孫龍剛,郭鵬程,2,鄭小波,2,吳羅長,2
·農(nóng)業(yè)裝備工程與機(jī)械化·
混流式水輪機(jī)葉道空化渦誘發(fā)高振幅壓力脈動(dòng)特性
孫龍剛1,郭鵬程1,2※,鄭小波1,2,吳羅長1,2
(1. 西安理工大學(xué)水利水電學(xué)院,西安 710048;2. 西安理工大學(xué)省部共建西北旱區(qū)生態(tài)水利國家重點(diǎn)實(shí)驗(yàn)室,西安 710048)
混流式水輪機(jī)部分負(fù)荷葉道空化渦不穩(wěn)定特性已成為制約水電與其他可再生能源多能互補(bǔ)發(fā)展、擴(kuò)大水輪機(jī)穩(wěn)定運(yùn)行范圍急需研究的技術(shù)難題。該研究以HL702低水頭混流式模型水輪機(jī)為研究對(duì)象,通過非穩(wěn)態(tài)數(shù)值模擬技術(shù)及渦流可視化試驗(yàn),對(duì)部分負(fù)荷工況下的葉道空化渦不穩(wěn)定渦流演化及壓力脈動(dòng)特性展開研究。結(jié)果表明,葉道空化渦在水輪機(jī)轉(zhuǎn)輪內(nèi)為一個(gè)體積周期性變化的動(dòng)態(tài)過程,其渦結(jié)構(gòu)脈動(dòng)主頻為轉(zhuǎn)輪轉(zhuǎn)頻的1.1倍。葉道空化渦誘發(fā)時(shí),水輪機(jī)轉(zhuǎn)輪葉片壓力面和吸力面均捕捉到與渦結(jié)構(gòu)頻率相同的壓力脈動(dòng)信號(hào)。葉道空化渦體積的變化主要發(fā)生在轉(zhuǎn)輪葉片背面出水邊與下環(huán)交界附近,引起壓力脈動(dòng)幅值的局部放大。進(jìn)一步分析發(fā)現(xiàn),葉道空化渦發(fā)生工況下水輪機(jī)內(nèi)部的瞬時(shí)壓力脈動(dòng)信號(hào)與空泡體積加速度成正比,表明渦流演化是引起壓力脈動(dòng)幅值上升的重要原因。該研究進(jìn)一步闡明了部分負(fù)荷工況葉道空化渦的演化特征,揭示了渦流誘發(fā)不穩(wěn)定高振幅壓力脈動(dòng)的內(nèi)在機(jī)制。
流量;壓力;數(shù)值分析;葉道空化渦;高振幅壓力脈動(dòng);混流式水輪機(jī);演化特征;誘發(fā)機(jī)制
水輪機(jī)是水力發(fā)電的核心部件,其中混流式水輪機(jī)占所有水電裝機(jī)容量的60%以上,是目前水電站應(yīng)用最為廣泛的機(jī)型[1]。部分負(fù)荷工況下,混流式水輪機(jī)轉(zhuǎn)輪出口激發(fā)與轉(zhuǎn)輪轉(zhuǎn)向相同的圓周速度分量,在尾水管內(nèi)形成強(qiáng)烈的偏心螺旋狀渦帶。而當(dāng)流量進(jìn)一步減小,轉(zhuǎn)輪相鄰兩葉片之間會(huì)誘發(fā)一種特殊的渦流現(xiàn)象——葉道空化渦[2-3]。特別是隨著間隙歇性可再生能源在電網(wǎng)中占比的增加,具有調(diào)峰調(diào)頻作用的水輪機(jī)將被強(qiáng)制運(yùn)行在部分負(fù)荷以平衡電網(wǎng)參數(shù)[4-6],水輪機(jī)必將更加頻繁運(yùn)行在部分負(fù)荷工況,其內(nèi)部的水力不穩(wěn)定現(xiàn)象將更為劇烈和復(fù)雜,對(duì)機(jī)組的安全穩(wěn)定運(yùn)行造成威脅。因此,明確部分負(fù)荷工況葉道空化渦的演化特征及其對(duì)水力性能的影響,對(duì)實(shí)現(xiàn)水電與其他可再生能源多能互補(bǔ)、保障電力可靠供應(yīng)具有重要的現(xiàn)實(shí)意義。
