• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于可見(jiàn)/近紅外光譜的菠蘿水心病無(wú)損檢測(cè)

      2022-01-27 02:24:40陸華忠丘廣俊
      關(guān)鍵詞:心病菠蘿正確率

      徐 賽,陸華忠,王 旭,丘廣俊,王 陳,梁 鑫

      基于可見(jiàn)/近紅外光譜的菠蘿水心病無(wú)損檢測(cè)

      徐 賽1,陸華忠2※,王 旭1,丘廣俊1,王 陳1,梁 鑫1

      (1. 廣東省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)質(zhì)量標(biāo)準(zhǔn)與監(jiān)測(cè)技術(shù)研究所,廣州 510640; 2. 廣東省農(nóng)業(yè)科學(xué)院,廣州 510640)

      水心病近年嚴(yán)重危害菠蘿產(chǎn)業(yè),探究一種菠蘿水心病的無(wú)損檢測(cè)方法對(duì)保證上市果品、指導(dǎo)采后處理、促進(jìn)產(chǎn)業(yè)提升具有重要意義。該研究采用自行搭建的菠蘿可見(jiàn)/近紅外光譜無(wú)損智能檢測(cè)平臺(tái),考慮實(shí)際應(yīng)用成本與效果,搭載覆蓋不同波段(400~1 100、900~1 700和400~1 700 nm)的檢測(cè)器對(duì)菠蘿樣本進(jìn)行采樣,隨后人工標(biāo)定水心病發(fā)生程度。研究結(jié)果表明,3種不同光譜波段對(duì)菠蘿水心程度檢測(cè)的較優(yōu)方法均為:采用全波段進(jìn)行多項(xiàng)式平滑(Savitzky Golay,SG)處理,再進(jìn)行標(biāo)準(zhǔn)正態(tài)變量校正(Standard Normal Variate,SNV),最后結(jié)合概率神經(jīng)網(wǎng)絡(luò)(Probabilistic Neural Network,PNN)建模識(shí)別。其中,400~1 100 nm所建模型對(duì)菠蘿水心病訓(xùn)練集的回判正確率為98.51%,對(duì)驗(yàn)證集的檢測(cè)正確率為91.18%;900~1 700 nm所建模型對(duì)菠蘿水心病訓(xùn)練集的回判正確率為100%,對(duì)驗(yàn)證集的檢測(cè)正確率為62%;400~ 1 700 nm所建模型對(duì)菠蘿水心病訓(xùn)練集的回判正確率為100%,對(duì)驗(yàn)證集的檢測(cè)正確率為91.18%。主成分分析(Principal Component Analysis,PCA)和偏最小二乘回歸(Partial Least Squares Regression,PLSR)分析結(jié)果均顯示,采用400~ 1 700 nm能輕微提升400~1 100 nm的檢測(cè)效果。綜合考慮實(shí)際應(yīng)用成本與效果,實(shí)際應(yīng)用建議采用400~1 100 nm光譜結(jié)合SG + SNV + PNN對(duì)菠蘿水心病進(jìn)行識(shí)別。研究結(jié)果證明可見(jiàn)/近紅外光譜技術(shù)可為菠蘿水心病無(wú)損、快速、智能檢測(cè)提供有效的解決方案,為相關(guān)領(lǐng)域提供參考。

      無(wú)損檢測(cè);模型;菠蘿;水心??;可見(jiàn)/近紅外光譜

      0 引 言

      水心病是菠蘿的生理性病害,過(guò)去時(shí)有發(fā)生,受關(guān)注較少,但近年中國(guó)菠蘿水心病發(fā)生逐年加重,成為產(chǎn)業(yè)的新問(wèn)題[1]。發(fā)生水心病的菠蘿果肉呈腐爛、水浸狀,由于果肉細(xì)胞間隙充滿(mǎn)液體,這種果實(shí)不耐存放,并且會(huì)迅速散發(fā)出酒糟味和惡臭味,嚴(yán)重影響口感和風(fēng)味,失去商品價(jià)值[2]。研究團(tuán)隊(duì)2019-2021年對(duì)中國(guó)菠蘿主產(chǎn)區(qū)廣東徐聞菠蘿筆者調(diào)查的水心病發(fā)生率分別為15%、24%和44%,呈逐年遞增的趨勢(shì),需引起相關(guān)領(lǐng)域重視。

      田間水果品質(zhì)的形成通常受陽(yáng)光[3]、降雨[4]、氣溫[5]、營(yíng)養(yǎng)[6]等諸多因素的影響,加上中國(guó)菠蘿以散戶(hù)種植為主,種植標(biāo)準(zhǔn)不統(tǒng)一,短期內(nèi)想要根治水心病難度較大。因此,亟需一種無(wú)損、快速、有效的方法對(duì)水心菠蘿果實(shí)進(jìn)行檢測(cè)與分級(jí),指導(dǎo)采后處理、保障市場(chǎng)品質(zhì)、保護(hù)品牌形象。據(jù)調(diào)研,目前產(chǎn)業(yè)普遍采用人工敲擊辯聲的方法識(shí)別,水心菠蘿果通常聲音較沉悶,但正確率只有約60%,且存在成本高、勞動(dòng)強(qiáng)度大、檢測(cè)效率低??梢?jiàn),開(kāi)發(fā)一種無(wú)損、智能、快速菠蘿水心病檢測(cè)方法意義重大。

