporal Variability to Evaluate Model Behavior.”Monthly Weather Review143: 4785–4804.

    Samel, A. N., and X. Z. Liang. 2003. “Understanding Relationships between the 1998 Yangtze River Flood and Northeast Eurasian Blocking.”Climate Research23: 149–158.

    Schwartz, C. S., and Z. Liu. 2014. “Convection-permitting Forecasts Initialized with Continuously Cycling Limited-area 3DVAR, Ensemble Kalman Filter, and ‘Hybrid’ Variationalensemble Data Assimilation Systems.”Monthly Weather Review142: 716–738.

    Skamarock, W. C. 2004. “Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra.”Monthly Weather Review132:3019–3032.

    Spero, T. L., M. J. Otte, J. H. Bowden, and C. G. Nolte. 2014.“Improving the Representation of Clouds, Radiation, and Precipitation Using Spectral Nudging in the Weather Research and Forecasting Model.”Journal of Geophysical Research Atmospheres119: 11682–11694.

    von Storch, H., H. Langenberg, and F. Feser. 2000. “A Spectral Nudging Technique for Dynamical Downscaling Purposes.”Monthly Weather Review128: 3664–3673.

    Tibaldi, S., and F. Molteni. 1990. “On the Operational Predictability of Blocking.”Tellus A42: 343–365.

    Wang, D. H., J. Du, and C. J. Liu. 2011. “Recognizing and Dealing with the Uncertainty in Weather and Climate Forecasts.”Meteorological Monthly (in Chinese)37: 385–391.

    Wang, D. H., C. J. Liu, Y. Liu, F. Y. Wei, N. Zhao, Z. N. Jiang, Y. Ying,et al. 2009. “A Preliminary Analysis of Features and Causes of the Snow Storm Event over the Southern Areas of China in January 2008.”Journal of Meteorological Research23: 374–386.

    Wang, D. H., R. D. Xia, and Y. Liu. 2011. “A Preliminary Study of the Flood Causing Rainstorm during the First Rainy Season in South China in 2008.”Acta Meteorologica Sinica (in Chinese)69: 137–148.

    Wang, S. L., X. D. Xu, H. W. Kang, S. Zhang, and X. Zhang. 2016.“Simulation of Continuous Rainfall over South China in Early 2008 with the Spectral Nudging Method and the Periodicity Characteristics of the Water Vapor Channel.”Chinese Journal of Atmospheric Sciences (in Chinese)40: 476–488.

    Wang, S. Z., E. T. Yu, and H. J. Wang. 2012. “A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-way Nesting Approach.”Advances in Atmospheric Sciences29: 731–743.

    Wheeler, M. C., and H. H. Hendon. 2004. “An All-season Realtime Multivariate MJO Index: Development of an Index for Monitoring and Prediction.”Monthly Weather Review132:1917–1932.

    Xu, Z., and Z. L. Yang. 2015. “A New Dynamical Downscaling Approach with GCM Bias Corrections and Spectral Nudging.”Journal of Geophysical Research Atmospheres120: 3063–3084.

    Zhang, J. J., W. J. Li, X. D. Xu, and J. Miao. 1994. “The Experiment of DERF with T42L9 Model for DEKAD and Monthly Mean Circulation Anomaly during the Summer Heavy Rainfall Period in 1991.”Acta Meteorologica Sinica (in Chinese)52:180–186.

    Zhao, Y. F., D. H. Wang, Z. M. Liang, and J. J. Xu. 2016. “Improving Numerical Experiments on Persistent Severe Rainfall Events in Southern China Using Spectral Nudging and Filtering Schemes.”Quarterly Journal of the Royal Meteorological Society142: 3115–3127.

    Zhao, Y. F., D. H. Wang, Z. M. Liang, and J. J. Xu. 2017. “On the Dynamics of the Large-scale Circulation during the Persistent Severe Rainfall Events in Southern China.”Journal of the Meteorological Society of Japan95: 111–125.

    Zhao, Y. F., D. H. Wang, and J. J. Xu. 2017a. “Improving the Regional Model Forecasting of Persistent Severe Rainfall over the Yangtze River Valley Using the Spectral Nudging and Update Cycle Methods: A Case Study.”Atmospheric Science Letters18: 96–102.

