• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conductive polymer hydrogel-coated nanopipette sensor with tunable size

    2022-02-01 01:47:20LinLiFengZhouandQiannanXue
    納米技術與精密工程 2022年4期
    關鍵詞:原種場張羅隨縣

    Lin Li, Feng Zhou, and Qiannan Xue,2,a)

    ABSTRACT Nanopipette-based sensors are one of the most effective tools for detecting nanoparticles,bioparticles,and biomolecules.Quantitative analysis of nanoparticles with different shapes and electrical charges is achieved through measurement of the blockage currents that occur when particles pass through the nanopore.However,typical nanopipette sensors fabricated using a conventional needle-pulling method have a typical pore-diameter limitation of around 100 nm.Herein,we report a novel conductive hydrogel-composited nanopipette sensor with a tunable inner-pore diameter.This is made by electrodepositing poly(3,4-ethylenedioxythiophene)polystyrene sulfonate onto the surface of a nanopipette with a prefabricated sacrificia copper layer.Because of the presence of copper ions,the conductive polymer can stably adhere to the tip of the nanopipette to form a nanopore;when nanoparticles pass through the conductive nanopore,more distinct blocking events are observed.The size of the nanopore can be changed simply by adjusting the electrodeposition time.In this way,suitable nanopores can be obtained for highly sensitive screening of a series of particles with diameters of the order of tens of nanometers.

    KEYWORDS Nanopipette,Conductive polymer,Electrodeposition,Nanoparticles

    I.INTRODUCTION

    The word“nanopipette”usually refers to a borosilicate glass pipette with a pore diameter of less than 200 nm and a needle geometry.1Nanopipettes are usually used for biochemical sensing,2,3single-cell monitoring,4,5and scanning probe microscopy.6,7As an important type of nanopore sensor,nanopipettes can be used to test the material exchange in the deep parts of samples such as vesicles8and cells.9,10This is because of their probe-type structure,which allows for very flexibl testing in different scenarios.

    There are two main strategies that are used to fabricate nanopipettes:pulling a heated capillary tube11,12and externally penetrating a nanocavity enclosed in the terminal of a capillary pipette.13–15Most nanoprobes are currently made from borosilicate glass or quartz.16Generally,borosilicate glass capillaries are used for the preparation of nanopipettes using a laser pipette puller.By changing various parameters of this puller(laser intensity,processing time,tensile force,etc.),17the same glass tube can be transformed into nanopores with different apertures at their tips.Borosilicate glass capillaries are soft and easy to fabricate,but it is difficul to use them to create a nanopipette with a pore diameter less than 100 nm.8

    The preparation of nanopipettes using borosilicate capillaries is favored because of its simplicity and consistency,and the resulting nanopipettes can be further modifie to achieve various functions.For example,Ying et al.18used a nanopipette to probe into a cell to monitor its biochemical reactions.Nanopipettes can also be used to filte ions or detect molecules by attaching various molecules to their inner walls;these interact with ions or molecules passing through the nanopores.19A nanopore sensor can be used to distinguish the category of a measured object by detecting transient changes in conductance signals caused by the object passing through the pore.20Nanopipettes are generally suitable for the detection of larger biological particles such as exosomes,virus particles,and other particles above the 100 nm scale.21However,because of the excessive size of their apertures,the signals from nanopipettes are weak when attempting to identify particles with scales of the order of tens of nanometers.When facing the measured nanoparticles with dozens of nanometers,a simple fabrication method is highly desirable.In addition,if conductive materials can be used to form these nanopores,22this could be expected to result in the measured object causing larger transient changes in electrical signals,and this would be conducive to improving the detection resolution.

    In this paper,a new method for preparing nanopores from conductive polymers is proposed,in which the pore size can be adjusted and controlled according to the size of the target particles.In this technique,poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)gel is applied to the tip of a nanopipette as the framework,forming a conductive polymer nanopore by electrodeposition.This design allows nanoparticles of different sizes to pass through the nanopore while resulting in different transient current responses.This method has the following advantages.(i)Conductive polymers have good conductivity and better response sensitivity than quartz nanopores.(ii)PEDOT:PSS is electrodeposited on a copper layer,and the anode oxidizes this copper into copper ions for doping the PEDOT:PSS.This causes the conductive polymer to crosslink into a gel state and more firml adhere to the nanopipette around the nanopore.(iii)Using direct electrodeposition,the pore size can be changed by adjusting the deposition time.This allows a series of transient-current spectra to be obtained and more information to be collected for the identificatio of mixed particles.

    FIG.1.(a)Schematic ofthe process used to produce the PEDOT:PSS conductive polymer nanopore sensors in this study.(b)Detection principle ofthese sensors.

    II.NANOPORE SENSOR FABRICATION

    A.Preparation and processing of nanopores

    A schematic of the process used to produce the nanopores in this study is shown in Fig.1(a).First,the nanopipettes are fabricated from borosilicate glass capillaries using a laser-based micropipette puller system(P-2000,Sutter Instrument Company).The pulling follows a two-step process(Line 1:Heat 350,Fil 3,Vel 30,Del 200,Pul 0;Line 2:Heat 340,Fil 2,Vel 27,Del 160,Pul 250).In the pulling parameters,Heat is related to the power of the laser;Fil is associated with the scanning mode of the laser;Vel is related to the pulling velocity during laser heating;Del is related to the duration of laser heating;and Pul is related to the tensile force after laser heating.Using these parameters,the pore diameter of the nanopore devices was found to be 138.4±3 nm;a scanning electron microscope(SEM)photograph of a nanopipette produced using these parameter values is shown in Fig.2(a).

