胡 琦,李仙岳,史海濱,陳 寧,張月紅,馬紅雨
河套灌區(qū)玉米根系對殘膜的響應及根系分布模型
胡 琦,李仙岳※,史海濱,陳 寧,張月紅,馬紅雨
(內蒙古農(nóng)業(yè)大學水利與土木建筑工程學院,呼和浩特 010018)
為明確土壤中不同殘膜量對根系生長和分布的影響,該研究于2019—2020年在河套灌區(qū)九莊農(nóng)業(yè)綜合節(jié)水試驗站設置了5個農(nóng)膜殘留量水平,分別為CK(0 kg/hm2)、T1(150 kg/hm2)、T2(300 kg/hm2)、T3(450 kg/hm2)和T4(600 kg/hm2),研究不同殘膜量對玉米根長密度、不同徑級根系分配及根系分布等影響,并引入殘膜量,建立了適用于農(nóng)膜殘留農(nóng)田的根系分布模型。結果表明,根系在水平分布時,側根區(qū)的根系受殘膜影響顯著(<0.05),當殘膜量為300 kg/hm2(T2)時根長密度出現(xiàn)突降現(xiàn)象,降幅為75.98%;垂直分布時,根系隨殘膜量增加呈明顯下降趨勢,特別是在0~30 cm土層,當殘膜量達到450 kg/hm2時,根長密度降低50.02%。另外,殘膜減小了玉米粗根比例(>2 mm,為根系直徑),降幅為29.25%;增加了細根比例(≤2 mm),為4.80%。構建考慮殘膜量的相對根長密度(Residual Plastic Film-Normalized Root Length Density,RPF-NRLD)分布模型精度較高,其中決定系數(shù)(2)為0.961,均方根誤差(RMSE)為0.282,平均相對誤差(MRE)為18.87%。同時考慮不同徑級根系的RPF-NRLD分布模型模擬顯示,玉米極細根和細根的MRE分別為14.91%和14.96%,粗根的MRE為35.41%?;赗PF-NRLD分布模型進行情景分析顯示當農(nóng)田殘膜量控制在0~100 kg/hm2范圍內,根系能夠維持正常生長,特別是極細根和細根,根長密度未出現(xiàn)大幅下降。該研究對于殘膜污染區(qū)作物生長的數(shù)值模擬研究及殘膜回收政策的制定具有科學意義。
玉米;灌溉;空間分布;農(nóng)膜殘留;根系;相對根長密度;根系分布模型
塑料地膜覆蓋在干旱區(qū)具有明顯的保墑、降蒸、增溫、高產(chǎn)等效益[1-4],已成為旱作節(jié)水農(nóng)業(yè)的主要技術措施[5]。然而,塑料地膜是一種高分子材料,很難自然降 解[6],長期使用形成碎片化的殘膜在土壤中累積后會改變土壤物理結構[7]和土壤水力特征[8],影響土壤保水能力,同時改變土壤水分運動規(guī)律,產(chǎn)生優(yōu)勢水流或水分阻滯效應[9],從而影響作物對水分和養(yǎng)分的吸收,降低水肥利用效率。另外,以微塑料形式滯留在土壤中的地膜碎片會吸附重金屬、有機污染物等[10],釋放有毒的鄰苯二甲酸酯[11],降低作物發(fā)芽率,抑制根系正常生長,對農(nóng)業(yè)生產(chǎn)造成負面影響[12-13]。
殘膜通過改變土壤結構和土壤孔隙度,影響作物根系在水平和垂直方向的分布,其中殘膜顯著降低了0~ 30 cm土層的作物根系[14-15],特別是在苗期,殘膜的阻礙作用更明顯[16]。此外,隨著殘膜量的增加,作物根系生長指標也會發(fā)生變化,比如根長、根直徑、根表面積、根體積和根系活力,均隨殘膜量的增加而下降[17],當殘膜量為900 kg/hm2時,根表面積密度降幅高達216.50%。另外殘膜還會影響根系形態(tài),使棉花根系形態(tài)呈現(xiàn)雞爪型和叢生型等畸形結構,而正常根系形態(tài)為直根型[18]。盡管眾多學者關于殘膜對根系生長進行了大量研究,但是在殘膜對根系分布以及不同徑級根系分配的影響研究較少,因此通過研究殘膜對不同徑級根系分配的影響,明確殘膜脅迫下作物水分吸收貢獻率對不同徑級的響應,對于完善殘膜條件下根系吸水理論具有重要意義。
作物根系分布特征的定量化是構建根系吸水及運移模型、計算根系吸水量不可缺少的手段和環(huán)節(jié),故研究殘膜條件下的根系分布模型對確立農(nóng)膜殘留農(nóng)田根區(qū)水分最優(yōu)調控措施具有十分重要的指導意義。目前根系分布模型主要表現(xiàn)形式為相對根長密度的分布模型[19-20]。Wu等[21]首次提出相對根長密度的概念,并建立了小麥、玉米和大豆等作物相對根長密度分布與相對根深的函數(shù)關系,準確描述了不同作物的根系分布規(guī)律。鄒海洋等[22]通過歸一化方法,建立了不同水肥組合下的玉米相對根長密度分布模型。為了適時掌握殘膜賦存農(nóng)田根系分布情況,需要構建農(nóng)膜殘留條件下根系分布模型以及不同徑級根系分布模型。因此,本文在內蒙古河套地區(qū)進行 2 a田間試驗,主要研究不同殘膜量對玉米根長密度二維分布及不同徑級根系分配比例的影響,并基于歸一化方法建立考慮殘膜量的根系分布模型,對不同殘膜量下的根系分布進行表征,確定能夠維持根系正常生長的殘膜量范圍,以期為農(nóng)田殘膜污染防治和殘膜污染區(qū)農(nóng)業(yè)的可持續(xù)發(fā)展提供理論支撐。
試驗于2019年和2020年5—9月在內蒙古河套灌區(qū)九莊農(nóng)業(yè)綜合節(jié)水試驗站(40o41’N, 107o18’E)進行,該地區(qū)為中溫帶半干旱大陸性季風氣候,多年平均降水量約為138 mm,年平均潛在蒸發(fā)量約為1 900 mm。其中2019和2020年試驗區(qū)玉米生長季(5-9月)降雨量分別為64.9和151 mm(圖1)。2 a試驗在同一地塊進行,試驗區(qū)土壤剖面(0~100 cm)平均容重為1.42 g/cm3,土壤類型為粉砂壤土。2019和2020年播種前,0~100 cm土層的初始土壤平均體積含水量分別為0.32和 0.31 cm3/cm3,初始土壤平均鹽分濃度分別為1.27和 1.32 g/kg,平均地下水位深度分別為2.28和1.48 cm。