本課題組前期研究表明[7-8],運(yùn)行水頭對(duì)葉道空化渦的初生及發(fā)展具有顯著影響。水頭較高時(shí),水輪機(jī)流道較窄且葉片數(shù)較多,轉(zhuǎn)輪通道對(duì)水流的約束力越強(qiáng),故轉(zhuǎn)輪對(duì)小流量具有較強(qiáng)的適應(yīng)性,葉道空化渦初生線及發(fā)展線距離最優(yōu)區(qū)較遠(yuǎn);水頭較低時(shí),對(duì)應(yīng)的葉道空化渦發(fā)生工況單位流量升高,葉道空化渦初生線及發(fā)展線距離最優(yōu)區(qū)較近。對(duì)于同一轉(zhuǎn)輪,葉道空化渦的出流位置隨運(yùn)行水頭的升高由轉(zhuǎn)輪出口下環(huán)處逐漸向上冠處過渡。Cheng等[9]認(rèn)為,轉(zhuǎn)輪輪轂附近的回流區(qū)與葉片沖角之間的關(guān)系對(duì)葉道空化渦的結(jié)構(gòu)及強(qiáng)度有顯著影響。傳統(tǒng)觀點(diǎn)認(rèn)為,轉(zhuǎn)輪葉片進(jìn)水邊沖角變化引起的脫流現(xiàn)象對(duì)葉道空化渦的形成具有重要的影響[10-11]。近期研究顯示,由于部分負(fù)荷工況水輪機(jī)流量發(fā)生較大范圍的變化,轉(zhuǎn)輪不能保持內(nèi)部連續(xù)穩(wěn)定的壓力梯度可能是葉道空化渦形成的原因之一[12]。此外,轉(zhuǎn)輪上冠處的流動(dòng)分離現(xiàn)象,也是影響葉道空化渦誘發(fā)及形成的關(guān)鍵因素[13-15]。
葉道空化渦的初生及發(fā)展涉及到復(fù)雜的氣液兩相流動(dòng),其在轉(zhuǎn)輪內(nèi)為一個(gè)非穩(wěn)態(tài)的動(dòng)態(tài)過程,且隨轉(zhuǎn)輪的旋轉(zhuǎn),這種非穩(wěn)態(tài)運(yùn)動(dòng)更加復(fù)雜,對(duì)水輪機(jī)內(nèi)部壓力脈動(dòng)的幅值及頻譜分布構(gòu)成一定的影響[16-17]。為了澄清葉道空化渦工況區(qū)水輪機(jī)的壓力特性,瑞士聯(lián)邦理工學(xué)院(Swiss Federal Institute of Technology,EPFL)水力機(jī)械實(shí)驗(yàn)室、德國Voith水電以及法國GE水力實(shí)驗(yàn)室對(duì)轉(zhuǎn)輪內(nèi)壓力進(jìn)行測(cè)量發(fā)現(xiàn),葉道空化渦充分發(fā)展時(shí),轉(zhuǎn)輪葉片吸力面的壓力脈動(dòng)幅值被提高,通過試驗(yàn)證實(shí)了葉道空化渦的誘發(fā)會(huì)降低水輪機(jī)水力性能[18-20]。Bouajila等[21]對(duì)一中等水頭模型水輪機(jī)進(jìn)行了可視化試驗(yàn)及轉(zhuǎn)輪葉片壓力測(cè)試,結(jié)果表明,轉(zhuǎn)輪出口出現(xiàn)明顯的葉道空化渦現(xiàn)象時(shí),轉(zhuǎn)輪葉片壓力脈動(dòng)幅值最大,且壓力信號(hào)顯示的寬頻特性為7~20倍轉(zhuǎn)頻。Zuo等[22]基于氣液兩相流動(dòng)對(duì)一混流式模型水輪機(jī)葉道空化渦進(jìn)行了數(shù)值研究發(fā)現(xiàn),葉道空化渦初生工況及發(fā)展工況的壓力脈動(dòng)頻率分別為轉(zhuǎn)頻的0.84倍與1.0倍。Xiao等[23]研究表明,葉道渦引起的壓力脈動(dòng)頻率為低頻,其范圍為轉(zhuǎn)頻的0.2~3.0倍。
綜上,部分負(fù)荷工況葉道空化渦演化對(duì)水輪機(jī)內(nèi)部壓力脈動(dòng)幅值有一定的增強(qiáng)作用,然而渦流結(jié)構(gòu)與不穩(wěn)定壓力脈動(dòng)之間的聯(lián)系尚不明確。為進(jìn)一步探究部分負(fù)荷工況水輪機(jī)葉道空化渦的演化特性,揭示渦流誘發(fā)不穩(wěn)定壓力脈動(dòng)的內(nèi)在機(jī)制,本文以一低水頭混流式模型水輪機(jī)為研究對(duì)象,開展氣液兩相數(shù)值模擬及渦流可視化試驗(yàn),研究葉道空化渦在轉(zhuǎn)輪內(nèi)的位置及強(qiáng)度演化特征,對(duì)比分析轉(zhuǎn)輪葉片壓力面及吸力面壓力脈動(dòng)幅值之間的差異,并建立葉道空化渦演化與高振幅壓力脈動(dòng)之間的關(guān)聯(lián),以明確高振幅壓力脈動(dòng)產(chǎn)生的直接原因,為不穩(wěn)定葉道空化渦的抑制及控制提供依據(jù)。
