張宇雷,張瑜霏,單建軍,黃 達,高倩倩
魚類工廠化循環(huán)水人工繁育設(shè)施裝備應(yīng)用研究進展
張宇雷1,2,張瑜霏1,2,單建軍1,2,黃 達1,高倩倩1
(1. 中國水產(chǎn)科學(xué)研究院漁業(yè)機械儀器研究所,上海 200092;2. 農(nóng)業(yè)農(nóng)村部水產(chǎn)養(yǎng)殖設(shè)施工程重點實驗室,上海 200092)
水產(chǎn)種業(yè)的高質(zhì)量發(fā)展是推動養(yǎng)殖業(yè)發(fā)展的基礎(chǔ),現(xiàn)階段中國魚類人工繁育生產(chǎn)方式設(shè)施裝備化程度低,產(chǎn)業(yè)大而不強,轉(zhuǎn)型升級的需求迫在眉睫。該研究在文獻調(diào)研整理的基礎(chǔ)上,首先就循環(huán)水人工繁育設(shè)施裝備在親魚產(chǎn)卵、魚卵孵化、魚苗培育等方面的研究和應(yīng)用情況展開論述。相對于常規(guī)培育方式,循環(huán)水系統(tǒng)能夠最大程度上構(gòu)建出符合親魚交配和產(chǎn)卵的環(huán)境條件,養(yǎng)殖密度0.01~4.5 kg/m3,系統(tǒng)循環(huán)率9~76%/h,換水率0.7~3%/d;針對不同性質(zhì)的魚卵,介紹了國內(nèi)外目前常用的孵化器主要有瓶式孵化罐、平列式孵化槽、漏斗式孵化器等,闡明了其適用對象、工作原理和主要性能表現(xiàn);針對育苗和養(yǎng)殖系統(tǒng)構(gòu)建需求的差異,綜述了目前在循環(huán)水育苗設(shè)施裝備應(yīng)用研究中關(guān)注的重點和難點。其次,概述了中國魚類人工繁育發(fā)展現(xiàn)狀和問題,分析了循環(huán)水人工繁育技術(shù)的優(yōu)勢和面臨的挑戰(zhàn)。最后提出,魚類工廠化循環(huán)水人工繁育具有較高的可行性和引領(lǐng)性,但是要實現(xiàn)產(chǎn)業(yè)化應(yīng)用仍需要進一步開展基于品種對象的人工繁育環(huán)境構(gòu)建及循環(huán)水處理、繁育過程魚類對環(huán)境應(yīng)激源的生物學(xué)響應(yīng)、智能繁育裝備等方面技術(shù)攻關(guān)和裝備研發(fā)。
水產(chǎn);循環(huán)水繁育;人工繁殖;魚卵孵化;苗種培育
苗種作為水產(chǎn)養(yǎng)殖產(chǎn)業(yè)的重要投入要素之一,是開展水產(chǎn)養(yǎng)殖生產(chǎn)的重要物質(zhì)基礎(chǔ)與保障。苗種的質(zhì)量在一定程度上決定了水產(chǎn)養(yǎng)殖業(yè)的生產(chǎn)效率,關(guān)系到整個養(yǎng)殖產(chǎn)業(yè)的發(fā)展前景[1-3]。中國魚類苗種產(chǎn)業(yè)起步于20世紀(jì)50年代,經(jīng)過70余年的發(fā)展,淡水魚苗種產(chǎn)量基本維持在1.2~1.3萬億尾,海水魚苗產(chǎn)量近10年增漲較快,從2010年44.5億尾到2020年116.6億尾,增幅比例達162%[4]。苗種的穩(wěn)定供給為養(yǎng)殖業(yè)的快速發(fā)展提供了堅實保障。
魚類人工繁育是一項復(fù)雜而精細的工作,為了滿足親魚性腺發(fā)育、交配、產(chǎn)卵以及受精卵孵化、幼魚攝食、發(fā)育等各方面的需求,需要對養(yǎng)殖過程溫、光、聲、水質(zhì)等關(guān)鍵環(huán)境因子進行精準(zhǔn)控制,以充分保證魚苗的產(chǎn)量和質(zhì)量。現(xiàn)階段中國魚類規(guī)?;斯し庇捎玫纳a(chǎn)方式仍相對粗放,大部分苗種場設(shè)施裝備比較簡陋,對于氣候和資源的依賴性較高,生產(chǎn)管理的裝備化和現(xiàn)代化水平與發(fā)達國家相比存在較大差距[5]。
工廠化循環(huán)水人工繁育通過環(huán)境工程、土木建筑、現(xiàn)代生物、電子信息等領(lǐng)域先進技術(shù)和裝備的有機集成,能夠更準(zhǔn)確地構(gòu)建出符合魚類生理和行為需求的環(huán)境條件,是目前國內(nèi)外循環(huán)水養(yǎng)殖應(yīng)用技術(shù)研究的重點方向之一。分析掌握相關(guān)領(lǐng)域研究進展對于中國魚類苗種產(chǎn)業(yè)技術(shù)轉(zhuǎn)型升級,改變落后的整體面貌,實現(xiàn)產(chǎn)業(yè)提質(zhì)增效具有重要的參考和借鑒意義。