      目前,可見(jiàn)/近紅外光譜[7]、電子鼻[8]和機(jī)器視覺(jué)[9]技術(shù)在農(nóng)產(chǎn)品品質(zhì)無(wú)損智能檢測(cè)中均發(fā)揮著重要作用。菠蘿水心病發(fā)生是從內(nèi)部靠近果心的果眼位置開(kāi)始,再逐漸向外蔓延。電子鼻和機(jī)器視覺(jué)技術(shù)在無(wú)損檢測(cè)過(guò)程中更側(cè)重于靠近農(nóng)產(chǎn)品外表的特征,而可見(jiàn)/近紅外光可穿透農(nóng)產(chǎn)品,獲取內(nèi)部品質(zhì)特征信息,更加適合于菠蘿水心病的無(wú)損智能檢測(cè)。前期研究表明,可見(jiàn)/近紅外光譜在小型薄皮水果的內(nèi)部糖度[10-11]、酸度[12-13]、硬度[14-15]、病蟲(chóng)害[16-19]等內(nèi)部品質(zhì)無(wú)損檢測(cè)上是可行的,但菠蘿屬于大型水果,且表面不光滑,容易引起散射噪聲,檢測(cè)難度相對(duì)較大[20]。采用可見(jiàn)/近紅外光譜技術(shù)能否有效無(wú)損檢測(cè)菠蘿水心病,尚未見(jiàn)有關(guān)報(bào)道。

      為此,本研究基于可見(jiàn)/近紅外光譜技術(shù)自行搭建了一套菠蘿水心病無(wú)損智能檢測(cè)平臺(tái),考慮實(shí)際應(yīng)用成本與效果,基于平臺(tái)搭載覆蓋不同波段的檢測(cè)器對(duì)菠蘿樣本進(jìn)行無(wú)損采樣,隨后切開(kāi)檢測(cè)水心發(fā)生情況,建立菠蘿可見(jiàn)/近紅外光譜特征對(duì)水心病的無(wú)損檢測(cè)模型,為菠蘿產(chǎn)業(yè)開(kāi)發(fā)水心病無(wú)損、快速、智能檢測(cè)方法提供科學(xué)參考。

      1 材料與方法

      1.1 光譜檢測(cè)平臺(tái)搭建

      自行搭建的菠蘿品質(zhì)無(wú)損檢測(cè)實(shí)驗(yàn)平臺(tái)如圖1所示。采樣時(shí)將菠蘿水平放置在載物臺(tái)的托盤(pán)上(托盤(pán)可固定菠蘿姿態(tài),亦可使試驗(yàn)結(jié)果更好地為流水線(xiàn)動(dòng)態(tài)檢測(cè)提供參考)。為防止光線(xiàn)未經(jīng)過(guò)菠蘿直接被光纖接收造成噪聲干擾,光源發(fā)射的光需經(jīng)過(guò)進(jìn)光孔,透射過(guò)樣本后,經(jīng)過(guò)出光孔方可被接收。測(cè)試過(guò)程在暗箱內(nèi)進(jìn)行,箱體窗口用窗簾遮光。為尋找較優(yōu)的菠蘿光譜采樣參數(shù),平臺(tái)以下參數(shù)活動(dòng)可調(diào):光源0~900 W可調(diào)由9盞100 W的鹵素?zé)艚M成,LM-100型號(hào),日本MORITEX公司,平均壽命為1 000 h),隔光板上進(jìn)光孔與出光孔的大小經(jīng)過(guò)多次更換、測(cè)試確定,光源、菠蘿樣本和接收光纖之間的距離可通過(guò)滑臺(tái)調(diào)節(jié)。

      接收光纖另一端連接兩臺(tái)覆蓋不同波段的光譜儀,分別是QE pro和NIR QUESR(均為美國(guó)Ocean Optics公司生產(chǎn)),可覆蓋波段400~1 100和900~1 700 nm,若采用兩臺(tái)光譜儀聯(lián)用的方式可覆蓋400~1 700 nm的光譜信息。

      1.光源 2.暗箱體 3.光源開(kāi)關(guān) 4.隔光板 5.托盤(pán) 6.載物臺(tái) 7.遮光窗簾 8.光譜光纖 9.滑臺(tái) 10.出光孔 11.進(jìn)光孔 12.菠蘿樣本

      1.2 菠蘿樣本

      本試驗(yàn)采用的菠蘿果實(shí)2021年4月采摘于廣東省湛江市徐聞縣某農(nóng)場(chǎng),品種為“巴厘”,共100個(gè)樣本,采果后立即在農(nóng)場(chǎng)附件搭建的實(shí)驗(yàn)房?jī)?nèi)進(jìn)行采樣與測(cè)試。

      1.3 菠蘿樣本信息采集

      經(jīng)過(guò)調(diào)試,菠蘿可見(jiàn)/近紅外光譜的較優(yōu)采集參數(shù)設(shè)置為:光譜儀QE pro與NIR QUEST的積分時(shí)間分別為 600 ms與2 000 ms;接收光纖距離菠蘿托盤(pán)距離30 mm;菠蘿托盤(pán)進(jìn)光孔位置距離光源84 mm;光源為500 W;菠蘿托盤(pán)位于托盤(pán)的中心位置,光源、進(jìn)光孔、菠蘿、出光孔、接收光纖處于同一水平。

      采集菠蘿光譜信息后,立即進(jìn)行水心病人工評(píng)判。目前尚未見(jiàn)菠蘿水心病評(píng)級(jí)方法,團(tuán)隊(duì)前期研究提出[21]:將菠蘿縱切兩半,再平均切分成12小片平鋪在桌面上,較全面地觀(guān)察并記錄菠蘿水心病發(fā)生情況。無(wú)水心病表示無(wú)水心病發(fā)生,水心面積占總面積的0%;輕微水心病表示呈輕微水菠蘿跡象,仍可食用,具有一定商品價(jià)值,水心面積小于或等于總面積的10%;嚴(yán)重水心病表示果實(shí)水心病嚴(yán)重發(fā)生,無(wú)法食用,失去商品價(jià)值,水心面積大于總面積的10%。共采集到無(wú)水心病、輕微水心病、嚴(yán)重水心病樣本分別為56、21和23個(gè)。