圖1 2019和2020年玉米生育期內降雨量、灌溉量和氣溫
供試作物為“鈞凱918”春玉米,2019和2020年分別在5月5日和5月4日播種,在9月24日和9月25日收獲,生育期分別為143和145 d。試驗小區(qū)農(nóng)藝措施、灌溉施肥措施均一致,均采用覆膜滴灌耕作,株距30 cm,行距40 cm,采取“一膜一管兩行”的布設方式(圖2),膜寬80 cm,厚度0.01 mm。2 a灌水定額均為22.5 mm,灌水時間見圖1,播種前均無灌溉,基肥為尿素(N 46%)、過磷酸鈣(P2O512%)、硫酸鉀(K2O 50%),追肥為尿素硝酸銨溶液液體肥(N 32%)。參考當?shù)赝扑]玉米滴灌施肥量300-200-150 kg/hm2(N-P2O5-K2O),基肥在播前撒施后翻耕入土,追肥采用液體肥,整個生育期共施肥4次,每次施肥量占總施肥量分別為20%(苗期)、30%(拔節(jié)期)、30%(抽雄期)、20%(灌漿期),不同生育期時間劃分見表1。
圖2 玉米種植模式和根系取樣示意圖
表1 2019和2020年玉米各生育期時間范圍
在已有研究農(nóng)田殘膜量區(qū)間[7-9]的基礎上,為了預測長期覆膜對作物根系的影響,根據(jù)殘膜量與覆膜年限之間存在的線性關系=5.546+47.840(2=0.871)[23],設置5個殘膜量處理,分別為CK(0 kg/hm2)、T1 (150 kg/hm2,覆膜18 a左右)、T2(300 kg/hm2,覆膜45 a左右)、T3(450 kg/hm2,覆膜72 a左右)和T4 (600 kg/hm2,覆膜100 a左右),小區(qū)面積均為75 m2,每個處理設置3次重復,采用隨機區(qū)組排列。通過對該區(qū)域的調查,覆膜滴灌區(qū)農(nóng)膜殘留主要在0~30 cm土層,為了處理的一致性,選用新的聚乙烯塑料地膜,膜厚為0.01 mm,將地膜分割為64 cm2(8 cm×8 cm)、25 cm2(5 cm×5 cm)和4 cm2(2 cm×2 cm)3種大小的正方形,并根據(jù)小區(qū)面積計算對應的殘膜量,以7﹕2﹕1的比例進行混合,然后用電子秤(精度:0.01 g)稱質量待用,在整地前先將碎膜均勻鋪撒在小區(qū)表面,再利用動力驅動耙將碎膜與0~30 cm耕層土壤進行混勻,然后,通過人工檢查將混合不均勻的地方進行充分混勻,并利用土壤緊實度儀(SC-900, Spectrum Chemical Manufacturing Corp., USA)測0~30 cm土壤的緊實度,保證與田間土壤性質基本一致。
分別在拔節(jié)期、抽雄期、灌漿期和成熟期采用根鉆法取樣(圖2),采集不同水平和垂直位置根系樣本,根鉆內徑為10 cm。每小區(qū)隨機選取3株,切除地上部植株,植株基部作為中心取樣點b,隨后以植株基部為中心在植株左右各設置1個取樣點(a和c),共3個位置,另外,本研究將根系在水平方向上分為主根區(qū)(–10,10)和側根區(qū)((–20,10),(10,20))兩個區(qū)域(圖3)。以10 cm為一層,分別取至無根系土層。將根系樣本中的草根,殘根等雜物清除,裝入保鮮袋中保存,然后用水沖洗根系,采用根系掃描儀(Epson Perfection 4870 Photo, Seiko Epson Crop., Japan)在500萬像素下掃描成黑白的JPG圖像文件供后期分析使用。用WinRHIZO分析軟件進行分析,獲得根系總長度和極細根(≤ 0.5 mm)、細根(0.5 mm<≤ 2 mm)、粗根(>2 mm)3個不同徑級的根系長度,通過公式(1)計算得到根長密度。
RLD=RL/(1)
式中RLD為根長密度,cm/cm3;RL為根系長度,cm;為根鉆體積,本研究為785 cm3。
注:橫坐標軸0 cm處為圖2中的植株基部。CK,殘膜量為0 kg·hm-2;T1,殘膜量為150 kg·hm-2;T2,殘膜量為300 kg·hm-2;T3,殘膜量為450 kg·hm-2;T4,殘膜量為600 kg·hm-2;下同。
本研究中不同生育期根系生長深度不同,為了便于計算作物的根長密度分布,采用歸一化方法[18],將不同生育期的玉米根系扎根深度均轉換為0~1范圍內的標準化根深,并用相對根長密度表示根長密度,表達式為
Z=Z/Zmax(2)
式中Z為標準化根系深度,變化范圍為0~1;Z為不同土層深度,cm;max為最大扎根深度,不同生育期最大扎根深度為根系取樣過程中取至無根系土層時的土壤深度(拔節(jié)期為60 cm、抽雄期為70 cm、灌漿期和成熟期均為80 cm);RLD(Z)表示在Z處的實測根長密度值,cm/cm3;NRLD(Z)為相對根長密度值。
本研究在前人研究[21,24]的基礎上,采用二階多項式,對不同殘膜量下拔節(jié)期、抽雄期、灌漿期和成熟期的標準化根深和相對根長密度進行擬合,表達式為
NRLD(Z)=aZ2+bZ+(4)
式中、、為模型回歸參數(shù)。
本文采用均方根誤差(RMSE)、平均相對誤差(MRE)和決定系數(shù)(2)對模型的模擬效果進行評價。
利用Excel 2010進行數(shù)據(jù)整理,SPSS 20.0進行數(shù)據(jù)的統(tǒng)計和方差分析,并用Surfer 15.0進行網(wǎng)格化處理,制作等值線圖。