由于相同運(yùn)行條件下,低水頭混流式水輪機(jī)更易誘發(fā)葉道空化渦流動(dòng)現(xiàn)象,因而本文以低水頭HL702模型水輪機(jī)為研究對(duì)象,開展有關(guān)葉道空化渦的數(shù)值模擬及可視化試驗(yàn)研究。圖1為混流式模型水輪機(jī)三維視圖,該模型由進(jìn)口到出口分別為蝸殼、固定導(dǎo)葉、活動(dòng)導(dǎo)葉、轉(zhuǎn)輪以及尾水管,其中固定導(dǎo)葉與活動(dòng)導(dǎo)葉數(shù)均為24,轉(zhuǎn)輪葉片數(shù)為15。由式(1)定義的模型水輪機(jī)比轉(zhuǎn)速為230.4。水輪機(jī)模型額定工況的基本參數(shù)如表1所示,水輪機(jī)模型與原型轉(zhuǎn)輪直徑分別為0.35和5.6 m,兩者之間的比值為1:16,原型水輪機(jī)額定水頭為48 m,模型水輪機(jī)試驗(yàn)水頭為30 m。在最優(yōu)工況下,活動(dòng)導(dǎo)葉開度()為26°,由式(2)和式(3)定義的單位轉(zhuǎn)速與單位流量分別為67.0 r/min和0.96 m3/s。
式中n為比轉(zhuǎn)速,r/min;為轉(zhuǎn)輪旋轉(zhuǎn)速度,r/min;為水力效率,%;11為單位流量,m3/s;11為單位轉(zhuǎn)速,r/min;為流量,m3/s;為水頭,m;為轉(zhuǎn)輪出口直徑,m。
表1 水輪機(jī)基本參數(shù)
位于葉道空化渦初生線左側(cè)的工況點(diǎn),其渦流現(xiàn)象較為顯著,因此本文選取初生線左側(cè)一工況點(diǎn)開展數(shù)值計(jì)算,本文研究工況在水輪機(jī)模型綜合特性曲線上的位置如圖2中A所示,其活動(dòng)導(dǎo)葉開度為17°,相對(duì)于最優(yōu)工況單位轉(zhuǎn)速、單位流量的比值分別為122.81%和64.72%,按照式(3)計(jì)算的轉(zhuǎn)輪旋轉(zhuǎn)速度為1287.7 r/min,對(duì)應(yīng)的水輪機(jī)出力為額定工況的40%。
注:A為本文研究工況,BEP為最優(yōu)工況;12°至36°為活動(dòng)導(dǎo)葉開度;64至92為水力效率,%。
本文采用基于有限體積法的ANSYS CFX對(duì)葉道空化渦不穩(wěn)定渦流特性進(jìn)行氣液兩相數(shù)值研究。非穩(wěn)態(tài)雷諾時(shí)均方程(URANS-Unsteady Reynolds-Average Navier-Stokes)通過帶有自動(dòng)壁面函數(shù)的SST湍流模型[24-26]來閉合,空化模型則采用基于Rayleigh-Plesset方程的均質(zhì)多相流Zwart-Gerber-Belamri模型[28-30],該模型通過輸運(yùn)方程來控制水氣之間的質(zhì)量輸運(yùn)率。數(shù)值計(jì)算蝸殼進(jìn)口給定質(zhì)量流量,出口指定靜壓,所有固壁面設(shè)置為光滑、無滑移壁面邊界。非穩(wěn)態(tài)數(shù)值求解時(shí)間步長為對(duì)應(yīng)轉(zhuǎn)輪旋轉(zhuǎn)1°所用時(shí)間,且每一時(shí)間步內(nèi)迭代15次以達(dá)到設(shè)定的殘差要求。
本文采用ICEM CFD對(duì)水輪機(jī)由蝸殼至尾水管所有部件進(jìn)行多塊結(jié)構(gòu)化六面體網(wǎng)格劃分,O-H型網(wǎng)格拓?fù)浔挥脕頌檗D(zhuǎn)輪葉片及導(dǎo)葉提供足夠的擬合,網(wǎng)格劃分特別注意葉片近壁面網(wǎng)格分布。為了避免網(wǎng)格數(shù)目對(duì)計(jì)算結(jié)果的影響,本文采用5套不同密度的網(wǎng)格方案進(jìn)行網(wǎng)格無關(guān)性驗(yàn)證,如表2,網(wǎng)格由664萬增加至1 502萬。在最優(yōu)工況下進(jìn)行網(wǎng)格無關(guān)性驗(yàn)證,研究網(wǎng)格數(shù)目對(duì)水輪機(jī)水力效率和扭矩的影響規(guī)律,如圖3a。其次,考慮到葉道空化渦的發(fā)生區(qū)域及其對(duì)下游流場(chǎng)結(jié)構(gòu)的影響,額外選取轉(zhuǎn)輪、尾水管內(nèi)的最小壓力值min作為網(wǎng)格無關(guān)性驗(yàn)證的關(guān)鍵變量,如圖3b。