親魚的健康狀況和培育環(huán)境很大程度上決定了魚卵的產(chǎn)量和質(zhì)量,相對于常規(guī)培育方式,循環(huán)水人工繁殖能夠通過人工干預(yù)最大程度上構(gòu)建出符合親魚性腺發(fā)育、交配和產(chǎn)卵的環(huán)境條件。Boccanfus等[6]通過使用循環(huán)水人工繁殖系統(tǒng)模擬光、溫、鹽季節(jié)變化,研究了其對牙鲆()親魚產(chǎn)卵和孵化率的影響,結(jié)果表明,2015-2018年間牙鲆親魚產(chǎn)卵總數(shù)增加92.8%,受精卵孵化率從38.1%提高至61.0%。Okumura等[7]發(fā)現(xiàn)赤點石斑()在40 m3容積親魚池中產(chǎn)出受精卵數(shù)量僅是在350 m3親魚池中的一半,主要原因是親魚交配時沒有足夠的游動空間,出現(xiàn)不正常的跳躍現(xiàn)象。從系統(tǒng)配置情況來看,現(xiàn)有研究采用的循環(huán)水人工繁殖系統(tǒng)水處理工藝與成魚養(yǎng)殖系統(tǒng)相似,主要通過介質(zhì)過濾和蛋白分離技術(shù)去除固體顆粒,通過生物反應(yīng)器分解去除氨氮,通過紫外殺菌對水體進行消毒處理,通過熱泵實時控制系統(tǒng)水溫。由于養(yǎng)殖密度較常規(guī)養(yǎng)殖系統(tǒng)要低,系統(tǒng)循環(huán)率(即單位時間內(nèi)從魚池流入循環(huán)水處理系統(tǒng)的水體體積占魚池總水體的比例)一般設(shè)定在30 %/h以下(表1)。
表1 循環(huán)水繁殖設(shè)施研究對象和配置情況
總結(jié)相關(guān)研究進展認為,在循環(huán)水人工繁殖系統(tǒng)中可以實現(xiàn)石斑、牙鲆、鰣魚等品種的正常交配和繁殖生產(chǎn),但是存在的問題也很明顯:首先,由于鮮活餌料投喂,導(dǎo)致養(yǎng)殖池底沉積物較多,人工清理的工作量較大;其次,光、溫、鹽等環(huán)境因子調(diào)節(jié)容易導(dǎo)致系統(tǒng)水質(zhì)的波動造成魚類應(yīng)激;催產(chǎn)、交配和產(chǎn)卵等行為的把控主要依賴于經(jīng)驗,可復(fù)制性低;最后,由于水體的循環(huán)流動容易導(dǎo)致魚卵流失。當(dāng)然,不同品種繁殖所需條件的差異性也較大,需要進一步針對性和系統(tǒng)性的開展相關(guān)生物學(xué)研究工作,為系統(tǒng)構(gòu)建提供理論依據(jù)。
根據(jù)質(zhì)量比不同魚卵分為沉性卵、浮性卵和漂流性卵等;根據(jù)卵粒粘性又分成無粘性卵和粘性卵。針對不同性質(zhì)的受精卵,國內(nèi)外目前常用的孵化器主要有以下幾種:
1)瓶式孵化罐(mcdonald-type hatching jar)。罐體由透明、易清潔的塑料制成,工作原理簡單可靠。干凈水流從罐體中心導(dǎo)流管注入,從底部流出,通過上升水流的帶動使沉底魚卵形成漂浮和流動狀態(tài),保證與水流的充分接觸。罐體頂部安裝過濾網(wǎng),可防止魚卵隨水流溢出,上升水流經(jīng)過濾網(wǎng)后從溢流口排出孵化器。魚卵孵化后取下濾網(wǎng),即可使仔魚隨水流流出。該孵化罐主要用于鮭鱒類、鱘魚、鱸魚、鯉魚等沉性魚卵的孵化,1個6 L的瓶式孵化罐可容納約10萬粒鮭魚卵(圖1)。
2)平列式孵化槽(california-type incubation troughs)。通常由玻璃鋼或強化塑料制成,槽內(nèi)放置4~8個底部和側(cè)面穿孔透水的孵化托盤,托盤隔板延伸至槽底以阻擋水流(圖2)。通過這種方式,可使水流逐一從托盤底部流入,流經(jīng)魚卵層后再從上部溢出。新孵化的仔魚亦可通過網(wǎng)孔流出托盤,待所有魚卵孵化后,可將托盤連同剩余的死卵一起取出。該孵化器主要適用于質(zhì)量比大,需要靜置或者是彼此大量粘附的魚卵,如鮭鱒類、斑點叉尾鮰、鯰魚等,每80~100 L水體可容納100~150 g魚卵。抽屜式孵化柜(Vertical Incubators)工作原理和平列式孵化槽比較類似,但是孵化托盤采用垂直布置,水流從上而下流經(jīng)每個托盤,結(jié)構(gòu)更緊湊,占地面積更小,但是水體空間不大,魚苗孵化后必須立即轉(zhuǎn)移。
圖1 瓶式孵化罐[15]
1.進水管;2.孵化托盤;3.受精卵;4.魚卵過濾網(wǎng);5.溢流出水口;6.孵化槽
3)漏斗式孵化器(funnel type incubators)。罐體由玻璃纖維、鋼板或工程塑料制成,容量40~200 L不等。干凈水從罐底部流入,從培養(yǎng)箱的上邊緣流出,水體流動使魚卵懸浮并保持不停的翻滾。為防止魚卵或魚苗隨流水溢出,罐體頂部安裝過濾網(wǎng)。該類型孵化器可用于鳙魚、鯉魚、錦鯉、鯰魚等魚卵的孵化(圖3)。