    Then,a layer of copper is evaporated onto the surface of the obtained nanopipettes using an electron beam evaporation method.The nanopipettes are then immersed in PEDOT:PSS solution(0.13 wt.%)for deposition.The copper layer is taken as the working electrode,a platinum electrode(10×10 mm2)is used as a counter electrode,and a calomel electrode is used as a reference electrode.A positive bias voltage is applied between the working electrode and the counter electrode,and the metallic copper layer of the working electrode is oxidized to form copper ions.These copper ions diffuse around the nanopipette and induce the PEDOT:PSS to become locally gelatinous.23As shown in the inset diagrams of Fig.1(a),the PEDOT:PSS is initially in a colloidal dispersion in the buffer.When the copper layer is oxidized to Cu2+,the electrostatic repulsion between the dispersed PEDOT:PSS particles disappears because of the introduction of copper ions,and they thus cross-link with each other and form a gel state.The instruments and materials required for this preparation process are listed in Table S3.

    B.Optimization of nanopore processing parameters

    We further optimized the parameters used to produce the nanopores.When the Pul parameters of lines 1 and 2 were 0 and 240,respectively,the pore diameter was found to be 189.4 nm[Fig.2(b)].When the Vel parameters of lines 1 and 2 were 27 and 24,respectively,the pore diameter was 109.3 nm[Fig.2(c)].When the Heat parameters of lines 1 and 2 were 340 and 330,respectively,the pore diameter was 219.5 nm[Fig.2(d)].When the Del parameters of lines 1 and 2 were 190 and 150,respectively,the pore diameter was 151.5 nm[Fig.2(e)].As shown in Fig.2(c),the nanopipette was not straight when the aperture was reduced to 109.3 nm.Therefore,we took the parameters used to prepare the nanopipette shown in Fig.2(a)as the optimum values.

    FIG.2.Nanopores produced using different processing parameters.(a)Nanopores obtained following the two-step process(scale bar is 500 nm).(b)–(e)Nanopores obtained after changing the processing parameters.(f)Comparison ofadjusted parameters and corresponding nanopore diameters(units:nm).

    FIG.3.Optical microscope images of nanopipettes:(a)as initially prepared;(b)after copper deposition;(c)after formation of a PEDOT:PSS conductive polymer layer.SEM images of nanopipettes:(d)as initially prepared;(e)with a PEDOT:PSS conductive polymer layer.(f)SEM image showing enlarged section of PEDOT:PSS gel.The scale bars in(a)–(e)are 500 nm long;the scale bar in(f)is 200 nm long.

    C.Characterization of nanopores

    The morphology of the nanopipettes after each preparation step was observed with an optical microscope.It can be seen from Figs.3(a)and 3(b)that the metal copper layer was deposited on the outside of the nanopipette to form a good level of cover.Figure 3(c)demonstrates that the deposited PEDOT:PSS can be uniformly attached to the outer wall of a nanopipette with a diameter of only 100 nm.To demonstrate that the copper ions are conducive to the stable deposition of PEDOT:PSS,we prepared nanopipettes with evaporated gold layers under the same conditions.Figure S1 shows that in these conditions,it is difficul to form a perfect polymer layer on the gold surface.This is because copper ions are oxidized by applying a forward bias to the copper layer;the addition of copper ions causes the slightly negatively charged dispersed PEDOT:PSS particles near the copper layer to become crosslinked with each other,and a stable conductive polymer nanopore is formed at the tip of the nanopipette.If the copper is replaced with gold,it is difficul for the PEDOT:PSS to adhere to the outside of the nanoscale-diameter tubes because there is no metal cation involved.

    We observed the nanopipettes before and after deposition by SEM.Figure 3(e)clearly shows that the PEDOT:PSS is wrapped over the outer walls of the nanopipettes,and the layer is relatively fla and uniform.Figure 3(f)shows a more uniform and flatte PEDOT:PSS gel polymer layer on a nanopipette.Compared with the control group with a gold layer,the sacrificia copper layer helps to obtain a stable conductive polymer layer at the tip of the nanopipette.

    D.Experimental process

    The PEDOT:PSS conductive polymer was electrodeposited on the outside of the tube wall using the nanopipette as the anode.The constant-current method was adopted,and the current was set to 30μA.The nanopores formed by the conductive polymer under four deposition conditions were compared.After the preparation of these four kinds of nanopore,we used a solution of 80 nm-diameter polystyrene spheres(0.1 nM,in 1M KCl,pH=7.4)as standard objects to test each in turn.As shown in Fig.1(b),the polystyrene nanoparticle solution was injected into the nanopipette,a silver probe was inserted into the nanopipette close to the nanopore,and the nanopipette was then put into a test cell with KCl solution(1M KCl,pH=7.4).An Ag/AgCl electrode was also placed in the test cell,and a bias voltage of 1 V was applied between the silver probe and the Ag/AgCl electrode.High-definitio current data were recorded using a patch clamp amplifie(HEKA Elektronik,GmbH).