      1.4 數(shù)據(jù)處理與分析

      采用主成分分析(Principal Component Analysis,PCA)[22]判別不同水心程度菠蘿的分類(lèi)效果,由第一和第二主成分(The first and second principal component,PC1 and PC2)構(gòu)成的樣本散點(diǎn)圖表示;采用多項(xiàng)式平滑(Savitzky Golay,SG)[23]濾波減少大型水果光譜采樣因光程較長(zhǎng)、信噪比較低帶來(lái)的噪聲波動(dòng),濾波效果受多項(xiàng)式階次與平滑點(diǎn)數(shù)的影響;隨后采用標(biāo)準(zhǔn)正態(tài)變量校正(Standard Normal Variate,SNV)[24]降低菠蘿表皮極其粗糙等帶來(lái)的散射噪聲;SG + SNV預(yù)處理后,采用連續(xù)投影算法(Successive Projections Algorithm, SPA)[25]+ PCA + 歐氏距離(Euclidean Distance,ED)[26]進(jìn)行光譜特征提取,其中SPA根據(jù)差異大小進(jìn)行光譜特征的排序,特征數(shù)量從2到最大逐漸增加,分別進(jìn)行PCA處理,采用ED計(jì)算不同類(lèi)別中心點(diǎn)之間的距離,以距離的大小判斷增加特征的必要性;最后,對(duì)預(yù)處理與特征提取后的光譜數(shù)據(jù),采用偏最小二乘回歸(Partial Least Squares Regression,PLSR)[27]與概率神經(jīng)網(wǎng)絡(luò)(Probabilistic Neural Network,PNN)[28]分訓(xùn)練集與校正集進(jìn)行進(jìn)一步建模判別,無(wú)、輕度和重度水心病分別隨機(jī)選擇38、14和15個(gè)樣本作為訓(xùn)練集,其余19、7和8個(gè)樣本作為驗(yàn)證集,不同水心程度由小到大期望輸出均分別設(shè)定為1、2和3,其中PLSR的檢測(cè)效果受降維后特征個(gè)數(shù)的選取影響較大,結(jié)果輸出為小數(shù),通常用預(yù)測(cè)值與實(shí)際值之間的決定系數(shù)2,以及均方根誤差(Root Mean Square Error, RMSE)表示,PNN的檢測(cè)效果受擴(kuò)散速度Spread值影響較大,其結(jié)果輸出為整數(shù),可直接用正確率表達(dá)。為進(jìn)一步統(tǒng)計(jì)PLSR的識(shí)別正確率,將PLSR結(jié)果輸出進(jìn)行四舍五入取整,小于等于1的結(jié)果輸出為無(wú)水心,等于2為輕微水心,大于等于3為重度水心。

      2 結(jié)果與分析

      2.1 不同波段光譜對(duì)菠蘿水心病檢測(cè)

      2.1.1 原始數(shù)據(jù)+PCA判別

      菠蘿樣本在400~1 100 nm的原始光譜如圖2a所示,數(shù)據(jù)在1 000 nm以后出現(xiàn)輕微的噪聲波動(dòng)。400~1 100 nm原始數(shù)據(jù)對(duì)菠蘿水心程度的PCA判別結(jié)果如圖2b所示。不同水心程度菠蘿樣本可以被區(qū)分開(kāi)來(lái),但距離較近,且離散程度較高,聚類(lèi)性較差。

      菠蘿樣本在900~1 700 nm的原始光譜如圖3a所示,數(shù)據(jù)均存在明顯的噪聲波動(dòng),且隨波長(zhǎng)增加而增大。900~1 700 nm原始數(shù)據(jù)對(duì)菠蘿水心程度的PCA判別結(jié)果如圖3b所示。不同水心程度菠蘿樣本無(wú)法被區(qū)分開(kāi)來(lái)。

      菠蘿樣本在400~1 700 nm的原始光譜如圖4a所示,數(shù)據(jù)在1 000 nm以后噪聲波動(dòng)逐漸增強(qiáng)。400~1 700 nm原始數(shù)據(jù)對(duì)菠蘿水心程度的PCA判別結(jié)果如圖4b所示。第一主成分(PC1)與第二主成分(PC2)的貢獻(xiàn)率分別為60.77和32.59%,總貢獻(xiàn)率為93.36%。與400~1 100 nm光譜分類(lèi)結(jié)果圖相似(圖2b),不同水心程度菠蘿樣本可以被區(qū)分開(kāi)來(lái),但距離較近,離散程度較高,聚類(lèi)性較差。

      2.1.2 SG濾波+SNV校正+PCA判別

      為提高光譜數(shù)據(jù)質(zhì)量,經(jīng)試驗(yàn),采用3階23點(diǎn)SG處理可較好地濾除400~1 100 nm光譜數(shù)據(jù)中存在的噪聲波動(dòng),隨后采用SNV對(duì)光譜信號(hào)中的散射噪聲進(jìn)行校正,得到處理后的菠蘿光譜信號(hào)如圖5a所示。基于處理后的光譜信號(hào)對(duì)菠蘿水心程度進(jìn)行PCA判別的結(jié)果如圖5b所示。對(duì)比圖2b,PCA同樣可以有效區(qū)分不同水心程度,且同類(lèi)樣本數(shù)據(jù)點(diǎn)的聚類(lèi)性明顯增強(qiáng),但不同樣本之間存在少量數(shù)據(jù)點(diǎn)重疊,實(shí)際分類(lèi)中有誤判的風(fēng)險(xiǎn)。

      為提高光譜數(shù)據(jù)質(zhì)量從而提升檢測(cè)效果,經(jīng)反復(fù)試驗(yàn),采用3階41點(diǎn)SG處理可較好地濾除900~1 700 nm光譜數(shù)據(jù)中存在的噪聲波動(dòng),隨后采用SNV對(duì)光譜信號(hào)中的散射噪聲進(jìn)行校正,得到處理后的菠蘿光譜信號(hào)如圖6a所示?;谔幚砗蟮墓庾V信號(hào)對(duì)菠蘿水心程度進(jìn)行PCA判別的結(jié)果如圖6b所示。PCA無(wú)法有效區(qū)分不同水心程度,但對(duì)比圖3b,樣本數(shù)據(jù)點(diǎn)的聚類(lèi)性明顯增強(qiáng)。