圖3 漏斗式孵化器[17]
圖4顯示了一套典型的大西洋鮭魚循環(huán)水孵化系統(tǒng)工藝流程圖[18],魚卵孵化階段和魚苗破膜早期(卵黃囊吸收階段)不需要添加外源性飼料,因此在循環(huán)水孵化系統(tǒng)水處理環(huán)節(jié)中主要考慮水溫控制、增氧及消毒殺菌。但是,Irani等[19]研究發(fā)現(xiàn),可能是由于氨氮累積的原因,循環(huán)水孵化的虹鱒仔魚的脂肪含量和抗氧化酶活性均低于流水系統(tǒng)。Robinson等[20]也發(fā)現(xiàn),與流水孵化相比,循環(huán)水孵化的大西洋鮭仔魚表皮較薄,骨骼礦化較少,環(huán)境差異是導(dǎo)致該現(xiàn)象的主要原因,但是具體機理機制尚不清晰。另外,也有研究提出,循環(huán)水系統(tǒng)中孵化酶的累積可能會導(dǎo)致仔魚提前破膜,影響后期發(fā)育的問題[21-22]。
圖5顯示的是Mordenti等[23]設(shè)計研制的歐洲鰻鱺產(chǎn)卵、孵化一體化裝置,配備1套循環(huán)水處理系統(tǒng)(包括蛋白分離器、生物濾器、紫外殺菌、臭氧混合等設(shè)備)。該設(shè)計的最大優(yōu)勢在于能夠通過水流的作用使得產(chǎn)出的受精卵從產(chǎn)卵腔自動流入孵化腔,避免了人工轉(zhuǎn)移魚卵的操作。試驗結(jié)果顯示,胚胎24 h存活率達到62.8%±17.5%。
圖4 MCRA育苗場循環(huán)水孵化系統(tǒng)工藝流程圖[18]
圖5 歐洲鰻鱺封閉循環(huán)水育苗系統(tǒng)原理圖[23]
與成魚相比,仔稚魚生長發(fā)育和體態(tài)變化過程較多,營養(yǎng)需求高,餌料種類復(fù)雜;免疫系統(tǒng)和腸道功能不完全,對環(huán)境因子變化更敏感,病害抵抗能力弱;規(guī)格小、體質(zhì)量輕,游泳和主動攝食能力弱。這些差異是循環(huán)水育苗系統(tǒng)區(qū)別于成魚養(yǎng)殖系統(tǒng)的重要原因,也是目前循環(huán)水育苗技術(shù)領(lǐng)域的研究重點。
藻類、輪蟲、鹵蟲等是仔魚前期生長發(fā)育最常用的生物餌料,而這些餌料的使用往往導(dǎo)致水體中細菌的增加[24-26]。Attramadal等[27-31]通過一系列的研究認為,雖然循環(huán)水育苗系統(tǒng)中的水質(zhì)相對于流水系統(tǒng)要略差,但是,借助成熟的生物濾器和科學(xué)的消毒殺菌策略,能夠在水體中構(gòu)建形成穩(wěn)定的細菌群落,抑制條件致病菌的比例,提高幼魚生長和存活率。此外,魚類早期生活和飼養(yǎng)條件決定了腸道中的微生物群落組成,進一步影響幼魚的免疫和組織學(xué)發(fā)育,對魚類健康和生長起著至關(guān)重要的作用[32-36]。Deng等[37]研究發(fā)現(xiàn),在循環(huán)水育苗系統(tǒng)中添加枯草芽孢桿菌()可增加羅非魚腸道中細菌微生物豐度,幼魚存活率顯著高于流水方式和未添加枯草桿菌的循環(huán)水系統(tǒng)。另外,仔稚魚前期幾乎沒有什么游泳能力,過高或過低的水流都有可能導(dǎo)致魚類無法正常游泳和攝食。針對該問題, Shiotania等[38-42]深入研究了魚池形狀以及曝氣方式對真鯛、石斑和金槍魚仔魚生長的影響??傮w認為,水體內(nèi)的流場分布對于幼魚的存活率影響較大,圓形育苗池在曝氣的作用下形成的流場分布相對更均勻穩(wěn)定,相對于矩形育苗池成活率更高,但是特定生長率沒有顯著差異。此外,為了保證仔稚魚更好的覓食,魚池的顏色和環(huán)境光線的調(diào)控也是研究的重點[43-45]。
中國現(xiàn)階段規(guī)?;斯し庇饕捎贸靥痢⒕W(wǎng)箱和工廠化流水三種方式。池塘繁育方式的應(yīng)用最為普遍,以青魚()、草魚()、鰱魚()、鳙魚()等淡水魚為典型代表。該方式一般會根據(jù)實際情況設(shè)置親魚培養(yǎng)池、產(chǎn)卵池、孵化池、苗種培育池等,配備水泵、增氧機、鼓風(fēng)機等設(shè)備。親魚培養(yǎng)池主要用于親魚營養(yǎng)強化和催產(chǎn);產(chǎn)卵池0.1~1 hm2,水深1.5~2.5 m不等,底泥厚度10~30 cm不等;塘內(nèi)放置若干產(chǎn)卵巢用于收集卵塊,通過增氧機維持溶解氧,通過增加水泵加大水流速度;魚卵一般在室內(nèi)采用微流水方式孵化后再放入苗種培育池(0.2~0.4 hm2)進行培育[46-49]。該方式投入少,成本低,而且池塘中天然餌料較為豐富,魚苗營養(yǎng)可以得到充分保證,存活率較高。