2019和2020年生育期內灌溉量相同,但2020年玉米生育期內的降雨量(151 mm)遠高于2019年降雨量(64.9 mm),這是由于2020年階段性降雨次數(shù)增加,特別是在2020年7月和8月(圖1b)。此時玉米處于灌漿期,因此,2020年不同殘膜處理的根長密度大于2019年。玉米根系在灌漿期根系高度發(fā)達,故選取2019和2020年灌漿期根系的根長密度分布進行分析(圖3),發(fā)現(xiàn)殘膜造成玉米根系水平分布的密集范圍縮小,且縮小程度隨著殘膜量的增加而增大,在主根區(qū)(–10,10),與CK處理相比,T1、T2、T3和T4殘膜處理的根長密度2 a平均分別減小8.89%、27.78%、49.44%和55.35%;對于側根區(qū)((–20,10),(10,20)),T1、T2、T3和T4殘膜處理的根長密度分別減小15.57%、75.98%、80.12%和85.25%。分析發(fā)現(xiàn)殘膜對側根區(qū)的根系生長影響顯著(<0.05),當殘膜量達到300 kg/hm2(T2)時,根長密度出現(xiàn)突降現(xiàn)象,而隨著土壤中殘膜量繼續(xù)增加,不再出現(xiàn)類似 T2處理的突降現(xiàn)象,而是呈現(xiàn)明顯的階梯式下降趨勢,可見殘膜量的增加對水平方向上根系生長的影響并不是絕對的線性關系。玉米根系垂直分布在0~30 cm土層受殘膜影響大于30~80 cm土層(圖3)。0~30 cm土層,T1、T2、T3和T4殘膜處理的根長密度較CK處理2 a平均分別減小9.06%、28.28%、50.02%和55.90%;30~80 cm土層,T1、T2、T3和T4殘膜處理較CK處理2 a平均分別減小7.89%、25.20%、46.31%和52.39%??梢?,當殘膜量從300 kg/hm2(T2)增加為450 kg/hm2(T3)時,根長密度的下降幅度明顯增加,而殘膜量繼續(xù)增加到600 kg/hm2(T4),根長密度下降趨勢則有所減緩。
為了明確殘膜對不同徑級根系的影響,本研究中將根系直徑()分成極細根(≤ 0.5 mm)、細根(0.5 mm<≤2 mm)和粗根(>2 mm)3類。并分別計算了拔節(jié)期、抽雄期、灌漿期和成熟期不同殘膜量下不同根徑的根長密度占總根徑的比例變化。從圖4中可以看出,在2019和2020年的不同生育期內,粗根比例隨殘膜量增加均呈現(xiàn)下降趨勢,T1、T2、T3和T4處理的2 a粗根比例較CK處理平均下降29.25%,不同殘膜量處理間差異顯著(<0.05);總體上,直徑小于2 mm的細根比例隨殘膜量增加而增大,殘膜處理較CK處理平均增加4.80%,其中T3和T4處理分別增加7.24%和8.65%,出現(xiàn)顯著差異(<0.05)。極細根比例在不同生育期影響有所不同,拔節(jié)期和成熟期,殘膜會減小極細根比例,殘膜量越大,極細根比例降幅越大,T1、T2、T3和T4處理較CK處理分別平均下降3.74%、4.87%、7.47%和8.50%;抽雄期和灌漿期,殘膜會略微增加極細根比例,且在殘膜量達到450 kg/hm2(T3)時,極細根比例增幅最大,高出CK處理5.80%,而殘膜量繼續(xù)增加到600 kg/hm2(T4),極細根比例僅高出CK處理4.73%,說明殘膜對極細根的正面效應并未表現(xiàn)為殘膜量越大越明顯。不同生育期殘膜對極細根的影響不同是由于拔節(jié)期根系對殘膜的穿透力和抗逆性較低,而成熟期殘膜阻礙極細根對水分和養(yǎng)分的吸收,根系會出現(xiàn)早衰,從而降低了極細根比例;反觀抽雄期和灌漿期,這兩個生育期是根系生長較為發(fā)達的時期,此時根系對殘膜負面效應的抗逆性增強,且在一定殘膜量閾值區(qū)間會產(chǎn)生不同程度的適應性反應,故增加了極細根比例。
本研究中不同生育期根系生長深度不一致,通過歸一化處理,得到標準化根系深度(Z)和相對根長密度(Normalized Root Length Density,NRLD)(表2),通過對4個生育期(拔節(jié)、抽雄、灌漿和成熟期)NRLD 平均值(MN)、標準差(SD)和變異系數(shù)(CV)3個指標各自的平均值分析發(fā)現(xiàn),隨著殘膜量的增加,MN呈現(xiàn)下降趨勢,而SD和CV 2個指標則隨殘膜量增加而增大。不同殘膜量水平下,不同生育期MN均隨著取樣深度的增加呈現(xiàn)遞減趨勢。此外,各處理在根區(qū)下半部分(土層深度≥30 cm)的CV均較大,不同生育期位置有所不同,拔節(jié)期(Z≥0.67)、抽雄期(Z≥0.57)、灌漿期和成熟期(Z≥0.50),不同生育期不同處理的CV變化范圍在0.22~2.08間。造成這種現(xiàn)象可能是由于隨著取樣深度的增加,根系以細根為主,且越靠近最大扎根深度,根系越少,取樣精度有所降低,產(chǎn)生了較大誤差。但由于玉米根系主要分布上部土層,同時本研究中殘膜埋設土層為0~30 cm,所以可以適當忽略下層根系的變異性??傮w上,垂直方向上NRLD的變化規(guī)律可以描述不同殘膜量下根系分布特征。
采用式(4)對2019年不同殘膜量玉米實測相對根長密度(NRLD)值進行回歸擬合,得到不同殘膜量處理各自的NRLD分布模型,然而通過表2可以發(fā)現(xiàn)當Z=1(最大扎根深度)時并不能保證NRLD為0,降低了模型精度,且不同殘膜量處理各自擬合的二階函數(shù)并不具有普遍性,基于這兩點考慮,本文引入殘膜量(C),將不同殘膜量間的NRLD值建立指數(shù)函數(shù)關系,并以無殘膜處理(CK)的二階擬合函數(shù)為基準,增加歸0項(1-Z),建立適用于不同殘膜量條件下玉米主要生育期的相對根長密度(Residual Plastic Film-Normalized Root Length Density,RPF-NRLD)分布模型(表3)。從表3 可以看出,玉米總徑級和不同徑級相對根長密度分布模型的決定系數(shù)(2)均大于0.90,MRE在10.01%~38.05%之間,RMSE在0.224~0.347之間,擬合效果較好,能夠準確描述農(nóng)膜殘留條件下玉米NRLD分布。
圖4 不同殘膜量下玉米不同徑級根系分配比例
表2 2019年不同殘膜量(RPF)下玉米相對取樣深度(Zr)處實測相對根長密度(NRLD)
注:MN,SD,CV分別表示平均值,標準差和變異系數(shù)。下同。
Note: MN, SD and CV represent mean value, standard deviation, and coefficient of variation, respectively. The same below.