    III.RESULTS AND DISCUSSION

    A.Optimization of electrodeposition time

    We selected four kinds of nanopores prepared with different electrodeposition durations:0,180,360,and 600 s.As can be seen from Fig.4(a),as the deposition time increases,the average response current of the prepared conductive polymer nanopores when detecting nanoparticles decreases.It can be considered that under the test framework shown in Fig.1(b),the Ag probe and Ag/AgCl electrode are connected by ionic solution through the nanopores,forming an ionic conductivity,g.This conforms to the relationship g=Ig/Vr,where Vris the bias voltage applied between the silver probe and the control electrode and Igis the current obtained from the test.With increasing deposition time,the conductivity inside and outside the nanopores decreases,indicating that the pore size of the conductive polymer nanopores decreases gradually.

    The pore diameter of the nanopores dtipcan be calculated using24

    FIG.4.The current signals from the nanopipettes in response to 80 nm nanoparticles were tested with a patch clamp.(a)Average response currents of the nanopipettes under the four deposition times,0,180,360,and 600 s,labeled as 1#,2#,3#,and 4#,respectively;panels(b)–(e)show plots of the respective currents of the nanopipettes over time.

    It is difficul to characterize the sizes of the pores using images,and the purpose of this study was to test nanoparticles with scales of the order of tens of nanometers using an electrical method.This is the reason that 80 nm-diameter polystyrene nanoparticles were used as the test object to observe the changes in transient current signals.Figures 4(b)–4(d)show the real-time current results from the four kinds of nanopores.When the nanopipette without any deposited conductive polymer was tested,no translocations were observed[Fig.4(b)].This shows that the nanoparticles were able to pass through the nanopore.Because the particle size is much smaller than the nanopore size,the particles will not cause single-particle translocation.

    For a single particle to be observed using a nanopore,the ratio of the pore diameter to the particle diameter needs to be within a certain range.25When a nanopore prepared with a deposition time of 180 s was used to test the nanoparticles,only a very small transient current peak occurred[Fig.4(c)].This is because the nanopore size has been reduced,and it is possible for the nanoparticles to cause a blockage.However,since the pore size is still relatively larger than the particle size,few translocation events can be observed.When the nanopore prepared with a deposition time of 360 s was used to test the nanoparticles,the results showed regular transient current signals[Fig.4(d)].This is because in this case,the size of the nanoparticles is well matched with the pore size;therefore,when the nanoparticles pass through the nanopore one by one,there will be a parallel current with a peak value.When a nanopore prepared with a deposition time of 600 s was used to test the nanoparticles,there were no transient currents observed[Fig.4(e)].Under such deposition conditions,the size of the prepared nanopore is too small to allow 80 nm particles to pass through.These electrical test results are consistent with the calculated apertures,and this preliminarily demonstrates that the experimental assumptions are appropriate.Based on these results,a deposition time of 360 s was selected as the optimal preparation conditions for the modifie conductive polymer PEDOT:PSS.

    FIG.5.Transientcurrent signals under bias voltages of:(a)0.5 V;(b)0.75 V;(c)1 V.(d)–(f)Respective counts of currentpeaks with these three values of bias voltage.(g)–(i)Respective dwelltimes and currentpeaks for each single-particle translocation event.

    B.Optimization of testing conditions for conducting polymer nanopores

    Again using 80 nm-diameter polystyrene nanoparticles as the test object,the bias voltage was optimized to fin an appropriate value for examining the translocation events.The silver probe in the nanopore was used as the anode,and the silver chloride electrode in the solution was used as the cathode.Considering the upper limit of the system voltage,the bias voltage was set to test values of 0.5,0.75,and 1 V.Here,the nanopipette was prepared by drawing,evaporating a copper layer,and electrodeposition(constant current:30μA,360 s).Each nanoparticle passing through the conductive polymer nanopore will cause a single particle-translocation event,and this will result in a transient falling peak in the real-time current curve.

    Figures 5(a)–5(c)show the transient-current signals under the three values of bias voltage.Correspondingly,Figs.5(d)–5(f)show counts of the numbers of current peaks.These results show that the current peaks increase significantl with increasing bias voltage:the number of current peaks is the highest under a bias voltage of 1 V.Figures 5(g)–5(i)show the dwell times under the three respective values of bias voltage;the longest average dwell times were observed with a bias voltage of 1 V.The tested polystyrene nanoparticles have negatively charged sulfonic-acid groups on their surfaces,so when they pass through a nanopore with a positive bias,the dwell time will increase with the bias voltage.The most translocation events occurred with a bias of 1 V,and they had the longest dwell times.

    FIG.6.Real-time current curves of:(a)80 nm and(b)50 nm nanoparticles detected by nanopores deposited for 360 s;(c)80 nm and(d)50 nm nanoparticles detected by nanopores deposited for 600 s.(e)–(h)Counts ofcurrentpeaks in the four tests,corresponding to the current signals in(a)–(d),respectively.(i)–(l)Dwelltimes and current peaks for each single-particle translocation event in the four tests,corresponding to the currentcurves in(a)–(d),respectively.