但是,缺點在于受氣候和外源性干擾影響較大,產(chǎn)能不高、穩(wěn)定性不足。工廠化流水繁育方式更多地應(yīng)用在冷水性魚類和海水魚繁育,主要設(shè)施包括親魚培育池和產(chǎn)卵池(5 m×5 m左右)以及苗種培育池(3 m×3 m左右),通過連續(xù)不斷的微流水結(jié)合相應(yīng)的溫、光調(diào)控設(shè)備保證養(yǎng)殖環(huán)境和水質(zhì)符合繁育要求[50-51]。該方式優(yōu)點在于環(huán)境可控性相對較高,水質(zhì)更穩(wěn)定、產(chǎn)能較高。但是,缺點在于對水源條件的要求較為苛刻,而且由于營養(yǎng)來源比較單一,魚苗生長發(fā)育速度不如池塘方式。網(wǎng)箱培育方式相對較少,主要品種包括石斑魚()、軍曹魚()等。在海水中一般使用5 m×5 m左右的網(wǎng)箱,在池塘中一般為2 m×2 m或者3 m×3 m的網(wǎng)箱進行親魚培育和產(chǎn)卵,需要和池塘或者流水池相結(jié)合,完成受精卵孵化和魚苗培育[52-54]。現(xiàn)階段國內(nèi)魚類人工繁育的成活率普遍不高,生物學(xué)、行為學(xué)、水環(huán)境等方面的問題相互交叉影響,難以進行科學(xué)嚴謹?shù)胤治雠袛?。以具有典型代表性的大黃魚()為例,其人工繁育生產(chǎn)主要采用工廠化流水或微流水方式,受精卵孵化率在90%左右,而出苗率不到30%。其中,死亡高峰主要出現(xiàn)在受精卵孵化后3日齡左右,仔魚開口攝食階段;另外,在10~20日齡左右也會出現(xiàn)一定比例的死亡,主要是由于水質(zhì)條件變化以及自相殘殺等方面的原因。
相對于傳統(tǒng)繁育方式,工廠化循環(huán)水人工繁育的主要優(yōu)勢在于:1)環(huán)境高度可控,產(chǎn)能和品質(zhì)更穩(wěn)定。通過技術(shù)集成人為構(gòu)建出符合對象需求的環(huán)境條件,更容易保證苗種生產(chǎn)的高效性和穩(wěn)定性;2)資源節(jié)約,環(huán)境友好。循環(huán)水技術(shù)能夠?qū)崿F(xiàn)90%以上的養(yǎng)殖水體循環(huán)利用,可有效減少對水資源的消耗,避免面源污染等問題的進一步嚴重化。
當(dāng)然,循環(huán)水人工繁育技術(shù)目前存在的弊端也很明顯,主要是:1)針對性的繁育工藝和技術(shù)尚不成熟。現(xiàn)有繁育技術(shù)基本都是基于開放環(huán)境,無論是營養(yǎng)源、水化學(xué)成分、微生物等條件均與封閉系統(tǒng)存在較大差異,需要形成針對性的循環(huán)水繁育工藝技術(shù)來保證使用效果;2)系統(tǒng)維護和設(shè)備操作技術(shù)要求較高。循環(huán)水人工繁育系統(tǒng)中需要集成水處理、自動化、信息化等各種不同類型的設(shè)施和裝備,及時的維護和規(guī)范的操作是保證系統(tǒng)正常運行的必要前提,導(dǎo)致生產(chǎn)管理難度和運維成本會有明顯增加。
綜合以上可以看出,魚類工廠化循環(huán)水人工繁育具有較高的可行性和引領(lǐng)性,但是要實現(xiàn)產(chǎn)業(yè)化應(yīng)用仍需要攻克一系列的技術(shù)難題,研究方向主要包括以下幾個方面:
1)繁育過程魚類對環(huán)境應(yīng)激源的生物學(xué)響應(yīng)。魚類繁育是一個非常復(fù)雜的生物學(xué)過程,涉及營養(yǎng)學(xué)、免疫學(xué)、微生物學(xué)、行為學(xué)、環(huán)境生態(tài)學(xué)等多個領(lǐng)域。傳統(tǒng)繁育技術(shù)研究側(cè)重在如何實現(xiàn)特定品種的人工催產(chǎn)、魚卵孵化、仔稚魚中間培育、幼魚培育等方面,是所有繁育生產(chǎn)方式的基礎(chǔ)前提。不同的是,在循環(huán)水人工繁育系統(tǒng)中,所有環(huán)境要素都是由人為進行干預(yù)控制的,因此對繁育過程的環(huán)境生態(tài)學(xué)研究提出了更高的要求,更準(zhǔn)確地掌握親本、魚卵、幼魚的生長發(fā)育過程及其對環(huán)境應(yīng)激源的生物學(xué)相應(yīng),是系統(tǒng)構(gòu)建和高效運行的根本保障。