表3 不同徑級根系RPF-NRLD分布模型的模擬及驗證
以2020年灌漿期為例,將0~600 kg/hm2的殘膜量以50 kg/hm2為步長值選定13個殘膜量(0、50、100、150、200、250、300、350、400、450、500、550和600 kg/hm2),通過表2中RPF-NRLD分布模型估算玉米根系的根長密度分布(圖5)??傮w上,各殘膜處理的總徑級和不同徑級根系在土壤剖面上的分布規(guī)律基本一致,均可以分為3個殘膜脅迫區(qū)間,其中0~150 kg/hm2為輕度脅迫區(qū)間,50、100和150 kg/hm2處理的總徑級根長密度較0 kg/hm2處理分別降低5.40%、10.14%和13.50%;200~400 kg/hm2為中度脅迫區(qū)間,降幅范圍為23.16%~41.99%;450~600 kg/hm2為重度脅迫區(qū)間,降幅范圍為50.06%~56.27%??梢园l(fā)現(xiàn),輕中度脅迫區(qū)間,根長密度均呈遞減趨勢,而在重度脅迫區(qū)間,雖然殘膜仍會降低根長密度,但降幅縮減,說明當土壤中殘膜達到一定量后,繼續(xù)增加殘膜對根長密度的影響將會逐漸降低。另外,殘膜對粗根根長密度分布的脅迫程度大于極細根和細根的根長密度分布,在輕度脅迫區(qū)間內,與0 kg/hm2處理相比,50和100 kg/hm2處理的粗根根長密度分別減小5.95%和12.21%,極細根的根長密度分別減小3.31%和6.59%,細根的根長密度分別減小3.04%和6.06%。因此,運用RPF-NRLD分布模型能夠描述不同殘膜量條件下總徑級根系和不同徑級根系的根長密度分布,根據(jù)前文對不同徑級分配比例的分析發(fā)現(xiàn)當殘膜量為150 kg/hm2對細根和極細根比例的影響未達到顯著水平(>0.05),說明殘膜量≤150 kg/hm2時不會顯著降低細根和極細根比例,同時結合RPF-NRLD分布模型情景分析結果,當殘膜量為100 kg/hm2時,細根和極細根的根長密度降幅保持在6%左右,細根和極細根是玉米的主要吸水根系,殘膜對細根和極細根的脅迫程度較輕,保證了根系對水分的吸收。綜合分析后得到能夠維持根系正常生長的殘膜量范圍為0~100 kg/hm2。
圖5 RPF-NRLD分布模型估算2020年灌漿期玉米根長密度分布
根系的生長發(fā)育會受到土壤水分、養(yǎng)分以及土壤環(huán)境等因素的影響[25],土壤中存在的殘膜會改變原本的土壤環(huán)境,阻滯水分入滲[9],造成表層土壤鹽分積聚[26],同時殘膜還會改變土壤水分分布[27],影響根系對水肥的吸收和利用,從而減弱了玉米的光合作用,降低光合作用產(chǎn)物的積累[15],導致產(chǎn)量下降[17-18]。另外,殘膜柔韌性較強,易與作物根系發(fā)生纏繞,危害根系正常生長發(fā) 育[28]。前人研究發(fā)現(xiàn),根長密度隨殘膜量的增加而減 小[29-30],這與本研究結果一致,0~30 cm土層,T1、T2、T3和T4殘膜處理灌漿期的根長密度較CK處理2 a平均分別減小9.06%、28.28%、50.02%和55.90%,值得注意的是在本研究中,當殘膜量為450kg/hm2(T3)時,根長密度顯著降低,這與李元橋等[31]研究發(fā)現(xiàn)苗期玉米根長在殘膜量為360 kg/hm2時顯著降低的結果有所不同,這是因為本研究中選取的是玉米的灌漿期,此時玉米根系的發(fā)達程度遠高于苗期,對殘膜脅迫產(chǎn)生了抵抗性,同時由于李元橋等[31]采用柱形花盆進行室內模擬試驗,玉米根系的生長空間存在局限性,根系發(fā)達程度偏低,而本研究為田間試驗,玉米根系為自然生長狀態(tài),這些因素的不同使得顯著影響作物根系生長的殘膜量臨界值存在差異。另外,本研究對水平方向上根系分布的結果表明,殘膜對側根區(qū)的根系生長影響較大,當殘膜量達到300 kg/hm2(T2)時,根長密度出現(xiàn)突降現(xiàn)象,而隨著土壤中殘膜量繼續(xù)增加,則呈現(xiàn)明顯的階梯式下降趨勢,由于玉米根系屬于須根系,在側根區(qū)的根系一般為細根,對殘膜碎片的穿透力較弱,且對殘膜的敏感程度較高,當殘膜量閾值達到300 kg/hm2(T2)時,根系生長空間嚴重縮減,使根系無法正常生長,根長密度大幅減小。