    C.Conductive polymer nanopores with adjustable pore size

    Using the technique proposed in this paper,nanopores of different sizes can be prepared simply by adjusting the electrodeposition conditions.To demonstrate this,PEDOT:PSS conductive polymer layers were electrodeposited on the tips of nanopipettes with a copper sacrificia layer(constant current:30μA)using two different deposition durations:360 and 600 s.The results in Fig.4 indicate that the diameters of nanopores prepared with a 360 s deposition time should be slightly greater than 80 nm;with a 600 s deposition time,the nanopore diameter should be less than 80 nm.These two kinds of nanopore were used to test polystyrene nanoparticles with particle sizes of 80 and 50 nm to establish whether a differentiated response could be observed.From the real-time current curve for the nanopore prepared with a deposition time of 360 s,it can be seen that there are obvious current spikes in the test with 80 nm nanoparticles[Fig.6(a)],and there were 69 translocation events within a period of 4 s[Fig.6(e)].When the same nanopore was used to test 50 nm nanoparticles,it can be seen that the peaks become very small,and there are significantl fewer than with the 80 nmnanoparticles[Figs.6(e)and 6(f)].These results show that with a deposition time of 360 s,the diameter of the prepared nanopores is only slightly larger than 80 nm.When testing particles with 50 nm size,they cannot produce a response because of the large size difference.This demonstrates that the conductive polymer nanopores prepared under this condition are selective to 80 nm particles.

    2016—2017年在襄陽市襄州區(qū)古驛鎮(zhèn)張羅崗原種場、隨州市隨縣農(nóng)業(yè)科學研究所進行生產(chǎn)試驗,表現(xiàn)分蘗力強、穗多、穗大、穗層整齊,抗倒性好,綜合抗病性較好,每公頃產(chǎn)量分別為7680、7005kg/hm2。

    Nanopores prepared with a deposition time of 600 s were also used for the testing of 80 and 50 nm-diameter nanoparticles.From Figs.6(c)and 6(d),it can be seen that these nanopores provide no response for the 80 nm nanoparticles.The test with 50 nm nanoparticles resulted in regular current-peak signals,and there were 51 translocation events within a period of 4 s[Fig.6(h)].Figures 6(i)–6(l)show the dwell times for the two kinds of nanopores tested with the two sizes of nanoparticle.It can be seen that the nanopore prepared with a deposition time of 600 s has a selective response to 50 nm-diameter nanoparticles.

    The above results demonstrate that by simply changing the deposition time,the selective identificatio of nanoparticles of different sizes can be realized.These nanopore devices can work for more than 180 min under a 1 V bias voltage.The prepared nanopores respond sensitively and can identify single-particle translocation events stably and in real time.

    IV.CONCLUSIONS

    In this paper,a method for preparing nanopores based on electrodeposition of conductive polymers is proposed to meet the test requirements of nanoparticles with scales of the order of tens of nanometers,such as exosomes and virus particles.The nanopores prepared using conductive polymers have good conductivity,so they have better response sensitivity than nanopores prepared with borosilicate glass alone.To solve the problem of securely adhering the conducting polymers to the tips of the nanopipettes,copper ions were introduced,and this caused the polymers to become crosslinked into a gel state during electrodeposition.Stable attachment to the nanopipette tip and the formation of conductive polymer nanopores was successfully achieved.The size of the nanopores can be changed by simply changing the duration of electrodeposition,and this was demonstrated by obtaining a series of transient-current spectra with two kinds of nanoparticles.This method provides a new approach for identificatio of multiple particles at scales of the order of tens of nanometers.

    SUPPLEMENTARY MATERIAL

    See the supplementary material for more details about the deposition of PEDOT:PSS on the gold-plated nanopipette and the instruments and materials used in the experiments.

    AUTHOR DECLARATIONS

    Conflict of Interest

    The authors have no conflict to disclose.

    Author Contributions

    L.L.and F.Z.contributed equally to this work.

    ACKNOWLEDGMENTS

    The authors gratefully acknowledge financia support from the National Natural Science Foundation of China(Grant No.62174119),the National Key R&D Program of China(Grant No.2021YFC3002202),the 111 Project(Grant No.B07014),and the Scientifi Research Transformation Foundation of Wenzhou Safety(Emergency)Institute of Tianjin University.The authors gratefully acknowledge Wenlan Guo,Quanning Li,Chongling Sun,Chen Sun,Xuejiao Chen,and Bohua Liu for their help.

    DATA AVAILABILITY

    The data that support the finding of this study are available within the article and its supplementary material.