2)基于品種對象的人工繁育環(huán)境構(gòu)建及循環(huán)水處理技術(shù)研究。不同魚類品種無論是親魚、受精卵還是仔稚魚,其生理習(xí)性、物理特性、環(huán)境需求等或多或少都存在一定的差異,而且由于循環(huán)水系統(tǒng)水體封閉循環(huán),會導(dǎo)致一部分難降解物質(zhì)在水中長期累積,如類固醇、孵化酶、生物濾器細菌代謝產(chǎn)物和重金屬等[55],需要針對性的開發(fā)相應(yīng)的循環(huán)水處理技術(shù),建立科學(xué)合理的系統(tǒng)配置工藝,構(gòu)建出符合對象生理和行為需求的繁育環(huán)境。同時,在水產(chǎn)養(yǎng)殖工業(yè)化發(fā)展的現(xiàn)代,人工繁育系統(tǒng)的創(chuàng)新更要體現(xiàn)宜機化、數(shù)字化、模塊化等特點,朝漁業(yè)無人化方向發(fā)展。
3)智能繁育裝備技術(shù)研發(fā)。親魚的選擇對于產(chǎn)卵的數(shù)量和產(chǎn)量都有重要的影響。目前,對于親魚的篩選主要采用傳統(tǒng)形態(tài)學(xué)測量方法,參數(shù)局限性較大,精準(zhǔn)程度低,細微差別無法測量;測量過程時間長,容易造成魚體損傷。采用信息化技術(shù)手段研發(fā)智能化的親魚性狀評估技術(shù)和裝備可以通過非入侵方式對魚類表觀形態(tài)、行為軌跡等進行更客觀地分析,篩選出狀態(tài)優(yōu)異的魚作為產(chǎn)卵親本,無論對于育苗產(chǎn)業(yè)還是科學(xué)研究都具有重要的價值。此外,相對成魚來說,仔稚魚數(shù)量密集、體形微小,體質(zhì)脆弱,各方面生產(chǎn)作業(yè)和管控難度都大幅增加。養(yǎng)殖人員對于水質(zhì)和仔魚狀態(tài)的評估幾乎完全依賴經(jīng)驗,24h輪班工作來完成餌料投喂、魚情觀察和魚池清理等工作,導(dǎo)致魚苗生產(chǎn)的不可控性大幅增加。利用機器視覺、深度學(xué)習(xí)、人工神經(jīng)網(wǎng)絡(luò)等前沿技術(shù)研發(fā)智能繁育裝備技術(shù),實現(xiàn)受精卵/仔稚魚在線計數(shù)、魚情評估、餌料豐度實時分析、魚苗智能投喂和柔性分池起捕,能夠大幅提高魚苗生產(chǎn)的機械化水平,解決人工作業(yè)的主觀性和不穩(wěn)定性,是實現(xiàn)魚苗工業(yè)化生產(chǎn)不可或缺的硬件保障,具有廣闊的市場需求和發(fā)展前景。
水產(chǎn)種業(yè)的高質(zhì)量發(fā)展是推動養(yǎng)殖業(yè)發(fā)展的基礎(chǔ),現(xiàn)階段中國魚類人工繁育采用的生產(chǎn)方式仍相對粗放,產(chǎn)業(yè)規(guī)模大但效率不高、質(zhì)量不穩(wěn)定,生產(chǎn)方式的轉(zhuǎn)變和設(shè)施裝備的提升已經(jīng)迫在眉睫。開展魚類工廠化循環(huán)水人工繁育設(shè)施裝備應(yīng)用技術(shù)研究具有重要的意義。
1)循環(huán)水人工繁殖系統(tǒng)水處理工藝主要由介質(zhì)過濾、蛋白分離、生物過濾、紫外殺菌等環(huán)節(jié)組成,結(jié)合對光、溫、鹽等環(huán)境因子的精準(zhǔn)調(diào)控,可以實現(xiàn)石斑、牙鲆、鰣魚等品種正產(chǎn)交配和產(chǎn)卵,且產(chǎn)卵率和受精率都有明顯提高。但是,仍存在池底清理難度大、魚卵易流失、生產(chǎn)過程智能化程度低等問題。
2)瓶式孵化罐、平列式孵化槽和漏斗式孵化器是目前國內(nèi)外較為常用的魚卵孵化設(shè)備。循環(huán)水孵化系統(tǒng)目前在大西洋鮭、虹鱒等冷水性魚類上的應(yīng)用較多,水處理工藝主要考慮控溫、增氧及消毒殺菌。同時,封閉水環(huán)境對受精卵和仔魚發(fā)育及生長的影響及其機理問題是目前亟需攻克的難點。
3)循環(huán)水育苗設(shè)施裝備的研究方向涵蓋了魚池結(jié)構(gòu)工藝、流態(tài)和流場構(gòu)建、高效水處理和微生物調(diào)控等,以更好地滿足幼魚生長生理的需求。
現(xiàn)階段魚類工廠化循環(huán)水人工繁育設(shè)施裝備應(yīng)用技術(shù)的研究在中國剛剛起步,不僅需要加快魚類繁育過程對封閉水環(huán)境中應(yīng)激源的生物學(xué)響應(yīng)研究;更需要加快智能繁育裝備技術(shù)研發(fā),創(chuàng)新工業(yè)化的繁育系統(tǒng)和模式,實現(xiàn)“人管機器,機器管魚”,將成為今后的產(chǎn)業(yè)發(fā)展的重要方向。
[1] 操建華,孫東升. 中國現(xiàn)代水產(chǎn)種業(yè)創(chuàng)新發(fā)展的路徑思考[J]. 農(nóng)業(yè)現(xiàn)代化研究,2021,42(3):377-389.