玉米不同徑級根系的作用有所不同[32],直徑小于2 mm的細根主要功能是吸收水分和養(yǎng)分[33],而大于2 mm的粗根主要功能是固定植株。本研究選取極細根、細根和粗根3種典型根系直徑,明確殘膜對不同徑級根系的影響,結果顯示粗根比例隨殘膜量增加呈現(xiàn)下降趨勢,這是由于粗根主要分布在耕層(0~30 cm),而殘膜也主要分布在該土層范圍,阻礙了粗根向下生長,縮減了根系分布范圍,導致粗根在徑級分配中的比例下降。王樹鳳等[34]通過研究鹽脅迫下麻櫟根系生長時也發(fā)現(xiàn)粗根長度會出現(xiàn)明顯下降,說明殘膜脅迫與鹽脅迫對植株根系生長存在相似的響應機制。另外,殘膜對細根的生長具有促進作用,總體上來說直徑小于2 mm的細根比例隨殘膜量的增加而增大,T1、T2、T3和T4處理較CK處理分別增加1.04%、2.26%、7.24%和8.65%,這有利于補償殘膜脅迫下根系對水分和養(yǎng)分的吸收,使得根系在逆境環(huán)境產(chǎn)生協(xié)調機制[34],維持作物正常生長。姬文琴等[35]通過研究燕麥不同徑級根系對干旱脅迫的響應發(fā)現(xiàn)干旱脅迫下光合產(chǎn)物被更多地輸送給根系,增加了細根的長度和數(shù)量,利于燕麥適應干旱脅迫,與本研究殘膜脅迫條件下對細根的影響效應相似。由此可見,殘膜脅迫下,玉米不同徑級根系存在不同反饋機制,粗根比例的下降減弱了植株的抗倒伏能力,而細根比例的增加使得植株對殘膜脅迫產(chǎn)生了適應性。
由于根系取樣工作較為繁雜,建立根系分布模型便于了解不同作物以及不同限制條件下根系的分布[22,24,36]。Wu等[21]運用歸一化方法,將多年的實測根長密度(RLD)轉換為相對根長密度(NRLD),分別建立小麥、玉米、棉花和豆類的三階多項式函數(shù),且決定系數(shù)(2)均達0.94以上。Ning等[24]將冪、指數(shù)和多項式模型擬合到小麥、玉米、水稻和棉花的NRLD剖面分布,發(fā)現(xiàn)三階多項式模型對所有四種作物具有最低的RMSE和最高的2,較之于二者建立的玉米根系模型,本文采用的是二階多項式對不同殘膜量的NRLD進行了擬合,并建立了考慮殘膜量的玉米總徑級和不同徑級相對根長密度分布模型(RPF-NRLD),模型中參數(shù)、、反映玉米根系生長的擬合情況(表3),本研究所構建的參數(shù)偏小,其中總徑級根系的擬合參數(shù)為3.239,低于賈彪等[36]擬合值(為4.514),主要原因是賈彪等研究不同施氮量下玉米根系,本研究為農(nóng)膜殘留條件下的根系分布,根系生長受阻,使得模型參數(shù)發(fā)生變化。但本研究模擬結果與實測值一致性非常高,如總徑級根系的2達到0.961,高于賈彪等的擬合精度(2為0.898),這是由于本研究中根系樣本最深取至80 cm,根系樣本數(shù)的增加提高了模型精度。值得注意的是,粗根的NRLD分布符合指數(shù)函數(shù)關系,且因為粗根僅在表層土壤中存在,NRLD數(shù)據(jù)變幅較大,降低了擬合精度,2為0.901,RMSE為0.335,MRE為35.41%。另外,運用該模型成功估算了不同殘膜量處理在土壤剖面的RLD分布,明確了當農(nóng)田殘膜量控制在0~100 kg/hm2范圍內,不會明顯影響根系生長。這與李元橋等[31]殘膜量高于90 kg/hm2,玉米根系生長指標隨殘膜量的增加顯著降低的研究結果基本一致,因此,應該采取適當?shù)臍埬せ厥沾胧?,減小殘膜污染對土壤環(huán)境和作物生長的影響。
1)殘膜減小玉米根系水平分布的密集范圍,且縮小程度隨著殘膜量的增加而增大。殘膜對側根區(qū)的根系生長影響較大,當殘膜量達到300 kg/hm2(T2)時,根長密度出現(xiàn)突降現(xiàn)象,T1、T2、T3和T4處理的根長密度較CK處理分別減小了15.57%、75.98%、80.12%和85.25%。另外,垂直方向上的玉米根系在0~30 cm土層受殘膜影響大于30~80 cm土層,且當殘膜量達到 450 kg/hm2時,玉米根系明顯受阻。
2)殘膜脅迫會減小粗根比例(>2 mm),增加玉米細根比例(≤2 mm),T1、T2、T3和T4處理的粗根比例較CK處理平均減小了29.25%,細根比例平均增加了4.80%。
3)考慮了殘膜量構建的玉米RPF-NRLD分布模型,模擬值與實測值一致性非常高,其中2為0.961,RMSE為0.282,MRE為18.87%,能精確模擬不同殘膜量下玉米根系分布。考慮不同殘膜量和不同徑級根系的RPF-NRLD分布模型,極細根、細根和粗根的MRE分別為14.91%、14.96%和35.41%,其中極細根和細根相對根長密度分布符合二次函數(shù)關系,粗根符合指數(shù)函數(shù)關系。
4)運用RPF-NRLD分布模型估算不同殘膜量處理根長密度分布,當殘膜量為100 kg/hm2時,總徑級、極細根、細根和粗根的根長密度分別下降10.14%、6.59%、6.06%和12.21%,將農(nóng)田殘膜量控制在0~100 kg/hm2有利于維持根系的正常生長。當殘膜量增加為200和 450 kg/hm2,根長密度顯著下降,為23.16%和50.06%。
[1] 李仙岳,冷旭,張景俊,等.北方干旱區(qū)降解膜覆蓋農(nóng)田玉米生長和氮素利用模擬及優(yōu)化[J].農(nóng)業(yè)工程學報,2020,36(5):113-121.