    猜你喜歡
    原種場張羅隨縣
    張羅姣作品
    兩種輕型汽車能耗及續(xù)駛里程試驗方法對比
    隨縣第三次林業(yè)有害生物普查結(jié)果及分析
    綠色科技(2020年13期)2020-12-15 06:56:08
    賀家山原種場深兩優(yōu)867再生稻示范總結(jié)
    綠殼蛋雞種群禽白血病凈化技術研究
    靳局長的牽掛
    資源導刊(2019年8期)2019-09-10 07:22:44
    隨縣苗圃主要林業(yè)有害生物
    龍巖市地方優(yōu)良種禽原種場禽白血病p27抗原檢測與分析
    億元土地糾紛牽出多少貪腐黑幕
    新傳奇(2016年31期)2016-10-12 03:32:34
    “小香菇”開創(chuàng)“大產(chǎn)業(yè)”
    支點(2016年1期)2016-01-29 18:50:40
    亚洲av电影不卡..在线观看| 国产激情久久老熟女| 操出白浆在线播放| 黄色片一级片一级黄色片| 久久久久免费精品人妻一区二区| 黄色a级毛片大全视频| www.熟女人妻精品国产| 成人18禁高潮啪啪吃奶动态图| 国内久久婷婷六月综合欲色啪| 欧美大码av| xxx96com| 亚洲av片天天在线观看| 777久久人妻少妇嫩草av网站| 亚洲中文字幕一区二区三区有码在线看 | 午夜免费激情av| 成人国语在线视频| 人人妻人人看人人澡| 亚洲中文字幕一区二区三区有码在线看 | 欧美黑人欧美精品刺激| 日韩大码丰满熟妇| 精品第一国产精品| 欧美日韩精品网址| 两个人免费观看高清视频| 亚洲欧美一区二区三区黑人| 国产激情久久老熟女| 亚洲一区中文字幕在线| 午夜影院日韩av| 亚洲av日韩精品久久久久久密| 久久久国产成人免费| 国产在线精品亚洲第一网站| 国产精品一区二区三区四区免费观看 | 成人欧美大片| 精品电影一区二区在线| 久久香蕉国产精品| 最近在线观看免费完整版| 国产aⅴ精品一区二区三区波| 老熟妇乱子伦视频在线观看| 国产精品香港三级国产av潘金莲| 亚洲欧美一区二区三区黑人| 高清在线国产一区| 全区人妻精品视频| 男女床上黄色一级片免费看| 国产亚洲欧美98| 亚洲在线自拍视频| 免费在线观看影片大全网站| 国产av不卡久久| 久久性视频一级片| 国产av麻豆久久久久久久| 日韩中文字幕欧美一区二区| 88av欧美| 两性夫妻黄色片| 欧美大码av| 午夜两性在线视频| 亚洲,欧美精品.| 久久天躁狠狠躁夜夜2o2o| 成熟少妇高潮喷水视频| 欧美精品亚洲一区二区| 午夜福利18| 露出奶头的视频| 精品熟女少妇八av免费久了| 黑人操中国人逼视频| 午夜视频精品福利| 色综合站精品国产| 黄色片一级片一级黄色片| 男男h啪啪无遮挡| 国内少妇人妻偷人精品xxx网站 | 亚洲人与动物交配视频| 久久久国产成人精品二区| 热99re8久久精品国产| 黄色女人牲交| 国产高清视频在线观看网站| 久久中文字幕一级| 国产av又大| 99热这里只有精品一区 | 18美女黄网站色大片免费观看| 最近在线观看免费完整版| 欧美另类亚洲清纯唯美| 亚洲av中文字字幕乱码综合| 变态另类成人亚洲欧美熟女| 97碰自拍视频| 亚洲成人国产一区在线观看| 国产精品av久久久久免费| 在线观看午夜福利视频| 在线看三级毛片| 中文字幕最新亚洲高清| 国产伦一二天堂av在线观看| 麻豆成人av在线观看| 亚洲av成人一区二区三| 精品高清国产在线一区| 国产黄片美女视频| 大型黄色视频在线免费观看| 嫩草影院精品99| 99久久精品国产亚洲精品| 91九色精品人成在线观看| 欧美日本亚洲视频在线播放| 欧美在线一区亚洲| 国产成人av激情在线播放| 精品国产亚洲在线| 99在线人妻在线中文字幕| 久9热在线精品视频| 一本精品99久久精品77| 精品电影一区二区在线| 日日干狠狠操夜夜爽| 精品一区二区三区四区五区乱码| 久久久久久久久中文| 亚洲av中文字字幕乱码综合| 亚洲国产欧美人成| 99久久精品热视频| 俄罗斯特黄特色一大片| 在线观看免费日韩欧美大片| 非洲黑人性xxxx精品又粗又长| 女人被狂操c到高潮| 看黄色毛片网站| 女人高潮潮喷娇喘18禁视频| 一夜夜www| 亚洲第一欧美日韩一区二区三区| 国产精品一区二区精品视频观看| 波多野结衣高清作品| 免费在线观看黄色视频的| 9191精品国产免费久久| 草草在线视频免费看| 一边摸一边抽搐一进一小说| 日日夜夜操网爽| 97碰自拍视频| 1024视频免费在线观看| 精品久久久久久久人妻蜜臀av| 成人国产一区最新在线观看| 一夜夜www| 国产av一区在线观看免费| 女同久久另类99精品国产91| 国产精品一区二区三区四区久久| 国产97色在线日韩免费| 亚洲精品一卡2卡三卡4卡5卡| 91麻豆精品激情在线观看国产| 给我免费播放毛片高清在线观看| 