    Zhao, Y. F., D. H. Wang, and J. J. Xu. 2017b. “An Attempt to Improve the Forecasting of Persistent Severe Rainfall Using the Spectral Nudging and Update Cycle Methods.”Weather and Forecasting32: 713–723.

    Zhou, T. J., and R. C. Yu. 2005. “Atmospheric Water Vapor Transport Associated with Typical Anomalous Summer Rainfall Patterns in China.”Journal of Geophysical Research Atmospheres110: 211–211.

    Zhu, Z., and T. Li. 2017a. “Extended-Range Forecasting of Chinese Summer Surface Air Temperature and Heat Waves.”Climate Dynamics: 1–15. doi:10.1007/s00382-017-3733-7.

    Zhu, Z., and T. Li. 2017b. “Statistical Extended-Range Forecast of Winter Surface Air Temperature and Extremely Cold Days over China.”Quarterly Journal of the Royal Meteorological Society704 (143): 1528–1538.

    av视频免费观看在线观看| av又黄又爽大尺度在线免费看| 国产白丝娇喘喷水9色精品| 国产精品蜜桃在线观看| 99热这里只有是精品在线观看| 亚洲国产精品成人久久小说| 国产淫片久久久久久久久| 免费黄色在线免费观看| 少妇熟女欧美另类| 国产精品成人在线| 久久精品国产自在天天线| 免费不卡的大黄色大毛片视频在线观看| 免费av不卡在线播放| 麻豆成人av视频| 天堂中文最新版在线下载| 午夜激情福利司机影院| 欧美亚洲 丝袜 人妻 在线| 国产精品国产三级专区第一集| 如日韩欧美国产精品一区二区三区 | 五月玫瑰六月丁香| 男女国产视频网站| 精品卡一卡二卡四卡免费| 免费观看的影片在线观看| 91精品伊人久久大香线蕉| 成年美女黄网站色视频大全免费 | 制服丝袜香蕉在线| kizo精华| 亚洲av二区三区四区| 亚洲精品日韩在线中文字幕| 婷婷色麻豆天堂久久| 亚洲av成人精品一二三区| √禁漫天堂资源中文www| 午夜免费鲁丝| 精品卡一卡二卡四卡免费| 人妻少妇偷人精品九色| 欧美 日韩 精品 国产| 日韩精品免费视频一区二区三区 | 黄色怎么调成土黄色| 亚洲av免费高清在线观看| 啦啦啦啦在线视频资源| 成人综合一区亚洲| 欧美日本中文国产一区发布| 99视频精品全部免费 在线| 99精国产麻豆久久婷婷| 午夜日本视频在线| 国产精品人妻久久久影院| 高清不卡的av网站| 亚洲欧美中文字幕日韩二区| 久久久久久人妻| 日韩视频在线欧美| 久久久久久久久久人人人人人人| 国产精品无大码| 久久久久久伊人网av| 狂野欧美激情性xxxx在线观看| 午夜免费鲁丝| 蜜臀久久99精品久久宅男| 日韩成人av中文字幕在线观看| 国产精品一区www在线观看| videos熟女内射| 国产免费又黄又爽又色| 国产av精品麻豆| 黑丝袜美女国产一区| 日产精品乱码卡一卡2卡三| 亚洲国产精品专区欧美| 久久久久视频综合| 亚洲国产精品一区三区| 午夜福利影视在线免费观看| 欧美丝袜亚洲另类| 精品人妻一区二区三区麻豆| 中文字幕亚洲精品专区| 一个人免费看片子| 