      為保障整體光譜曲線(xiàn)的銜接性與降噪效果,采用3階41點(diǎn)SG處理并濾除400~1 700 nm光譜數(shù)據(jù)中存在的噪聲波動(dòng),隨后采用SNV對(duì)光譜信號(hào)中的散射噪聲進(jìn)行校正,得到處理后的菠蘿光譜信號(hào)如圖7a所示。處理后的光譜信號(hào)對(duì)菠蘿水心程度進(jìn)行PCA判別的結(jié)果如圖7b所示。PCA同樣可以有效區(qū)分不同水心程度,對(duì)比圖4b,重疊的數(shù)據(jù)點(diǎn)個(gè)數(shù)略有減少,但聚類(lèi)性略有降低,部分樣本實(shí)際分類(lèi)中仍有誤判的風(fēng)險(xiǎn)。

      2.1.3 SPA+PCA+ED特征提取

      為明確是否每一個(gè)特征對(duì)分類(lèi)識(shí)別均有積極作用,采用SPA + PCA + ED對(duì)400~1 100 nm光譜特征作用的分析結(jié)果如圖8a所示。采用SPA將特征作用從大到小進(jìn)行排序后,按順序逐漸增加特征數(shù)量并進(jìn)行PCA分析,不同水心程度數(shù)據(jù)點(diǎn)之間的ED逐漸增加??梢?jiàn),400~ 1 100 nm所有的特征在分類(lèi)識(shí)別過(guò)程中均是有益的。

      采用SPA + PCA + ED對(duì)900~1 700 nm光譜特征作用的分析結(jié)果如圖8b所示。采用SPA將特征作用從大 到小進(jìn)行排序后,按順序逐漸增加特征數(shù)量并進(jìn)行PCA分析,不同水心程度數(shù)據(jù)點(diǎn)之間的歐式距離ED逐漸增加??梢?jiàn),900~1700 nm所有的特征在分類(lèi)識(shí)別過(guò)程中均是有益的。

      采用SPA + PCA + ED對(duì)400~1700 nm光譜特征作用的分析結(jié)果如圖8c所示。采用SPA將特征作用從大到小進(jìn)行排序后,按順序逐漸增加特征數(shù)量并進(jìn)行PCA分析,不同水心程度數(shù)據(jù)點(diǎn)之間的ED逐漸增加。該結(jié)果進(jìn)一步證明,400~1 700 nm所有的特征在分類(lèi)識(shí)別過(guò)程中均是有益的。

      2.1.4 PLSR、PNN檢測(cè)建模

      為進(jìn)一步探究可見(jiàn)/近紅外光譜對(duì)水心病無(wú)損檢測(cè)的應(yīng)用效果,分別采用PLSR和PNN結(jié)合預(yù)處理與特征提取后的不同波段光譜進(jìn)行檢測(cè),結(jié)果如表1所示。

      采用PLSR結(jié)合預(yù)處理與特征提取后的400~1 100 nm光譜數(shù)據(jù)分訓(xùn)練集與驗(yàn)證集對(duì)菠蘿水心病進(jìn)行檢測(cè),經(jīng)反復(fù)訓(xùn)練,PLSR的建模參數(shù)FN設(shè)定為11,模型對(duì)訓(xùn)練集的PLSR回判R2和RMSEC分別為0.95與0.18,對(duì)于驗(yàn)證集的檢測(cè)2和RMSEV分別為0.81和0.37,400~1 100 nm光譜對(duì)訓(xùn)練集的回判正確率為98.51%(1個(gè)重度水心誤判為輕度水心),對(duì)測(cè)試集的檢測(cè)正確率為88.24%(1個(gè)輕度水心誤判為無(wú)水心;3個(gè)重度水心誤判為輕度水心)。采用PLSR結(jié)合預(yù)處理與特征提取后的900~1 700 nm光譜數(shù)據(jù)分訓(xùn)練集與驗(yàn)證集對(duì)菠蘿水心病進(jìn)行檢測(cè),經(jīng)反復(fù)訓(xùn)練,PLSR的建模參數(shù)FN設(shè)定為11,模型對(duì)訓(xùn)練集的PLSR回判R2和RMSEC分別為0.76與0.40,對(duì)于驗(yàn)證集的檢測(cè)2和RMSEV分別為0.45和0.62,對(duì)訓(xùn)練集的回判正確率為80.60%(無(wú)水心中4個(gè)誤判為輕度水心;輕度水心中3個(gè)誤判為無(wú)水心,1個(gè)誤判為重度水心;重度水心中5個(gè)誤判為輕度水心),對(duì)測(cè)試集的檢測(cè)正確率為58.82%(無(wú)水心中5個(gè)誤判為輕度水心;輕度水心中3個(gè)誤判為無(wú)水心;重度水心中6個(gè)誤判為輕度水心),效果不佳。采用PLSR結(jié)合預(yù)處理與特征提取后的400~1700 nm光譜數(shù)據(jù)分訓(xùn)練集與驗(yàn)證集對(duì)菠蘿水心病進(jìn)行檢測(cè),經(jīng)反復(fù)訓(xùn)練,PLSR的建模參數(shù)FN設(shè)定為14,模型對(duì)訓(xùn)練集的PLSR回判R2和RMSEC分別為0.96與0.17,對(duì)于驗(yàn)證集的檢測(cè)2和RMSEV分別為0.83和0.35,對(duì)訓(xùn)練集的回判正確率為100%,對(duì)測(cè)試集的檢測(cè)正確率為88.24%(3個(gè)無(wú)水心誤判為輕度水心;1重度水心誤判為輕度水心)。采用PNN結(jié)合預(yù)處理與特征提取后的400~1 100 nm光譜數(shù)據(jù)分訓(xùn)練集與驗(yàn)證集對(duì)菠蘿水心病進(jìn)行建模檢測(cè),經(jīng)反復(fù)訓(xùn)練,PNN模型參數(shù)Spread設(shè)定為1.2,所建模型對(duì)訓(xùn)練集的回判正確率為98.51%(1個(gè)重度水心誤判為輕度水心),對(duì)驗(yàn)證集的檢測(cè)正確率為91.18%(1個(gè)輕度水心誤判為無(wú)水心;2個(gè)重度水心誤判為輕度水心),具有較好地檢測(cè)效果。采用PNN結(jié)合預(yù)處理與特征提取后的900~1700 nm光譜數(shù)據(jù)分訓(xùn)練集與驗(yàn)證集對(duì)菠蘿水心病進(jìn)行建模檢測(cè),經(jīng)反復(fù)訓(xùn)練,PNN模型參數(shù)Spread設(shè)定為0.1,所建模型對(duì)訓(xùn)練集的回判正確率為100%,對(duì)驗(yàn)證集的檢測(cè)正確率為62%(無(wú)水心中1個(gè)誤判為輕度水心,4個(gè)誤判為重度水心;輕度水心中4個(gè)誤判為無(wú)水心,1和誤判為無(wú)水心;重度水心中1個(gè)誤判為輕度水心,2個(gè)誤判為無(wú)水心),檢測(cè)效果不佳。采用PNN結(jié)合預(yù)處理與特征提取后的400~1 700 nm光譜數(shù)據(jù)分訓(xùn)練集與驗(yàn)證集對(duì)菠蘿水心病進(jìn)行建模檢測(cè),經(jīng)反復(fù)訓(xùn)練,PNN模型參數(shù)Spread設(shè)定為0.2,所建模型對(duì)訓(xùn)練集的回判正確率為100%,對(duì)驗(yàn)證集的檢測(cè)正確率為91.18%(1個(gè)輕度水心誤判為無(wú)水心;2個(gè)重度水心誤判為輕度水心),具有較好地檢測(cè)效果。