Cao Jianhua, Sun Dongsheng. The innovative development path of modern aquaculture seed industry in China[J]. Research of Agricultural Modernization, 2021, 42(3): 377-389. (in Chinese with English abstract)
[2] 中國水產(chǎn)雜志編輯部. 中國水產(chǎn)種業(yè)發(fā)展報告(1949-2019年)[J]. 中國水產(chǎn),2020(9):11-21.
[3] 張安琪. “十四五”時期水產(chǎn)種業(yè)發(fā)展的現(xiàn)狀與對策思考[J]. 北方經(jīng)濟,2021(12):41-44.
[4] 農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局,全國水產(chǎn)技術(shù)推廣總站,中國水產(chǎn)學(xué)會. 中國漁業(yè)統(tǒng)計年鑒(2011-2021)[M]. 北京:中國農(nóng)業(yè)出版社.
[5] 張宇雷,倪琦,劉晃,等. 挪威大西洋鮭魚工業(yè)化養(yǎng)殖現(xiàn)狀及對中國的啟示[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(8):310-315.
Zhang Yulei, Ni Qi, Liu Huang, et al. Status quo of industrialized aquaculture of Atlantic salmon in Norway and its implications for China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 310-315. (in Chinese with English abstract)
[6] Boccanfuso J J, Abud E O A, Berrueta M. Improvement of natural spawning of black flounder,(Valenciennes, 1839) by photothermal and salinity conditioning in recirculating aquaculture system[J]. Aquaculture, 2019, 502: 134-141.
[7] Okumura S, Okamoto K, Oomori R, et al. Improved fertilization rates by using a large volume tank in red spotted grouper ()[J]. Fish Physiology and Biochemistry, 2003, 28: 515-516.
[8] Bambill G A, Oka M, Radoni? M, et al. Broodstock management and induced spawning of flounder(Valenciennes, 1839) under a closed recirculated system[J]. Revista de Biología Marina y Oceanografía, 2006, 41(1): 45-55.
[9] Anil M K , Gomathi P, Sugi V V, et al. Captive maturation, breeding and seed production of Pink ear emperor,(Lacepede, 1802) (Family: Lethrinidae) in recirculating aquaculture system (RAS)[J]. Aquaculture, 2019, 503: 207-216.
[10] Mustafa S, Hajini M H, Senoo S, et al. Conditioning of broodstock of tiger grouper,, in a recirculating aquaculture system[J]. Aquaculture Reports, 2015, 2: 117-119.
[11] Ranjan R, Megarajan S, Xavier B, et al. Design and performance of recirculating aquaculture system for marine finfish broodstock development[J]. Aquacultural Engineering, 2019, 85: 90-97.
[12] Liu Q H, Zheng Y H, Fu L, et al. Brood-stock management and natural spawning of American shad () in a recirculating aquaculture system[J]. Aquaculture, 2021, 532: 735952.
[13] Anil M K, Gomathi P, Raheem P K, et al. Captive broodstock development, breeding and seed production of Anthid fish (family: Serranidae) Marcia's anthias,in recirculation aquaculture system (RAS)[J]. Aquaculture, 2018, 492: 265-272.
[14] Pepe-Victoriano R, Miranda L, Ortega A, et al. First natural spawning of wild-caught premature south pacific bonito (, Cuvier 1832) conditioned in recirculating aquaculture system and a descriptive characterization of their eggs embryonic development[J]. Aquaculture Reports, 2021, 19: 100563.
[15] Happer C J, Wrege B M, Isely J J. Striped bass, morone saxatilis, egg incubation in large volume jars[J]. Journal of the World Aquaculture Society, 2010, 41(4): 633-639.
[16] Delince G A, Cambell D, Janssen J A L, et al. Seed production[Z/OL].1987[2022-06-29]. https://www.fao.org/3/ac182e/ AC182E00.htm#TOC.
[17] Woynarovich E, Horváth L. The artificial propagation of warm-water finfishes-A manual for extension[Z/OL]. 1980[2022-06-29]. https://www.fao.org/3/ac742e/AC742E00.htm#TOC.
[18] Summerfelt S T, Wilton G, Roberts D, et al. Developments in recirculating systems for Arctic char culture in North America[J]. Aquaculture Engineering, 2004, 30: 31-71.
[19] Irani A, Noori F. Comparative study on the biochemical factors and antioxidant enzymes of rainbow trout eggs and larvae in a recirculating and flow-through system[J]. Aquaculture, 2020, 523: 735202.
[20] Robinson N, Karlsen C, Ytteborg E, et al. Skin and bone development in Atlantic salmon () influenced by hatchery environment[J]. Aquaculture, 2021, 544: 737155.
[21] Martins C I M, Pistrin M G, Ende S S W, et al. The accumulation of substances in Recirculating Aquaculture Systems (RAS) affects embryonic and larval development in common carp[J]. Aquaculture, 2009, 291: 65-73.
[22] Hagenmaier H E. The hatching process of fish embryos: IV. The enzymological properties of a highly purified enzyme (chorionase) from the hatching fluid of the rainbow trout,rich[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1974, 49(2): 313-324.
[23] Mordenti O, Casalini A, Mandelli M, et al. A closed recirculating aquaculture system for artificial seed production of the European eel (): Technology development for spontaneous spawning and eggs incubation[J]. Aquacultural Engineering, 2014, 58: 88-94.