免费大片黄手机在线观看| 边亲边吃奶的免费视频| 国产午夜精品久久久久久一区二区三区| 久久99一区二区三区| 在线观看av片永久免费下载| 日韩人妻高清精品专区| 日本av免费视频播放| 久久ye,这里只有精品| 国产精品久久久久久av不卡| 亚洲国产精品成人久久小说| 又爽又黄a免费视频| 亚洲不卡免费看| 美女中出高潮动态图| 国产成人精品福利久久| 伊人亚洲综合成人网| 国产一区二区在线观看av| 久久久国产一区二区| 五月玫瑰六月丁香| 日韩中文字幕视频在线看片| 3wmmmm亚洲av在线观看| 国内揄拍国产精品人妻在线| 久久久久视频综合| 国产视频首页在线观看| 91精品伊人久久大香线蕉| 欧美xxxx性猛交bbbb| 自线自在国产av| 伊人久久国产一区二区| 欧美+日韩+精品| 男的添女的下面高潮视频| 丰满乱子伦码专区| 如何舔出高潮| 99精国产麻豆久久婷婷| 777米奇影视久久| 成年人午夜在线观看视频| 在线观看免费视频网站a站| 久久热精品热| 国产视频首页在线观看| 亚洲精品乱码久久久v下载方式| 人体艺术视频欧美日本| 国产一区二区三区av在线| 日韩成人av中文字幕在线观看| 久久久亚洲精品成人影院| 久久毛片免费看一区二区三区| 亚洲一区二区三区欧美精品| 久久97久久精品| 丝瓜视频免费看黄片| 国产高清不卡午夜福利| 高清av免费在线| 少妇熟女欧美另类| 欧美最新免费一区二区三区| 少妇人妻 视频| 精品卡一卡二卡四卡免费| 日本91视频免费播放| 高清黄色对白视频在线免费看 | 久久久a久久爽久久v久久| 日本黄大片高清| 男女边吃奶边做爰视频| 18禁动态无遮挡网站| 久久久国产精品麻豆| 一级毛片 在线播放| 一本大道久久a久久精品| 久久久久久久久久久丰满| 国产精品久久久久久久电影| 一级片'在线观看视频| 水蜜桃什么品种好| 国产成人freesex在线| 精品一区二区免费观看| 久久国产亚洲av麻豆专区| 水蜜桃什么品种好| 久久久久久人妻| 看免费成人av毛片| 一区二区三区精品91| 久久国产乱子免费精品| 街头女战士在线观看网站| 国产亚洲欧美精品永久| 久久久久久久精品精品| 在线观看www视频免费| 人人妻人人看人人澡| 免费看不卡的av| 亚洲av国产av综合av卡| 婷婷色综合大香蕉| 日韩电影二区| 夜夜看夜夜爽夜夜摸| 亚洲国产精品专区欧美| 亚洲综合精品二区| 香蕉精品网在线| 在线播放无遮挡| 久久久久久久久久久久大奶| 在线观看三级黄色| 好男人视频免费观看在线| 亚洲av综合色区一区| 人人妻人人看人人澡| 久久久久久久久久久久大奶| 国产成人精品婷婷| 亚洲va在线va天堂va国产| 亚洲图色成人| 欧美激情极品国产一区二区三区 | 蜜桃久久精品国产亚洲av| 人人妻人人爽人人添夜夜欢视频 | 亚洲情色 制服丝袜| 水蜜桃什么品种好| 免费人成在线观看视频色| av专区在线播放| 日韩一本色道免费dvd| 我要看日韩黄色一级片| 亚洲四区av| 国产乱人偷精品视频| 亚洲在久久综合| 国产 一区精品| 国产综合精华液| 99热6这里只有精品| 国产午夜精品一二区理论片| 在线看a的网站| 色吧在线观看| 精品久久久精品久久久| 久久精品国产亚洲av天美| 成人免费观看视频高清| 国产精品无大码| 成人漫画全彩无遮挡| 免费黄色在线免费观看| 免费看不卡的av| 日日啪夜夜撸| 亚洲欧洲精品一区二区精品久久久 | 色网站视频免费| 特大巨黑吊av在线直播| 在线播放无遮挡| 一区二区三区精品91| 久久人人爽av亚洲精品天堂| 99热全是精品| a级片在线免费高清观看视频| 男的添女的下面高潮视频| 亚洲内射少妇av| 国产 精品1| 国产欧美日韩精品一区二区| 亚洲av欧美aⅴ国产| 欧美精品一区二区免费开放| 人人妻人人添人人爽欧美一区卜| 99热这里只有是精品在线观看| 久久毛片免费看一区二区三区| 国内少妇人妻偷人精品xxx网站| 日韩中字成人| 久久午夜福利片| 