      表1 不同波段對(duì)菠蘿水心病的檢測(cè)精度與成本

      注:FN為偏最小二乘模型的特征因子數(shù),Spread為概率神經(jīng)網(wǎng)絡(luò)模型的散布常數(shù)。

      Note: FN is the feature factor number of PLSR model, Spread is the spread constant of PNN model.

      2.2 討 論

      菠蘿水心病的發(fā)生伴隨著果肉質(zhì)地、顏色以及成分等變化,對(duì)其他小型薄皮水果前期研究表明[29-30],這些特征均可被可見(jiàn)/近紅外光譜捕獲,因此,本文采用可見(jiàn)/近紅外光譜檢測(cè)菠蘿水心病發(fā)生程度是有依據(jù)支撐的。本文進(jìn)一步驗(yàn)證了可見(jiàn)/近紅外光譜結(jié)合信號(hào)預(yù)處理以及模式識(shí)別,無(wú)損檢測(cè)菠蘿內(nèi)部水心病發(fā)生程度是可行的。

      菠蘿屬于大型水果,檢測(cè)時(shí)光的譜透過(guò)性較差,造成信號(hào)波動(dòng),且表面極為粗糙,易形成散射噪聲。因此,本文采用SG與SNV處理可有效降低信號(hào)波動(dòng)以及散射噪聲來(lái)帶的干擾,提升識(shí)別效果。特征提取主要在于剔除會(huì)降低識(shí)別精度的噪聲,最大化地保留有益信息形成信息融合,本文提出采用SPA + PCA + ED分析結(jié)果表明,所有特征均包含分類(lèi)識(shí)別的有益信息,均應(yīng)保留。

      QE pro(400~1 100 nm)比NIR QUEST(900~1 700 nm)具有更好的檢測(cè)效果,是因?yàn)?00~1 100 nm同時(shí)對(duì)質(zhì)地、顏色以及成分變化敏感,而900~1 700 nm僅對(duì)質(zhì)地和成分變化敏感[31]。此外,波長(zhǎng)越長(zhǎng),光能越低,加上近紅外波段的光易被水果中的水分吸收,使得通過(guò)樣本后衰減較大,信噪比較低[32]。PLSR結(jié)果表明,采用QE pro與NIR QUEST聯(lián)用(400~1 700 nm)可略微提升QE pro的檢測(cè)效果,是因?yàn)?100~1 700 nm包含菠蘿水心病識(shí)別的有益信息,可對(duì)400~1 700 nm形成信息補(bǔ)充與融合[33],但該方式增加檢測(cè)成本較大,性?xún)r(jià)比較低。實(shí)際應(yīng)用建議單獨(dú)采用400~1 700 nm進(jìn)行菠蘿水心病檢測(cè)。

      PCA對(duì)菠蘿水心病程度的分類(lèi)結(jié)果可以看出,不同類(lèi)別樣本數(shù)據(jù)點(diǎn)之間不能用一條直線(xiàn)完全劃分開(kāi)來(lái),存在一定非線(xiàn)性特性。而PNN和PLSR的映射方式分別是神經(jīng)網(wǎng)絡(luò)和線(xiàn)性回歸,即PNN比PLSR的識(shí)別運(yùn)算函數(shù)具有更強(qiáng)的非線(xiàn)性分類(lèi)識(shí)別能力。因此,PNN在解決菠蘿水心病發(fā)生程度的檢測(cè)上具有更好的檢測(cè)效果。

      3 結(jié) 論

      1)采用400~1 100 nm光譜原數(shù)據(jù)結(jié)合主成分分析(Principal Component Analysis,PCA)分析可將不同水心程度菠蘿樣本區(qū)分開(kāi)來(lái),但距離較近,且離散程度較高,聚類(lèi)性較差。采用900~1 700 nm光譜原數(shù)據(jù)結(jié)合PCA分析無(wú)法將不同水心程度菠蘿樣本區(qū)分開(kāi)來(lái)。采用400~1 700 nm光譜原數(shù)據(jù)結(jié)合PCA分析可將不同水心程度菠蘿樣本區(qū)分開(kāi)來(lái),相對(duì)400~1 100 nm的檢測(cè)效果略有提高。