Li Xianyue, Leng Xu, Zhang Jingjun, et al. Simulation and optimization of maize growth and nitrogen utilization under degradation film mulching in arid areas of North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 113-121. (in Chinese with English abstract)
[2] 王傳娟,張彥群,王建東,等.東北典型區(qū)覆膜滴灌春玉米節(jié)水增產(chǎn)的光合生理響應[J].農(nóng)業(yè)工程學報,2019,35(24):90-97.
Wang Chuanjuan, Zhang Yanqun, Wang Jiandong, et al. Photosynthetic response of water-saving and yield-increasing of mulched drip irrigation for spring maize (L.) in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 90-97. (in Chinese with English abstract)
[3] Chen N, Li X Y, ?im?nek Jirí, et al. The effects of biodegradable and plastic film mulching on nitrogen uptake, distribution, and leaching in a drip-irrigated sandy field[J]. Agriculture Ecosystems & Environment, 2020, 292: 106817.
[4] Sun D, Li H, Wang E, et al. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency[J]. National Science Review, 2020(10): 10.
[5] 盧闖,張宏媛,劉娜,等.免耕覆膜增加中度鹽堿土團聚體有機碳和微生物多樣性[J].農(nóng)業(yè)工程學報,2019,35(21):116-124.
Lu Chuang, Zhang Hongyuan, Liu Na, et al. Increasing soil organic carbon in aggregates and microflora diversity in moderate salt-affected soils through no till combined with plastic film mulching[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 116-124. (in Chinese with English abstract)
[6] 董合干,劉彤,李勇冠,等.新疆棉田地膜殘留對棉花產(chǎn)量及土壤理化性質的影響[J].農(nóng)業(yè)工程學報,2013,29(8):91-99.
Dong Hegan, Liu Tong, Li Yongguan, et al. Effects of plastic film residue on cotton yield and soil physical and chemical properties in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 91-99. (in Chinese with English abstract)
[7] Wang Z C, Li X Y, Shi H B, et al. Estimating the water characteristic curve for soil containing residual plastic film based on an improved pore-size distribution[J]. Geoderama, 2020, 370(4): 114341.
[8] 王志超,李仙岳,史海濱,等.農(nóng)膜殘留對土壤水動力參數(shù)及土壤結構的影響[J].農(nóng)業(yè)機械學報,2015,46(5):101-106,140.
Wang Zhichao, Li Xianyue, Shi Haibin, et al. Effects of residual plastic film on soil hydrodynamic parameters and soil structure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 101-106, 140. (in Chinese with English abstract)
[9] 李元橋,何文清,嚴昌榮,等.點源供水條件下殘膜對土壤水分運移的影響[J].農(nóng)業(yè)工程學報,2015,31(6):145-149.
Li Yuanqiao, He Wenqing, Yan Changrong, et al. Effect of residual film on soil infiltration under drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 145-149. (in Chinese with English abstract)
[10] 王志超,孟青,于玲紅,等.內蒙古河套灌區(qū)農(nóng)田土壤中微塑料的賦存特征[J].農(nóng)業(yè)工程學報,2020,36(3):204-209.
Wang Zhichao, Meng Qing, Yu Linghong, et al. Occurrence characteristics of microplastics in farmland soil of Hetao Irrigation District, Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 204-209. (in Chinese with English abstract)
[11] Wang D, Xi Y, Shi X Y, et al. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment[J]. Environmental Pollution, 2021, 286: 117546.
[12] 胡燦,王旭峰,陳學庚,等.新疆農(nóng)田殘膜污染現(xiàn)狀及防控策略[J].農(nóng)業(yè)工程學報,2019,35(24):223-234.
Hu Can, Wang Xufeng, Chen Xuegeng, et al. Current situation and control strategies of residual film pollution in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 223-234. (in Chinese with English abstract)
[13] 王亮,林濤,嚴昌榮,等.地膜殘留量對新疆棉田蒸散及棵間蒸發(fā)的影響[J].農(nóng)業(yè)工程學報,2016,32(14):120-128.
Wang Liang, Lin Tao, Yan Changrong, et al. Effects of plastic film residue on evapotranspiration and soil evaporation in cotton field of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 120-128. (in Chinese with English abstract)
[14] 王振華,賀懷杰,鄭旭榮,等.新疆典型綠洲棉稈還田對覆膜滴灌棉田殘膜分布的影響[J].農(nóng)業(yè)工程學報,2018,34(21):120-127.
Wang Zhenhua, He Huaijie, Zheng Xurong, et al. Effect of cotton stalk returning to fields on residual film distribution in cotton fields under mulched drip irrigation in typical oasis area in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 120-127. (in Chinese with English abstract)
[15] 杜利,李援農(nóng),陳朋朋,等.不同殘膜量對土壤環(huán)境及玉米生長發(fā)育的影響[J].節(jié)水灌溉,2018(7):4-9,14.
Du Li, Li Yuannong, Chen Pengpeng, et al. Effects of different residual film on the growth and soil environment of maize[J]. Water Saving Irrigation, 2018(7): 4-9, 14. (in Chinese with English abstract)
[16] 鄒小陽,牛文全,劉晶晶,等.殘膜對番茄苗期和開花坐果期生長的影響[J].中國生態(tài)農(nóng)業(yè)學報,2016,4(12):1643-1654.