欧美日韩亚洲高清精品| 亚洲欧美日韩东京热| 伊人亚洲综合成人网| 97超视频在线观看视频| 天美传媒精品一区二区| 亚洲精品成人av观看孕妇| 日本vs欧美在线观看视频 | 成人午夜精彩视频在线观看| 99精国产麻豆久久婷婷| 一二三四中文在线观看免费高清| 晚上一个人看的免费电影| a级片在线免费高清观看视频| 日韩av在线免费看完整版不卡| 2018国产大陆天天弄谢| 中文字幕精品免费在线观看视频 | 久久韩国三级中文字幕| 在线观看人妻少妇| 久久久午夜欧美精品| 国产高清有码在线观看视频| 国产成人aa在线观看| 秋霞伦理黄片| 日韩av不卡免费在线播放| 2018国产大陆天天弄谢| 中文在线观看免费www的网站| 这个男人来自地球电影免费观看 | 观看免费一级毛片| 午夜福利在线观看免费完整高清在| 国产亚洲最大av| 亚洲精品一区蜜桃| 街头女战士在线观看网站| 日韩亚洲欧美综合| 人人妻人人爽人人添夜夜欢视频 | 伊人久久国产一区二区| 久久国产乱子免费精品| 麻豆精品久久久久久蜜桃| 九九在线视频观看精品| 日韩大片免费观看网站| 乱系列少妇在线播放| 夫妻性生交免费视频一级片| 欧美国产精品一级二级三级 | 久久精品国产亚洲网站| 2022亚洲国产成人精品| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| 下体分泌物呈黄色| 久久国产精品男人的天堂亚洲 | 简卡轻食公司| 99精国产麻豆久久婷婷| 91精品伊人久久大香线蕉| 91精品一卡2卡3卡4卡| 久久久久视频综合| 国产爽快片一区二区三区| 亚洲国产精品一区二区三区在线| 91久久精品国产一区二区三区| 亚洲国产精品国产精品| 五月伊人婷婷丁香| 国产精品一二三区在线看| 免费观看在线日韩| 一级毛片我不卡| 一个人看视频在线观看www免费| 十分钟在线观看高清视频www | 午夜福利网站1000一区二区三区| 啦啦啦视频在线资源免费观看| 青春草视频在线免费观看| 国产一区二区三区av在线| 乱系列少妇在线播放| 女性生殖器流出的白浆| 人人澡人人妻人| 丝袜喷水一区| 国产真实伦视频高清在线观看| 亚洲综合精品二区| av天堂中文字幕网| 国精品久久久久久国模美| 男女无遮挡免费网站观看| 91aial.com中文字幕在线观看| 日韩亚洲欧美综合| 老司机影院毛片| 久久影院123| 美女中出高潮动态图| 精品久久久久久电影网| 在线亚洲精品国产二区图片欧美 | 国产 精品1| 国产黄片视频在线免费观看| 自线自在国产av| 男的添女的下面高潮视频| 久久精品久久精品一区二区三区| 丝袜在线中文字幕| 少妇被粗大的猛进出69影院 | 久久6这里有精品| 亚洲图色成人| 免费av不卡在线播放| 一级二级三级毛片免费看| 高清在线视频一区二区三区| 精品少妇黑人巨大在线播放| 在线观看免费日韩欧美大片 | 久久 成人 亚洲| 亚洲精品中文字幕在线视频 | 深夜a级毛片| 亚洲欧美日韩卡通动漫| 亚洲图色成人| 国产免费一级a男人的天堂| 视频中文字幕在线观看| 久久久久久久久久久丰满| av播播在线观看一区| 婷婷色综合www| 尾随美女入室| 免费观看a级毛片全部| 最近中文字幕高清免费大全6| 久久国产精品男人的天堂亚洲 | 美女中出高潮动态图| av播播在线观看一区| 偷拍熟女少妇极品色| 国产乱来视频区| 波野结衣二区三区在线| 五月伊人婷婷丁香| 麻豆成人午夜福利视频| 久久久久久久久久成人| 十分钟在线观看高清视频www | 国产成人一区二区在线| 婷婷色综合大香蕉| 另类精品久久| 美女视频免费永久观看网站| 午夜av观看不卡| 人妻人人澡人人爽人人| av.