色综合婷婷激情| 日韩欧美 国产精品| 欧美性猛交黑人性爽| 成年女人毛片免费观看观看9| 久久精品国产综合久久久| 亚洲自拍偷在线| 亚洲精品粉嫩美女一区| 日本撒尿小便嘘嘘汇集6| 搞女人的毛片| 波多野结衣高清作品| 美女 人体艺术 gogo| 国产午夜精品论理片| 欧美在线黄色| 后天国语完整版免费观看| 亚洲av中文字字幕乱码综合| 久久99热这里只有精品18| 国产欧美日韩一区二区精品| 欧美性长视频在线观看| 日韩欧美三级三区| 亚洲欧美精品综合久久99| 一级黄色大片毛片| 亚洲国产欧美人成| 欧美成人免费av一区二区三区| 欧美成人午夜精品| 国产一区二区在线av高清观看| 久久久国产成人精品二区| 国产精品一区二区精品视频观看| 欧美性猛交黑人性爽| 精品欧美一区二区三区在线| 成人av一区二区三区在线看| 国产伦人伦偷精品视频| 人妻丰满熟妇av一区二区三区| 日韩欧美国产一区二区入口| 男插女下体视频免费在线播放| 午夜精品一区二区三区免费看| 亚洲专区中文字幕在线| 欧美成人性av电影在线观看| 欧美黄色淫秽网站| 亚洲中文字幕一区二区三区有码在线看 | 少妇被粗大的猛进出69影院| 很黄的视频免费| 在线观看舔阴道视频| 三级国产精品欧美在线观看 | 俺也久久电影网| 成人国语在线视频| 亚洲午夜理论影院| 少妇粗大呻吟视频| www.999成人在线观看| 中亚洲国语对白在线视频| 美女扒开内裤让男人捅视频| 9191精品国产免费久久| 欧美日本亚洲视频在线播放| 亚洲av第一区精品v没综合| 久久这里只有精品19| 制服人妻中文乱码| 精品福利观看| 国产精品久久久av美女十八| 一个人免费在线观看的高清视频| 99在线视频只有这里精品首页| 丰满人妻熟妇乱又伦精品不卡| 欧美不卡视频在线免费观看 | 亚洲成a人片在线一区二区| 窝窝影院91人妻| 麻豆久久精品国产亚洲av| 美女高潮喷水抽搐中文字幕| 日本一二三区视频观看| 观看免费一级毛片| 亚洲电影在线观看av| 亚洲片人在线观看| 99国产精品一区二区蜜桃av| 久久伊人香网站| 欧美激情久久久久久爽电影| 人人妻,人人澡人人爽秒播| 露出奶头的视频| 精品久久蜜臀av无| 国产乱人伦免费视频| 五月玫瑰六月丁香| 国产av又大| 久久久精品大字幕| 欧美乱色亚洲激情| 无人区码免费观看不卡| 高清在线国产一区| 91在线观看av| www.自偷自拍.com| 黄色视频不卡| 操出白浆在线播放| 国产在线精品亚洲第一网站| 成年版毛片免费区| 国产av在哪里看| 一进一出好大好爽视频| 亚洲一码二码三码区别大吗| 成年女人毛片免费观看观看9| 欧美精品啪啪一区二区三区| 一级a爱片免费观看的视频| 精品国产乱码久久久久久男人| 成年女人毛片免费观看观看9| 亚洲国产精品合色在线| 亚洲片人在线观看| 18美女黄网站色大片免费观看| 国产人伦9x9x在线观看| 午夜两性在线视频| 亚洲精品美女久久久久99蜜臀| 成年人黄色毛片网站| 看免费av毛片| 此物有八面人人有两片| 亚洲性夜色夜夜综合| 色综合欧美亚洲国产小说| 亚洲欧美日韩东京热| 国产精品香港三级国产av潘金莲| 欧美丝袜亚洲另类 | 国产精品98久久久久久宅男小说| 国产男靠女视频免费网站| 亚洲中文日韩欧美视频| 久久久久久免费高清国产稀缺| 久久久久亚洲av毛片大全| 久久精品影院6| 国产亚洲av嫩草精品影院| 国产在线精品亚洲第一网站| 国产一级毛片七仙女欲春2| 久久久水蜜桃国产精品网| 桃红色精品国产亚洲av| 精品国产乱子伦一区二区三区| 人妻夜夜爽99麻豆av| 免费电影在线观看免费观看| 午夜激情福利司机影院| 亚洲av五月六月丁香网| 我要搜黄色片| 国产探花在线观看一区二区| 日韩欧美三级三区| 正在播放国产对白刺激| 亚洲美女视频黄频| 国产单亲对白刺激| 黄色 视频免费看| 岛国在线免费视频观看| 久久久久久久久中文| 美女高潮喷水抽搐中文字幕| 在线播放国产精品三级| 亚洲国产精品999在线| 欧美日韩一级在线毛片| 亚洲中文字幕日韩| 亚洲黑人精品在线| 国产午夜精品论理片| 床上黄色一级片| 女人被狂操c到高潮| 999久久久国产精品视频| 国产精品久久视频播放| 久久精品亚洲精品国产色婷小说| av有码第一页| 国产aⅴ精品一区二区三区波| 日韩 欧美 亚洲 中文字幕| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品综合一区二区三区| 亚洲国产精品成人综合色| 亚洲国产欧美网| 精品国产美女av久久久久小说| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩无卡精品| 久久久久久亚洲精品国产蜜桃av| av中文乱码字幕在线| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看 | 亚洲av成人精品一区久久| 久久久久久久久免费视频了| 国产免费男女视频| 一进一出好大好爽视频| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 在线观看午夜福利视频| 久久草成人影院| 精品国产超薄肉色丝袜足j| 淫秽高清视频在线观看| 校园春色视频在线观看| 国产精品98久久久久久宅男小说| 一二三四社区在线视频社区8| 很黄的视频免费| 成年版毛片免费区| 九色成人免费人妻av| 久久久精品国产亚洲av高清涩受| 日韩精品中文字幕看吧| 88av欧美| 亚洲免费av在线视频| 国产乱人伦免费视频| 99在线人妻在线中文字幕| 国产单亲对白刺激| 日韩中文字幕欧美一区二区| av在线天堂中文字幕| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 最近视频中文字幕2019在线8| 亚洲欧美精品综合久久99| 女人高潮潮喷娇喘18禁视频| 两人在一起打扑克的视频| 欧美+亚洲+日韩+国产| 日韩高清综合在线| 日韩中文字幕欧美一区二区| 国产亚洲av嫩草精品影院| 国产亚洲av高清不卡| 日本 欧美在线| 亚洲av五月六月丁香网| cao死你这个sao货| 国产成+人综合+亚洲专区| 亚洲人成77777在线视频| 可以在线观看毛片的网站| 国产91精品成人一区二区三区| 成人18禁在线播放| 国产私拍福利视频在线观看| 午夜成年电影在线免费观看| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 国产一区在线观看成人免费| 欧美另类亚洲清纯唯美| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清专用| 亚洲人成网站在线播放欧美日韩| 91av网站免费观看| 在线观看舔阴道视频| 中文字幕熟女人妻在线| 国产亚洲精品av在线| 亚洲人成77777在线视频| 色综合婷婷激情| 视频区欧美日本亚洲| 免费一级毛片在线播放高清视频| 亚洲无线在线观看| 欧美乱码精品一区二区三区| 亚洲av成人av| 校园春色视频在线观看| 99久久精品热视频| 国产片内射在线| 一a级毛片在线观看| 午夜福利成人在线免费观看| 两个人免费观看高清视频| 国产精品 欧美亚洲| 日韩精品免费视频一区二区三区| 在线播放国产精品三级| 精品乱码久久久久久99久播| 欧美一级a爱片免费观看看 | 91老司机精品| 女生性感内裤真人,穿戴方法视频| 亚洲在线自拍视频| 亚洲熟妇熟女久久| 免费观看精品视频网站| 久久精品综合一区二区三区| 亚洲av片天天在线观看| 听说在线观看完整版免费高清| 中文资源天堂在线| 国产精品av久久久久免费| 一本综合久久免费| 亚洲aⅴ乱码一区二区在线播放 | 日本一区二区免费在线视频| 好男人电影高清在线观看| 在线观看免费午夜福利视频| av中文乱码字幕在线| 欧美黄色淫秽网站| av欧美777| 欧美日韩亚洲国产一区二区在线观看| 99久久精品热视频| 99热这里只有是精品50| 亚洲精品国产精品久久久不卡| 国产成人啪精品午夜网站| 黄色女人牲交| 黄色a级毛片大全视频| 久久精品影院6| 久久 成人 亚洲| a级毛片a级免费在线| 好看av亚洲va欧美ⅴa在| 少妇裸体淫交视频免费看高清 | 琪琪午夜伦伦电影理论片6080| 中文字幕高清在线视频| 国产精品自产拍在线观看55亚洲| 国产精品乱码一区二三区的特点| 制服丝袜大香蕉在线| 日韩精品中文字幕看吧| 高清毛片免费观看视频网站| 老熟妇仑乱视频hdxx| 欧美人与性动交α欧美精品济南到| 我的老师免费观看完整版| 可以在线观看的亚洲视频| 我的老师免费观看完整版| bbb黄色大片| 免费看a级黄色片| 中出人妻视频一区二区| 2021天堂中文幕一二区在线观| 国产成人欧美在线观看| 久久精品aⅴ一区二区三区四区| 天堂影院成人在线观看| 两个人免费观看高清视频| 最新美女视频免费是黄的| 国产私拍福利视频在线观看| 精品午夜福利视频在线观看一区| 日本免费一区二区三区高清不卡| 全区人妻精品视频| 变态另类丝袜制服| 亚洲一卡2卡3卡4卡5卡精品中文| netflix在线观看网站| 99热只有精品国产| 久久久国产成人精品二区| 日本三级黄在线观看| 99久久久亚洲精品蜜臀av| 丝袜人妻中文字幕| 老司机深夜福利视频在线观看| 亚洲男人天堂网一区| 成人午夜高清在线视频| 黑人操中国人逼视频| 老汉色av国产亚洲站长工具| 精品日产1卡2卡| 男人舔奶头视频| 久久久久九九精品影院| 国产黄片美女视频| cao死你这个sao货| 国产免费男女视频| 久久亚洲真实| 少妇熟女aⅴ在线视频| 欧美成人一区二区免费高清观看 | www.