Zou Xiaoyang, Niu Wenquan, Liu Jingjing, et al. Effect of residual plastic film on growth of tomato at seedling and blooming and fruit-setting stages[J]. Chinese Journal of Eco-Agriculture, 2016, 24(12): 1643-1654. (in Chinese with English abstract).
[17] 祖米來提·吐爾干,林濤,王亮,等.地膜殘留對連作棉田土壤氮素、根系形態(tài)及產(chǎn)量形成的影響[J].棉花學報,2017,29(4):374-384.
Zumilaiti Tuergan, Lin Tao, Wang Liang, et al. Effects of plastic film residues on soil nitrogen content, root distribution, and cotton yield during the long-term continuous cropping of cotton[J]. Cotton Science, 2017, 29(4): 374-384. (in Chinese with English abstract)
[18] 劉建國,李彥斌,張偉,等.綠洲棉田長期連作下殘膜分布及對棉花生長的影響[J].農(nóng)業(yè)環(huán)境科學學報,2010,29(2):246-250.
Liu Jianguo, Li Yanbin, Zhang Wei, et al. The distributing of the residue film and influce on cotton growth under continuous cropping in Oasis of Xinjiang[J]. Journal of Agro-Environment Science, 2010, 29(2): 246-250. (in Chinese with English abstract)
[19] Zuo Q, Jie F, Zhang R, et al. A generalized function of wheat's root length density distributions[J]. Vadose Zone Journal, 2004, 3(1): 271-277.
[20] 馬韜,李琦,楊麗清,等. 基于不同根系分布形式的鹽漬化農(nóng)田向日葵根系吸水模擬[J]. 中國農(nóng)村水利水電,2016,9(1):18-23.
Mao Tao, Li Qi, Yang Liqing, et al. Simulation of root water uptake for sunflower in saline field based on different root distribution functions[J]. 2016, 9(1): 18-23. (in Chinese with English abstract)
[21] Wu J Q, Zhang R D, Gui S X. Modeling soil water movement with water uptake by roots[J]. Plant and Soil, 1999, 215(1): 7-17.
[22] 鄒海洋,張富倉,吳立峰,等.基于不同水肥組合的春玉米相對根長密度分布模型[J].農(nóng)業(yè)工程學報,2018,34(4):133-142.
Zou Haiyang, Zhang Fucang, Wu Lifeng, et al. Normalized root length density distribution model for spring maize under different water and fertilizer combination[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 133-142. (in Chinese with English abstract)
[23] 牛文全,鄒小陽,劉晶晶,等.殘膜對土壤水分入滲和蒸發(fā)的影響及不確定性分析[J].農(nóng)業(yè)工程學報,2016,32(14):110-119.
Niu Wenquan, Zou Xiaoyang, Liu Jingjing, et al. Effects of residual plastic film mixed in soil on water infiltration, evaporation and its uncertainty analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 110-119. (in Chinese with English abstract)
[24] Ning S R, Shi J C, Zuo Q, et al. Generalization of the root length density distribution of cotton under film mulched drip irrigation[J]. Field Crops Research, 2015, 177: 125-136.
[25] Coelho E F, Or D. Root distribution and water uptake patterns of com under surface and subsurface drip irrigation[J]. Plant and Soil, 1999, 206(2): 123-136.
[26] 吳鳳全,林濤,王靜,等.不同殘膜量對棉田土壤水鹽運移的影響[J].棉花學報,2018,30(5):395-405.
Wu Fengquan, Lin Tao, Wang Jing, et al. Effect of drip irrigation under film on soil water and salt movement in a residual film cotton field[J]. Cotton Science, 2018, 30(5): 395-405. (in Chinese with English abstract)
[27] Jiang X J, Liu W J, Wang E H, et al. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China[J]. Soil and Tillage Research, 2017, 166: 100-107.
[28] 林濤,湯秋香,郝衛(wèi)平,等.地膜殘留量對棉田土壤水分分布及棉花根系構型的影響[J].農(nóng)業(yè)工程學報,2019,35(19):117-125.
Lin Tao, Tang Qiuxiang, Hao Weiping, et al. Effects of plastic film residue rate on root zone water environment and root distribution of cotton under drip irrigation condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19): 117-125. (in Chinese with English abstract)
[29] 朱文悅,吳景貴,王蒙.殘留地膜對土壤物理性質及玉米根系生長的影響[J].環(huán)境科學與技術,2019,42(12):33-38.
Zhu Wenyue, Wu Jinggui, Wang Meng. Effects of residual mulch on soil physical properties and root growth of maize[J]. Environmental Science & Technology, 2019, 42(12): 33-38. (in Chinese with English abstract)
[30] 朱金儒,李文昊,王振華,等.覆膜滴灌棉田地膜殘留量對棉花生長的影響[J].干旱區(qū)研究,2021,38(2):570-579.
Zhu Jinru, Li Wenhao, Wang Zhenhua, et al. Effect of film mulching residue on cotton growth in drip irrigation cotton field[J]. Arid Zone Research, 2021, 38(2): 570-579. (in Chinese with English abstract)
[31] 李元橋,何文清,嚴昌榮,等.殘留地膜對棉花和玉米苗期根系形態(tài)和生理特性的影響[J].農(nóng)業(yè)資源與環(huán)境學報,2017,34(2):108-114.
Li Yuanqiao, He Wenqing, Yan Changrong, et al. Effects of agricultural plastic residual films on morphologic and physiological characteristics of root system of cotton and maize in seedling stage[J]. Journal of Agricultural Resources and Environment, 2017, 34(2): 108-114. (in Chinese with English abstract)
[32] 閆雷,喇樂鵬,董天浩,等.耕作方式對東北黑土坡耕地土壤物理性狀及根系垂直分布的影響[J].農(nóng)業(yè)工程學報,2021,37(1):125-132.