[24] Blancheton J P, Canaguier B. Bacteria and particulate materials in recirculating seabass () production system[J]. Aquaculture,1995, 133: 215-224.
[25] Olsen A I, Attramadal Y, Jensen A, et al. Influence of size and nutritional value of Artemia franciscana on growth and quality of halibut larvae () during the live feed period[J]. Aquaculture, 1999, 179: 475-487.
[26] Skjermo J, Vadstein O. Characterization of the bacterial flora of mass cultivated[J]. Hydrobiologia, 1993, 255: 185-191.
[27] Attramadal K J K, Salvesen I, Xue R Y, et al. Recirculation as a possible microbial control strategy in the production of marine larvae[J]. Aquacultural Engineering, 2012, 46: 27-39.
[28] Attramadal K J K, Oie G, Storseth T R, et al. The effects of moderate ozonation or high intensity UV-irradiation on the microbial environment in RAS for marine larvae[J]. Aquaculture, 2012, 330: 121-129.
[29] Attramadal K J K, Truong T M H, Bakke I, et al. RAS and microbial maturation as tools for K-selection of microbial communities improve survival in cod larvae[J]. Aquaculture, 2014, 432: 483-490.
[30] Attramadal K J K, Minniti G, Oie G, et al. Microbial maturation of intake water at different carrying capacities affects microbial control in rearing tanks for marine fish larvae[J]. Aquaculture, 2016, 457: 68-72.
[31] Attramadal K J K, Oien J V, Kristensen E, et al. UV treatment in RAS influences the rearing water microbiota and reduces the survival of European lobster larvae ()[J]. Aquacultural Engineering, 2021, 94: 102176.
[32] Dehler C E, Secombes C J, Martin S A M. Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (L.)[J]. Aquaculture, 2017, 467: 149-157.
[33] Giatsis C, Sipkema D, Smidt H, et al. The impact of rearing environment on the development of gut microbiota in tilapia larvae[J]. Scientific Reports, 2015, 5: 18206.
[34] Rawls J F, Samuel B S, Gordon J I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13): 4596-4601.
[35] Nayak S K. Role of gastrointestinal microbiota in fish[J]. Aquaculture Research, 2010, 41: 1553-1573.
[36] Vadstein O, Bergh O, Gatesoupe F J, et al. Microbiology and immunology of fish larvae[J]. Reviews in Aquaculture, 2013, 5(1): 1-25.
[37] Deng Y L, Verdegem M C J, Eding E, et al. Effect of rearing systems and dietary probiotic supplementation on the growth and gut microbiota of Nile tilapia () larvae[J]. Aquaculture, 2022, 546: 737297.
[38] Shiotania S, Hagiwara A, Sakakura Y, et al. Estimation of flow in a rearing tank of marine fish larvae by simplified numerical computation: a case of two-dimensional flow[J]. Aquacultural Engineering, 2005, 32: 465-481.
[39] Sumida T, Kawahara H, Shiotani S, et al. Observations of flow patterns in a model of a marine fish larvae rearing tank[J]. Aquacultural Engineering, 2013, 57: 24-31.
[40] Sakakura Y, Yamazaki W, Takakuwa Y, et al. Flow field control in marine fish larviculture tanks: Lessons from groupers and bluefin tuna in Japan[J]. Aquaculture, 2019, 498: 513-521.
[41] Win A N, Yamazaki W, Hasegawa T, et al. Effect of tank shape on survival and growth of Pacific bluefin tunalarvae[J]. Aquaculture, 2020, 524: 735283.
[42] Win A N, Yamazaki W, Sumida T, et al. Effects of tank shapes and aerations on survival, growth and swim bladder inflation of red seabreamlarvae[J]. Aquaculture Reports, 2020, 18: 100451.
[43] Bera A, Kailasam M, Mandal B, et al. Effect of tank colour on foraging capacity, growth and survival of milkfish () larvae[J]. Aquaculture, 2019, 512: 734347.
[44] McLean E. Fish tank color: An overview[J]. Aquaculture, 2021, 530: 735750.
[45] Cobcroft J M, Battaglene S C. Jaw malformation in striped trumpeterlarvae linked to walling behaviour and tank colour[J]. Aquaculture, 2009, 289: 274-282.
[46] 黃標(biāo)武,林旭吟,曾瑞娟,等. 黃金石斑魚苗種繁育技術(shù)[J]. 中國水產(chǎn),2021(7):78-79.
[47] 李瀟軒,楊志強,馬行空,等. 錦鯉苗種繁育及成魚養(yǎng)殖技術(shù)[J]. 科學(xué)養(yǎng)魚,2017(8):84-86.
[48] 羅曼. 鳡魚規(guī)?;别B(yǎng)殖技術(shù)[J]. 當(dāng)代水產(chǎn),2016,41(5):80-82.
[49] 周志金,胡大雁,朱強. 浙北地區(qū)大口黑鱸“優(yōu)鱸1號”苗種規(guī)?;绶奔夹g(shù)[J]. 科學(xué)養(yǎng)魚,2016(2):8-9.
[50] 吳錦輝,林佩玲,黃錦雄,等. 工廠化循環(huán)水育苗技術(shù)[J]. 農(nóng)業(yè)與技術(shù),2020,40(6):137-138.