自偷自拍.com| 老司机福利观看| 国产精品一及| 黄色a级毛片大全视频| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 大型av网站在线播放| 亚洲人成网站在线播放欧美日韩| 日本一区二区免费在线视频| 国产真人三级小视频在线观看| 日韩欧美国产在线观看| 琪琪午夜伦伦电影理论片6080| 国产成+人综合+亚洲专区| 老鸭窝网址在线观看| 日本黄色视频三级网站网址| 女警被强在线播放| 国产一区在线观看成人免费| 亚洲人成网站高清观看| 床上黄色一级片| 欧美高清成人免费视频www| 久久久久久大精品| 熟女少妇亚洲综合色aaa.| 夜夜夜夜夜久久久久| 欧美日韩瑟瑟在线播放| 久久久久久久久久黄片| 三级毛片av免费| 国产一区二区三区视频了| 俄罗斯特黄特色一大片| 黑人操中国人逼视频| 国产午夜精品久久久久久| 精品午夜福利视频在线观看一区| 男人舔奶头视频| 91国产中文字幕| 搞女人的毛片| a级毛片a级免费在线| 亚洲欧美日韩高清在线视频| 国产成人系列免费观看| 精品无人区乱码1区二区| 人妻夜夜爽99麻豆av| 岛国在线免费视频观看| 国产成+人综合+亚洲专区| 亚洲狠狠婷婷综合久久图片| 日日爽夜夜爽网站| 免费在线观看完整版高清| 国产av一区在线观看免费| 国内揄拍国产精品人妻在线| 精品久久蜜臀av无| 国产成人系列免费观看| 成人国语在线视频| 午夜免费成人在线视频| 久99久视频精品免费| 久久婷婷成人综合色麻豆| 又大又爽又粗| 日本成人三级电影网站| 一边摸一边抽搐一进一小说| 国产亚洲av高清不卡| 欧美成人一区二区免费高清观看 | 亚洲欧美日韩东京热| 91av网站免费观看| 国产午夜精品论理片| 午夜亚洲福利在线播放| 搞女人的毛片| 久久久久久久精品吃奶| 国产精品乱码一区二三区的特点| 日日干狠狠操夜夜爽| 国产精品一区二区三区四区免费观看 | 国产熟女午夜一区二区三区| 亚洲成人久久性| 一区二区三区高清视频在线| 久久精品91无色码中文字幕| 三级男女做爰猛烈吃奶摸视频| a级毛片在线看网站| 精品久久久久久久人妻蜜臀av| 午夜福利免费观看在线| 久久精品国产综合久久久| 黄色视频,在线免费观看| 韩国av一区二区三区四区| a级毛片a级免费在线| 亚洲成av人片在线播放无| 亚洲人成77777在线视频| netflix在线观看网站| 俄罗斯特黄特色一大片| 夜夜躁狠狠躁天天躁| 久久久水蜜桃国产精品网| 麻豆一二三区av精品| 久久久久久大精品| 中文资源天堂在线| 18禁美女被吸乳视频| 两性午夜刺激爽爽歪歪视频在线观看 | a级毛片在线看网站| 亚洲人成网站在线播放欧美日韩| 午夜福利视频1000在线观看| 亚洲一区二区三区色噜噜| 午夜精品久久久久久毛片777| www.自偷自拍.com| 夜夜夜夜夜久久久久| 午夜福利欧美成人| 丰满人妻熟妇乱又伦精品不卡| 亚洲av美国av| 国产99久久九九免费精品| 久久久国产精品麻豆| 国产精品亚洲美女久久久| 两个人视频免费观看高清| 日本成人三级电影网站| 国产亚洲欧美98| 亚洲精品色激情综合| 一本综合久久免费| 1024手机看黄色片| 亚洲精品久久成人aⅴ小说| 成人精品一区二区免费| 久久久久久久精品吃奶| 伊人久久大香线蕉亚洲五| 国产片内射在线| 久久中文字幕一级| 三级国产精品欧美在线观看 | 国产乱人伦免费视频| 美女 人体艺术 gogo| 18禁国产床啪视频网站| 免费在线观看视频国产中文字幕亚洲| 国产熟女午夜一区二区三区| 久久精品aⅴ一区二区三区四区| 色综合婷婷激情| 男插女下体视频免费在线播放| 美女大奶头视频| 国产av麻豆久久久久久久| 中亚洲国语对白在线视频| 国产男靠女视频免费网站| 精品一区二区三区av网在线观看| 男女之事视频高清在线观看| 国产爱豆传媒在线观看 | 亚洲av日韩精品久久久久久密| 又紧又爽又黄一区二区| 欧美中文日本在线观看视频| 日韩三级视频一区二区三区| 亚洲专区国产一区二区| 国产69精品久久久久777片 | 国产成人av教育| 18禁国产床啪视频网站| 在线十欧美十亚洲十日本专区| 一级作爱视频免费观看| 国产免费av片在线观看野外av| 亚洲av成人一区二区三| 久久九九热精品免费| av欧美777| 韩国av一区二区三区四区| 好男人在线观看高清免费视频| 欧美黑人精品巨大| 亚洲成av人片在线播放无| 国产av又大| 久久精品国产亚洲av香蕉五月| 亚洲午夜理论影院| tocl精华| 亚洲精品久久成人aⅴ小说| 91九色精品人成在线观看| 久9热在线精品视频| 在线永久观看黄色视频| 99久久99久久久精品蜜桃| 亚洲色图 男人天堂 中文字幕| 亚洲国产看品久久| 久久精品国产综合久久久| 1024手机看黄色片| 丰满的人妻完整版| 国产精品乱码一区二三区的特点| 国产成人一区二区三区免费视频网站| 91麻豆精品激情在线观看国产| 757午夜福利合集在线观看| 国内精品久久久久久久电影|