      2)經(jīng)多項(xiàng)式平滑(Savitzky Golay,SG) + 標(biāo)準(zhǔn)正態(tài)變量校正(Standard Normal Variate,SNV)處理400~1 100 nm光譜后,PCA同樣可以有效區(qū)分不同水心程度,且同類(lèi)樣本數(shù)據(jù)點(diǎn)的聚類(lèi)性明顯增強(qiáng),但不同樣本之間存在少量數(shù)據(jù)點(diǎn)重疊,存在誤判的風(fēng)險(xiǎn)。經(jīng)SG + SNV處理900~1700 nm光譜后,PCA分析對(duì)樣本數(shù)據(jù)點(diǎn)的聚類(lèi)性明顯增強(qiáng),但分類(lèi)效果仍不佳。經(jīng)SG + SNV處理400~1 700 nm光譜后,可增強(qiáng)同類(lèi)樣本數(shù)據(jù)點(diǎn)的聚類(lèi)性。連續(xù)投影算法(Successive Projections Algorithm, SPA)+ (Principal Component Analysis,PCA)+歐氏距離(Euclidean Distance,ED)分析結(jié)果顯示,400~1 100 nm、900~1 700 nm、400~1 700 nm 3種波段選擇包含的特征在分類(lèi)識(shí)別過(guò)程中均是有益的,均應(yīng)被保留。

      4)偏最小二乘回歸(Partial Least Squares Regression,PLSR)結(jié)合400~1 100 nm光譜數(shù)據(jù)所建模型對(duì)菠蘿水心病訓(xùn)練集的回判正確率為98.51%,對(duì)測(cè)試集的檢測(cè)正確率為88.24%。PLSR結(jié)合900~1 700 nm光譜數(shù)據(jù)所建模型對(duì)菠蘿水心病訓(xùn)練集的回判正確率為80.60%,對(duì)測(cè)試集的檢測(cè)正確率為58.82%。PLSR結(jié)合400~1 700 nm光譜數(shù)據(jù)所建模型對(duì)菠蘿水心病訓(xùn)練集的回判正確率為100%,對(duì)測(cè)試集的檢測(cè)正確率為88.24%。概率神經(jīng)網(wǎng)絡(luò)(Probabilistic Neural Network,PNN)結(jié)合400~1 100 nm光譜數(shù)據(jù)所建模型對(duì)菠蘿水心病訓(xùn)練集的回判正確率為98.51%,對(duì)驗(yàn)證集的檢測(cè)正確率為91.18%。PNN結(jié)合900~1 700 nm光譜數(shù)據(jù)所建模型對(duì)菠蘿水心病訓(xùn)練集的回判正確率為100%,對(duì)驗(yàn)證集的檢測(cè)正確率為62%。PNN結(jié)合400~1700 nm光譜數(shù)據(jù)所建模型對(duì)菠蘿水心病訓(xùn)練集的回判正確率為100%,對(duì)驗(yàn)證集的檢測(cè)正確率為91.18%。

      5)綜合考慮成本與效果,實(shí)際應(yīng)用建議采用400~ 1 100 nm光譜結(jié)合多項(xiàng)式平滑(Savitzky Golay,SG) +標(biāo)準(zhǔn)正態(tài)變量校正(Standard Normal Variate,SNV) +概率神經(jīng)網(wǎng)絡(luò)(Probabilistic Neural Network,PNN)對(duì)菠蘿水心病進(jìn)行識(shí)別。下一步研究一方面可進(jìn)一步提出信號(hào)處理新方法,減少建模特征數(shù)量,簡(jiǎn)化模型,另一方面可運(yùn)用模型對(duì)大批量菠蘿進(jìn)行試驗(yàn)驗(yàn)證,不斷修正模型參數(shù)以提高模型適應(yīng)性,更好地服務(wù)產(chǎn)業(yè)。

      [1] 賀軍虎,欒愛(ài)萍. 菠蘿水心病和裂果的發(fā)生與防治措施[J]. 草坪常見(jiàn)病蟲(chóng)害,2019,7:41.

      [2] Shu H Y, Sun W, Li K M, et al. The cause for water-heart fruit of pineapple and protective measurements[J]. American Journal of Plant Sciences, 2019, 10(6): 885-892.

      [3] Kishore K, Rupa T R, Samant D. Influence of shade intensity on growth, biomass allocation, yield and quality of pineapple in mango-based intercropping system[J]. Scientia Horticulturae, 2021, 278: 109868.

      [4] Williams P A, Crespo O, Atkinson C J, et al. Impact of climate variability on pineapple production in Ghana[J]. Agriculture & Food Security, 2017, 6(1): 1-14.

      [5] Friend D J C. Effect of night temperature on flowering and fruit size in pineapple ([L.] Merrill)[J]. Botanical Gazette, 1981, 142(2): 188-190.

      [6] Liu C H, Liu Y, Fan C, et al. The effects of composted pineapple residue return on soil properties and the growth and yield of pineapple[J]. Journal of Soil Science and Plant Nutrition, 2013, 13(2): 433-444.

      [7] Pahlawan M F R, Wati R K, Masithoh R E. Development of a low-cost modular VIS/NIR spectroscopy for predicting soluble solid content of banana[C]// IOP Conference Series: Earth and Environmental Science, Banda Aceh: IOP Publishing, 2021, 644: 012047.

      [8] Shi H, Zhang M, Adhikari B. Advances of electronic nose and its application in fresh foods: A review[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(16): 2700-2710.

      [9] 張思雨,張秋菊,李可. 采用機(jī)器視覺(jué)與自適應(yīng)卷積神經(jīng)網(wǎng)絡(luò)檢測(cè)花生仁品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(4)::269-277.

      Zhang Siyu, Zhang Qiuju, Li Ke. Detection of peanut kernel quality based on machine vision and adaptive convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 269-277. (in Chinese with English abstract)

      [10] 邵園園,王永賢,玄冠濤,等. 高光譜成像快速檢測(cè)殼聚糖涂膜草莓可溶性固形物[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(18):245-254.