在线天堂| 亚洲成人手机| 欧美日韩综合久久久久久| 91精品国产国语对白视频| 人人妻人人爽人人添夜夜欢视频 | 一级爰片在线观看| xxx大片免费视频| 九九爱精品视频在线观看| 亚洲美女黄色视频免费看| 韩国高清视频一区二区三区| 久久99精品国语久久久| 亚洲国产色片| 久久热精品热| 国产日韩欧美视频二区| 亚洲欧美精品专区久久| 91精品国产九色| 久久国产乱子免费精品| 三上悠亚av全集在线观看 | 国产精品麻豆人妻色哟哟久久| 国内揄拍国产精品人妻在线| 伊人久久国产一区二区| 亚洲精品乱久久久久久| 欧美一级a爱片免费观看看| av又黄又爽大尺度在线免费看| 精品亚洲成a人片在线观看| 亚洲综合色惰| 国产日韩欧美亚洲二区| 97超视频在线观看视频| 日韩电影二区| 亚洲精品国产成人久久av| 欧美变态另类bdsm刘玥| 偷拍熟女少妇极品色| 人人妻人人爽人人添夜夜欢视频 | 80岁老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 久久精品国产亚洲av涩爱| 精品少妇久久久久久888优播| 少妇被粗大的猛进出69影院 | 免费高清在线观看视频在线观看| 免费看av在线观看网站| 观看av在线不卡| 三上悠亚av全集在线观看 | 国产免费又黄又爽又色| 亚洲欧洲日产国产| 另类亚洲欧美激情| 一级二级三级毛片免费看| 国产毛片在线视频| 色视频在线一区二区三区| 在线精品无人区一区二区三| 日本av手机在线免费观看| 国产在线视频一区二区| 18禁在线无遮挡免费观看视频| 国产白丝娇喘喷水9色精品| 嫩草影院入口| 亚洲成色77777| 99久久综合免费| 亚洲成色77777| 性色avwww在线观看| 欧美三级亚洲精品| 欧美日韩av久久| 伊人亚洲综合成人网| 97精品久久久久久久久久精品| 男的添女的下面高潮视频| 亚洲欧美一区二区三区国产| 亚洲精品久久久久久婷婷小说| 亚洲精品第二区| 永久网站在线| 人妻少妇偷人精品九色| 亚洲精品,欧美精品| 91精品国产九色| 成人国产麻豆网| 精品人妻一区二区三区麻豆| 自拍欧美九色日韩亚洲蝌蚪91 | av在线播放精品| 午夜福利,免费看| 免费观看性生交大片5| 麻豆成人av视频| 国产黄片视频在线免费观看| av天堂中文字幕网| av不卡在线播放| 日本黄大片高清| 国产成人aa在线观看| 国产亚洲5aaaaa淫片| 日本黄色片子视频| 成人国产麻豆网| 国产亚洲av片在线观看秒播厂| 777米奇影视久久| 99久久精品一区二区三区| 少妇的逼好多水| 一个人免费看片子| 免费av中文字幕在线| 日韩精品免费视频一区二区三区 | 亚洲精品视频女| 丰满饥渴人妻一区二区三| 在线观看免费日韩欧美大片 | 国产黄片美女视频| 99久久精品国产国产毛片| 免费观看在线日韩| 亚洲欧美日韩另类电影网站| 国产黄频视频在线观看| 亚洲美女搞黄在线观看| 爱豆传媒免费全集在线观看| 人人妻人人看人人澡| 人人妻人人添人人爽欧美一区卜| 国产男女超爽视频在线观看| 99久久综合免费| 欧美xxⅹ黑人| 少妇人妻精品综合一区二区| 国产 一区精品| av线在线观看网站| 国产精品人妻久久久影院| 欧美变态另类bdsm刘玥| 亚洲色图综合在线观看| av.在线天堂| 国产黄色视频一区二区在线观看| 亚洲美女黄色视频免费看| 美女视频免费永久观看网站| 桃花免费在线播放| 久久国产精品男人的天堂亚洲 | 麻豆成人av视频| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久久电影| 51国产日韩欧美| 久久热精品热| 特大巨黑吊av在线直播| 亚州av有码| 人人妻人人看人人澡| 精品少妇久久久久久888优播| 波野结衣二区三区在线| 国产精品一区www在线观看| 国产午夜精品久久久久久一区二区三区| 蜜桃久久精品国产亚洲av| 国产欧美另类精品又又久久亚洲欧美| 日韩在线高清观看一区二区三区| 久久6这里有精品| 亚洲电影在线观看av| 少妇 在线观看| 亚洲精品日韩在线中文字幕| 熟妇人妻不卡中文字幕| 五月玫瑰六月丁香| 麻豆成人av视频| 国产免费一区二区三区四区乱码| 22中文网久久字幕| 