[51] 孫中之,柳學(xué)周,徐永江,等. 漠斑牙鲆工廠化苗種繁育試驗[J]. 海洋水產(chǎn)研究,2008,29(6):57-62.
Sun Zhongzhi, Liu Xuezhou, Xu Yongjiang, et al. Experiment on the industrial scale seedling rearing of southern flounder[J]. Marine Fisheries Research, 2008, 29(6): 57-62. (in Chinese with English abstract)
[52] 楊薇,符書源,郭仁湘,等. 鞍帶石斑魚人工繁殖技術(shù)研究[J]. 現(xiàn)代農(nóng)業(yè)科技,2011(2):320-322.
Yang Wei, Fu Shuyuan, Guo Renxiang, et al. Research on artificial propagation technology of[J]. Modern Agricultural Science and Technology, 2011(2): 320-322. (in Chinese with English abstract)
[53] 劉新富,莊志猛,孟振,等. 七帶石斑魚人工繁育技術(shù)研究進展[J]. 中國水產(chǎn)科學(xué),2010,17(5):1128-1136.
Liu Xinfu, Zhuang Zhimeng, Meng Zhen, et al. Progress of artificial breeding technique for seven-band grouper[J]. Journal of Fishery Sciences of China, 2010, 17(5):1128-1136. (in Chinese with English abstract)
[54] 關(guān)忠志,牟均素,衣維國. 鴨綠江斑鱖水庫網(wǎng)箱育苗試驗[J]. 河北漁業(yè),2009(9):22-47.
[55] Martins C I M, Ochola D, Ende S S W, et al. Is growth retardation present in Nile tilapia Oreochromis niloticus cultured in low water exchange recirculating aquaculture systems[J]. Aquaculture, 2009, 298: 43-50.
Review of progress on fish breeding and seed production using Recirculating Aquaculture System (RAS)
Zhang Yulei1,2, Zhang Yufei1,2, Shan Jianjun1,2, Huang Da1, Gao Qianqian1
(1.200092,;2.200092,)
Fish seed is one of the primary input materials for the large-scale production in aquaculture industry. In this review, a systematic summary was firstly made on the artificial fish breeding, hatchery, and larval rearing using Recirculating Aquaculture System (RAS). It is much easier to keep the environment much more convenient for the parent fish to mate and spawn in the RAS, compared with traditional. Specifically, the flounder, grouper, and butterfish can successfully lay spawn in the RAS. Among them, the previous studies reported the culture density of 0.01-4.5 kg/m3, system recirculation rate of 9-76%/h, and water discharged 0.7-3%/day. In terms of the fish eggs hatching, three kinds of incubator were mainly used for the different kind of eggs. Mcdonald-type hatching jar was used for the trout, sturgeon, and seabass, all of which eggs were suspended in water. California-type incubation troughs and vertical incubators were mainly used for the salmon and catfish, of which eggs were be stationary. Similar to the Mcdonald-type hatching jar, the funnel type incubators were used for the fresh water fish, such as the big head, grass, and koi carp. Furthermore, the different requirements of the system to grow out have been summarized to evaluate the influence of the live feed, microorganism, tank size, and light condition on the fish larval rearing. Secondly, the overview has been provided for the fish breeding and seed production in China. The current large-scale artificial fish breeding and seed production were practiced either in the outdoor ponds, net cages or the flow through various systems. Most of the seed production facilities were outdated, where the control of water quality was depended only on the climate and water resources. More importantly, the production efficiency and quality of fish seed were much lower and unstable at present, leading to the less development of aquaculture. Therefore, it is very necessary to upgrade the fish breeding and seed production technology. Recirculating aquaculture can be a promising kind of land-based industrialized aquaculture, due mainly to the high production, high efficiency, strong reproducibility, and environment friendly. Because of the high controllable water quality, recirculating aquaculture can fully meet the harsh requirements for the fish breeding and seed production. Hence, a plenty of practices on the fish breeding and seed production using RAS have been carried out with the different species all over the world. Thirdly, three research fields can be developed to promote the practice of RAS in the fish breeding and seed production in the future. 1) It is essential for the biological response of parent fish, eggs, and larval to the RAS environment stressors in the system design and seed production. 2) The control technology of environment and water quality can be developed in the scientific system configuration for different fish species. 3) The corresponding intelligent equipment can also developed during this time, such as, the screening for the parent fish using the computer vision, automatic counting for the eggs and larval, as well as the smart feeder for the live food.
aquaculture; recirculating hatchery; artificial propagation; egg incubation; seed production
10.11975/j.issn.1002-6819.2022.19.023
S954.1; S961.2
A
1002-6819(2022)-19-0212-07
張宇雷,張瑜霏,單建軍,等. 魚類工廠化循環(huán)水人工繁育設(shè)施裝備應(yīng)用研究進展[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(19):212-218.doi:10.11975/j.issn.1002-6819.2022.19.023 http://www.tcsae.org
Zhang Yulei, Zhang Yufei, Shan Jianjun, et al. Review of progress on fish breeding and seed production using Recirculating Aquaculture System (RAS)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 212-218. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.023 http://www.tcsae.org
2022-06-29
2022-08-20
國家重點研發(fā)計劃項目(2021YFE0108700);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項資金(CARS-47-G20);中國水產(chǎn)科學(xué)研究院科技創(chuàng)新團隊項目(2020TD78)
張宇雷,副研究員,研究方向為漁業(yè)裝備與工程。Email:zhangyulei@fmiri.ac.cn。