      Shao Yuanyuan, Wang Yongxian, Xuan Guantao, et al. Rapid detection of soluble solids content in strawberry coated with chitosan based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 245-254. (in Chinese with English abstract)

      [11] Yang B, Guo W C, Li W Q, et al. Portable, visual, and nondestructive detector integrating Vis/NIR spectrometer for sugar content of kiwifruits[J]. Journal of Food Process Engineering, 2019, 42(2): e12982.

      [12] Ncama K, Opara U L, Tesfay S Z, et al. Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of ‘Valencia’ orange () and ‘Star Ruby’ grapefruit (Citrus × paradisi Macfad)[J]. Journal of Food Engineering, 2017, 193: 86-94.

      [13] Jamshidi B, Minaei S, Mohajerani E, et al. Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges[J]. Computers and Electronics in Agriculture, 2012, 85: 64-69.

      [14] Uwadaira Y, Sekiyama Y, Ikehata A. An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy[J]. Heliyon, 2018, 4(2): e531.

      [15] Yu X J, Lu H D, Wu D. Development of deep learning method for predicting firmness and soluble solid content of postharvest Korla fragrant pear using Vis/NIR hyperspectral reflectance imaging[J]. Postharvest Biology and Technology, 2018, 141: 39-49.

      [16] Sun X D, Zhu K, Jiang X G, et al. Non-destructive detection of blackheart and soluble solids content of intact pear by online NIR spectroscopy[J]. The Journal of Supercomputing, 2020, 76(5): 3173-3187.

      [17] Mogollon M R, Jara A F, Contreras C, et al. Quantitative and qualitative VIS-NIR models for early determination of internal browning in ‘Cripps Pink’apples during cold storage[J]. Postharvest Biology and Technology, 2020, 161: 111060.

      [18] Jamshidi B. Ability of near-infrared spectroscopy for non-destructive detection of internal insect infestation in fruits: Meta-analysis of spectral ranges and optical measurement modes[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 225: 117479.

      [19] Botu, M M, Bolvansky D, Cecchini B E, et al. NIR spectroscopy is suitable to detect insect infested chestnuts[J]. Acta Horticulturae, 2014, 1043: 153-159.

      [20] 徐賽,陸華忠,丘廣俊,等. 水果品質(zhì)無(wú)損檢測(cè)研究進(jìn)展及應(yīng)用現(xiàn)狀[J]. 廣東農(nóng)業(yè)科學(xué),2020,47(12):229-236.

      Xu Sai, Lu Huazhong, Qiu Guangjun, et al. Research progress and application status of fruit quality nondestructive detection technology[J]. Guangdong Agricultural Sciences, 2020, 47(12): 229-236. (in Chinese with English abstract)

      [21] 徐賽,梁鑫,陸華忠,等. 一種菠蘿水心病評(píng)級(jí)裝備: 213181273U [P]. 2020-12-18.

      [22] Po?ízka P, Klus J, Képe? E, et al. On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 148: 65-82.

      [23] Jahani S, Setarehdan S K, Boas D A, et al. Motion artifact detection and correction in functional near-infrared spectroscopy: A new hybrid method based on spline interpolation method and Savitzky–Golay filtering[J]. Neurophotonics, 2018, 5(1): 15003.

      [24] Bi Y M, Yuan K L, Xiao W Q, et al. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation[J]. Analytica chimica acta, 2016, 909: 30-40.

      [25] Krepper G, Romeo F, Fernandes D D, et al. Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS)[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 189: 300-306.

      [26] He W, Zhou J, Cheng H, et al. Validation of origins of tea samples using partial least squares analysis and Euclidean distance method with near-infrared spectroscopy data[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 86: 399-404.

      [27] Zhu Z H, Li J M, Guo Y M, et al. Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 205-209.

      [28] Huang X D, Wang C Y, Fan X M, et al. Oil source recognition technology using concentration-synchronous- matrix-fluorescence spectroscopy combined with 2D wavelet packet and probabilistic neural network[J]. Science of the Total Environment, 2018, 616: 632-638.

      [29] Alhamdan A M, Fickak A, Atia A R. Evaluation of sensory and texture profile analysis properties of stored Khalal Barhi dates nondestructively using Vis/NIR spectroscopy[J]. Journal of Food Process Engineering, 2019, 42(6): e13215.

      [30] Arendse E, Fawole O A, Magwaza L S, et al. Fourier transform near infrared diffuse reflectance spectroscopy and two spectral acquisition modes for evaluation of external and internal quality of intact pomegranate fruit[J]. Postharvest Biology and Technology, 2018, 138: 91-98.

      [31] 梁亮,劉志霄,楊敏華,等. 基于可見(jiàn)/近紅外反射光譜的稻米品種與真?zhèn)舞b別[J]. 紅外與毫米波學(xué)報(bào),2009,28(5):353-356.

      Liang Liang, Liu Zhixiao, Yang Minhua, et al. Discrimination of variety and authenticity for rice based on visual/near infrared reflection spectra[J].Journal of Infrared and Millimeter Waves, 2009, 28(5): 353-356. (in Chinese with English abstract)

      [32] 劉臻臻,陳少藩,余彤泳,等. 自然光照對(duì)眼部的影響[J]. 國(guó)際眼科雜志,2020,20(3):191-196.

      Liu Zhenzhen, Chen Shaofan, Yu Tongyong, et al. Effects of sunlight on eye[J].International Eye Science. 2020, 20(3): 191-196. (in Chinese with English abstract)

      [33] Li H, Huang H H, Li Y F, et al. Physics of failure-based reliability prediction of turbine blades using multi-source information fusion[J]. Applied Soft Computing, 2018, 72: 624-635.