久久精品夜色国产| 日韩不卡一区二区三区视频在线| 精品视频人人做人人爽| 久久人人爽av亚洲精品天堂| 九九在线视频观看精品| 一级黄片播放器| 久久精品国产自在天天线| 亚洲国产毛片av蜜桃av| 一级a做视频免费观看| 国产成人一区二区在线| 国产成人免费无遮挡视频| 内射极品少妇av片p| 人人澡人人妻人| 内射极品少妇av片p| 亚洲,一卡二卡三卡| 亚洲不卡免费看| 日韩,欧美,国产一区二区三区| 青春草亚洲视频在线观看| 91久久精品国产一区二区成人| 波野结衣二区三区在线| 国国产精品蜜臀av免费| 蜜桃在线观看..| 26uuu在线亚洲综合色| 亚洲精品一区蜜桃| 在线播放无遮挡| 精品少妇久久久久久888优播| 我要看黄色一级片免费的| .国产精品久久| 男男h啪啪无遮挡| 久久久国产一区二区| 国产黄色视频一区二区在线观看| 天天操日日干夜夜撸| 免费观看性生交大片5| 国产精品.久久久| 久久 成人 亚洲| 熟女电影av网| 99久久精品国产国产毛片| 国产永久视频网站| 麻豆乱淫一区二区| av.在线天堂| 麻豆成人午夜福利视频| 男人舔奶头视频| 中文乱码字字幕精品一区二区三区| 日韩av在线免费看完整版不卡| 美女cb高潮喷水在线观看| 国产免费福利视频在线观看| 男人爽女人下面视频在线观看| 精品酒店卫生间| 毛片一级片免费看久久久久| 成年人免费黄色播放视频 | 高清不卡的av网站| h日本视频在线播放| 久久午夜福利片| 全区人妻精品视频| 最近手机中文字幕大全| 国产熟女欧美一区二区| 国产精品熟女久久久久浪| 91久久精品电影网| 少妇 在线观看| 国产午夜精品久久久久久一区二区三区| 91精品国产九色| 视频区图区小说| 久久精品国产鲁丝片午夜精品| 各种免费的搞黄视频| 精品久久久噜噜| 国产成人精品婷婷| 少妇被粗大的猛进出69影院 | 午夜免费男女啪啪视频观看| 97在线视频观看| 国产伦精品一区二区三区四那| 国产视频首页在线观看| 日韩视频在线欧美| 少妇的逼好多水| 人人妻人人看人人澡| 99九九线精品视频在线观看视频| 高清视频免费观看一区二区| 亚洲欧美清纯卡通| 亚洲精品久久久久久婷婷小说| 丁香六月天网| 黄色怎么调成土黄色| 九九在线视频观看精品| 亚洲精品中文字幕在线视频 | 亚洲av在线观看美女高潮| av天堂久久9| 精品熟女少妇av免费看| 国产精品蜜桃在线观看| 欧美国产精品一级二级三级 | 国产中年淑女户外野战色| 搡女人真爽免费视频火全软件| 国产精品人妻久久久久久| 日韩免费高清中文字幕av| 成人黄色视频免费在线看| 国产高清三级在线| 亚洲色图综合在线观看| 一级,二级,三级黄色视频| 精品亚洲成a人片在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲精品aⅴ在线观看| 黑人巨大精品欧美一区二区蜜桃 | 夫妻午夜视频| 人体艺术视频欧美日本| 国产精品久久久久久久久免| 日本猛色少妇xxxxx猛交久久| 性高湖久久久久久久久免费观看| 亚洲欧美中文字幕日韩二区| 国产一区二区在线观看av| 日日摸夜夜添夜夜添av毛片| 高清不卡的av网站| 国产黄色免费在线视频| 99热这里只有是精品50| 国产免费视频播放在线视频| 夜夜看夜夜爽夜夜摸| 国产精品伦人一区二区| 欧美国产精品一级二级三级 | 麻豆精品久久久久久蜜桃| 日韩三级伦理在线观看| 女性生殖器流出的白浆| 韩国高清视频一区二区三区| 国产亚洲欧美精品永久| 久久久久久久久久人人人人人人| 超碰97精品在线观看| 一本色道久久久久久精品综合| 黄色配什么色好看| 韩国av在线不卡| 欧美精品国产亚洲| 夫妻性生交免费视频一级片| 亚洲精品中文字幕在线视频 | 国产免费又黄又爽又色| 大片免费播放器 马上看| 一区二区三区精品91| 免费人成在线观看视频色| 丰满少妇做爰视频| 69精品国产乱码久久久| 蜜桃在线观看..| 成年人午夜在线观看视频|