Yan Lei, La Yuepeng, Dong Tianhao, et al. Soil physical properties and vertical distribution of root systems affected by tillage methods in black soil slope farmlands in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 125-132. (in Chinese with English abstract)
[33] White C, Sylvester-Bradley R, Berry P. Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield[J]. Journal of Experimental Botany, 2015, 66(8): 2293-2303.
[34] 王樹鳳,胡韻雪,孫海菁,等.鹽脅迫對2種櫟樹苗期生長和根系生長發(fā)育的影響[J].生態(tài)學報,2014,34(4):1021-1029.
Wang Shufeng, Hu Yunxue, Sun Haijing, et al. Effects of salt stress on growth and root development of two oak seedlings[J]. Acta Ecologica Sinica, 2014, 34(4): 1021-1029. (in Chinese with English abstract)
[35] 姬文琴,楊智,汪輝,等.不同生育階段燕麥對干旱脅迫的響應[J].中國草地學報,2021,43(1):58-67.
Ji Wenqin, Yang Zhi, Wang Hui, et al. Response of oat drought stress at different growth stages[J]. Chinese Journal of Grassland, 2021, 43(1): 58-67. (in Chinese with English abstract)
[36] 賈彪,李振洲,王銳,等.不同施氮量下覆膜滴灌玉米相對根長密度模型研究[J].農(nóng)業(yè)機械學報,2020,51(9):266-273.
Jia Biao, Li Zhenzhou, Wang Rui, et al. Effects of nitrogen application rate on root length density of maize under drip irrigation with mulch[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 266-273. (in Chinese with English abstract)
Response of maize root to residual plastic film and root distribution model in Hetao Irrigation District of Inner Mongolia
Hu Qi, Li Xianyue※, Shi Haibin, Chen Ning, Zhang Yuehong, Ma Hongyu
(010018)
Plastic film residues have posed a great threat to crop root growth and distribution in soil. The accumulation of agricultural wastes in the soil can also hinder the water and fertilizer migration in the farmland. Therefore, it is of great significance to clarify the effects of different Residual Plastic Film (RPF) amounts in soil on root growth and distribution. In this study, five levels of agricultural film residues were set at the Jiuzhuang Agricultural Comprehensive Water-Saving Experimental Station in Hetao Irrigation District from 2019 to 2020, including the control group, CK (0 kg/hm2), T1 (150 kg/hm2, plastic film covering for about 18 years), T2 (300 kg/hm2, plastic film covering for about 45 years), T3 (450 kg/hm2, plastic film covering for about 72 years), and T4 (600 kg/hm2, plastic film covering for about 100 years). A systematic investigation was also made on the effects of various RPF amounts on the Root Length Density (RLD) and the distribution of diameter classes for the maize roots. The RPF amount was then introduced to establish a root distribution model suitable for the farmland with the agricultural film residues. The results showed that the RPF effectively reduced the dense range of maize roots in the horizontal distribution, where the degree of reduction increased with the increase of RPF. The distribution of roots in the horizontal direction was divided into the main and the lateral root zone. The effect of RPF on the root system in the lateral root zone was greater than that in the main root zone, indicating a significant indigenous level (<0.05). Specifically, the RLD decreased sharply, when the RPF amount was 300 kg/hm2(T2), 75.98% lower than that in the 0 kg/hm2(CK) treatment. In the vertical distribution, the root system showed a significant downward trend with the increase of RPF. The maize root system was more affected by the RPF in the 0-30 cm soil layer than in the 30-80 cm soil layer. Furthermore, the RLD decreased by 50.02%, when the RPF reached 450 kg/hm2. In addition, the RPF treatment reduced the coarse root ratio of maize (>2 mm), decreased by 29.25% on average. The proportion of fine roots (≤2 mm) increased, with an average increase of 4.80%. A relative root length density (RPF-NRLD, Residual Plastic Film-Normalized Root Length Density) distribution model considering the RPF content presented a higher accuracy, in which the determination coefficient (2) was 0.961, the Root Mean Square Error (RMSE) was 0.282, and the Mean Relative Error (MRE) was 18.87%, thereby to accurately simulate the distribution of maize roots under different residual film amounts. Meanwhile, the RPF-NRLD distribution model was also considered the different diameter classes of roots. Specifically, the simulated values for very fine roots and fine roots of maize were highly consistent with the measured values, where the MRE of 14.91% and 14.96%, respectively, and the MRE of very coarse roots of 35.41%. Correspondingly, the relative root length density distribution of very fine roots (≤0.5 mm) and fine roots (0.5 mm<≤2 mm) followed the quadratic function, whereas, the coarse roots followed the exponential function. A field experiment was also conducted to verify the RPF-NRLD distribution model. It was found that the root system maintained normal growth, especially the very fine root and fine root, when the amount of RPF in the farmland was controlled in the range of 0-100 kg/hm2. This finding can offer a scientific significance for the numerical simulation of crop growth and decision-making in the RPF-contaminated areas.
maize; irrigation; spatial distribution; residual plastic film; roots;normalized root length density; root distribution model
10.11975/j.issn.1002-6819.2021.21.017
S15;S275
A
1002-6819(2021)-21-0143-10
胡琦,李仙岳,史海濱,等. 河套灌區(qū)玉米根系對殘膜的響應及根系分布模型[J]. 農(nóng)業(yè)工程學報,2021,37(21):143-152.doi:10.11975/j.issn.1002-6819.2021.21.017 http://www.tcsae.org
Hu Qi, Li Xianyue, Shi Haibin, et al. Response of maize root to residual plastic film and root distribution model in Hetao Irrigation District of Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 143-152. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.21.017 http://www.tcsae.org
2021-07-23
2021-10-20
國家自然科學基金(51669020,51469022,51539005);內蒙古自然科學基金(2016JQ06)
胡琦,博士生,研究方向為農(nóng)業(yè)生態(tài)環(huán)境效應。Email:593802524@qq.com
李仙岳,教授,博士生導師,研究方向為農(nóng)業(yè)生態(tài)環(huán)境效應研究。Email:lixianyue80@126.com