      Nondestructive detection method for pineapple water core based on visible/near infrared spectroscopy

      Xu Sai1, Lu Huazhong2※, Wang Xu1, Qiu Guangjun1, Wang Chen1, Liang Xin1

      (1.,510640,; 2.,510640,)

      Water core is a serious physiological disorder of pineapple in recent years. Effective detection of internal water core is highly urgent for the market quality of pineapple after post-harvest treatments. In this study, A nondestructive detection platform was lab-developed for the water core of pineapple usingVisible/Near-infrared (VIS/NIR) spectroscopy. The optimal parameters of the platform were set, where the integral time of 400-1 100 nm and 900-1 700 nm spectrometer were 600 and 2 000 ms, respectively, the intensity of light source was 500 W, the distance between the optical fiber and tray was 30 mm, the distance between the tray and input optical hole was 84 mm, while, all the light, input optical hole, pineapple sample, output optical hole, and optical fiber were in the same horizontal line. Three settings of spectrum wavelength (400-1 100 nm VIS/NIR spectrum, 900-1 700 nm NIR spectrum, and 400-1 700 nm VIS/NIR spectrum) were applied for the pineapple sampling. After that, the pineapple was cut open to artificially and immediately record the water core. The Savitzky Golay (SG) and Standard Normal Variate (SNV) were also applied for the subsequent data processing. Furthermore, the extraction of the feature was conducted using the Successive Projections Algorithm (SPA), Principal Component Analysis (PCA), and Euclidean Distance (ED). Some models were finally established using the Partial Least Squares Regression (PLSR) and Probabilistic Neural Network (PNN). The results showed that an optimal procedure of detection was achieved for the water core using three settings of spectrum wavelength: to take the full wavelength data for SG and SNV processing, and then build a detection model by PNN. Using 400-1 100 nm spectrum and the optimal detection, the accuracy of the model for the calibration set of the water core was 98.51%, while the accuracy of the model for the validation set was 91.18%. Using 900-1 700 nm spectrum and the optimal detection, the accuracy of the model for the calibration set of the water core was 100%, while, the accuracy of the model for the validation set was 62%. Using 400-1 700 nm spectrum and the optimal detection, the accuracy of the model for the calibration set of water core was 100%, while the accuracy of the model for the validation set was 91.18%. Besides, both PCA and PLSR showed that there was a relatively less significant improvement, even though the detection of water core was slightly improved by 400-1 700 nm spectrum, compare with only by 400-1 100 nm. Thus, a practical detection of water core was suggested to use the 400-1 100 nm spectrum that combined with SG + SNV + PNN modeling in industrial production. Specifically, the marking price of 400-1 100 nm spectrometer like QE pro was about 130 000 Yuan, and the marking price of 900-1 700 nm spectrometer like NIR QUEST was about 150 000 Yuan, while, the marking price of 400-1 700 nm spectrometer like a combination of QE pro and NIR QUEST was about 280 000 Yuan. Consequently, the VIS/NIR spectroscopy can be widely expected to nondestructively and rapidly identify the internal water core of pineapple in modern agriculture.

      nondestructive detection; models; pineapple; water core; visible/near infrared spectroscopy

      10.11975/j.issn.1002-6819.2021.21.033

      TP29

      A

      1002-6819(2021)-21-0287-08

      徐賽,陸華忠,王旭,等. 基于可見(jiàn)/近紅外光譜的菠蘿水心病無(wú)損檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21):287-294.doi:10.11975/j.issn.1002-6819.2021.21.033 http://www.tcsae.org

      Xu Sai, Lu Huazhong, Wang Xu, et al. Nondestructive detection method for pineapple water core based on visible/near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 287-294. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.21.033 http://www.tcsae.org

      2021-06-22

      2021-08-10

      廣東省鄉(xiāng)村振興戰(zhàn)略專(zhuān)項(xiàng)(403-2018-XMZC-0002-90);廣東省自然科學(xué)基金項(xiàng)目(2021A1515010834);國(guó)家自然科學(xué)基金項(xiàng)目(31901404);廣東省農(nóng)業(yè)科學(xué)院十四五新興學(xué)科團(tuán)隊(duì)建設(shè)項(xiàng)目(202134T);廣東省農(nóng)業(yè)科學(xué)院金穎之星人才培養(yǎng)項(xiàng)目(R2020PY-JX020);廣東省農(nóng)業(yè)科學(xué)院創(chuàng)新基金項(xiàng)目(202034)

      徐賽,博士,副研究員,研究方向?yàn)檗r(nóng)產(chǎn)品品質(zhì)無(wú)損檢測(cè)技術(shù)與裝備。Email:xusai@gdaas.cn

      陸華忠,博士,教授,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)產(chǎn)品物流保鮮與智能檢測(cè)技術(shù)。Email:huazlu@scau.edu.cn

      猜你喜歡
      心病菠蘿正確率
      便秘是否也是一種心???
      中老年保健(2021年8期)2021-08-24 06:24:32
      最?lèi)?ài)酸酸甜甜菠蘿雞
      金橋(2020年10期)2020-11-26 07:24:02
      門(mén)診分診服務(wù)態(tài)度與正確率對(duì)護(hù)患關(guān)系的影響
      菠蘿
      吃菠蘿為什么要用鹽水泡
      關(guān)注孩子的“心病”
      中華家教(2018年8期)2018-09-25 03:23:00
      古人醫(yī)心病
      特別健康(2018年4期)2018-07-03 00:38:22
      生意
      品管圈活動(dòng)在提高介入手術(shù)安全核查正確率中的應(yīng)用
      生意
      黄平县| 巴里| 察雅县| 富阳市| 青神县| 湘阴县| 方正县| 林州市| 石河子市| 长春市| 龙川县| 南川市| 桑植县| 洛隆县| 广汉市| 禹城市| 台安县| 东乌珠穆沁旗| 丽江市| 宁明县| 盈江县| 鹤壁市| 大连市| 彩票| 阿拉尔市| 隆子县| 永福县| 祁门县| 钟祥市| 始兴县| 米泉市| 南汇区| 容城县| 定兴县| 霞浦县| 吴桥县| 淮滨县| 江门市| 乌拉特后旗| 侯马市| 绥德县|