表2 不同部件網(wǎng)格數(shù)目
經(jīng)檢驗(yàn),網(wǎng)格由方案1逐漸增加至方案3時(shí),轉(zhuǎn)輪扭矩及水力效率隨網(wǎng)格數(shù)目的增加而增大,而轉(zhuǎn)輪與尾水管內(nèi)的最小靜壓呈現(xiàn)相反的變化趨勢(shì)。網(wǎng)格數(shù)進(jìn)一步的增加,對(duì)測(cè)試結(jié)果的影響可以忽略,因此本文選擇方案3網(wǎng)格進(jìn)行數(shù)值研究,該套網(wǎng)格方案網(wǎng)格總數(shù)為1 079萬。圖4為計(jì)算域不同部件六面體網(wǎng)格劃分示意圖,對(duì)應(yīng)的BEP工況轉(zhuǎn)輪及尾水管最大+值(+值為第一層網(wǎng)格距離壁面的無量綱距離)分別為10.9和13.9,滿足本文所采用的湍流模型及壁面函數(shù)的要求。
為驗(yàn)證和對(duì)比數(shù)值求解精度,本文進(jìn)行了水輪機(jī)外特性測(cè)試及渦流結(jié)構(gòu)可視化試驗(yàn),試驗(yàn)測(cè)試平臺(tái)如圖5所示,試驗(yàn)過程中利用高速相機(jī)由透明尾水管錐管段記錄葉道空化渦的渦流形態(tài)。水輪機(jī)模型試驗(yàn)按照國際電工委員會(huì)(International Electrotechnical Commission,IEC)標(biāo)準(zhǔn)[27]進(jìn)行,符合相似準(zhǔn)則及驗(yàn)收規(guī)程。試驗(yàn)臺(tái)計(jì)算的水力效率的隨機(jī)誤差和系統(tǒng)誤差分別為±1%和±0.214%,詳細(xì)的誤差分析過程及試驗(yàn)過程見文獻(xiàn)[16]。
為分析部分負(fù)荷葉道空化渦演化對(duì)水輪機(jī)水力振動(dòng)的影響,本文對(duì)轉(zhuǎn)輪葉片壓力面和吸力面進(jìn)行壓力脈動(dòng)特性分析。圖6顯示了數(shù)值計(jì)算轉(zhuǎn)輪葉片壓力測(cè)點(diǎn)位置,圖中測(cè)點(diǎn)為轉(zhuǎn)輪葉片等流向線與等展向線交點(diǎn)。測(cè)點(diǎn)命名規(guī)則如下:PS11中PS表示葉片壓力面,第一個(gè)數(shù)字表示葉片展向,第二個(gè)數(shù)字表示流向,轉(zhuǎn)輪葉片吸力面上測(cè)點(diǎn)命名同理。為更清晰地顯示測(cè)點(diǎn)位置,圖6中僅僅給出部分測(cè)點(diǎn)名稱。
為便于對(duì)不同位置及不同幅值的壓力脈動(dòng)進(jìn)行分析,本文引入壓力系數(shù)來表征不同測(cè)點(diǎn)壓力脈動(dòng)特征。壓力系數(shù)C定義如下:
注:PS11, PS19, PS79, PS91, PS99分別為葉片壓力面測(cè)點(diǎn);SS11, SS19, SS79, SS91, SS99分別為葉片吸力面測(cè)點(diǎn)。
Note: PS11, PS19, PS79, PS91, and PS99 are the pressure monitoring points on the pressure side of the runner blade respectively; SS11, SS19, SS79, SS91, and SS99 are the pressure monitoring points on the suction side of the runner blade respectively.
圖6 壓力測(cè)點(diǎn)位置
Fig.6 Locations of pressure monitoring points
表3為數(shù)值與試驗(yàn)測(cè)試獲得的水輪機(jī)外特性效率及水頭,結(jié)果顯示,本文研究的計(jì)算工況數(shù)值求解的水頭及水力效率與試驗(yàn)測(cè)試結(jié)果比較一致,相對(duì)誤差均小于1.8%,在可接受誤差范圍之內(nèi)。圖7顯示了數(shù)值模擬預(yù)測(cè)的葉道空化渦與可視化試驗(yàn)觀測(cè)的對(duì)比。由于試驗(yàn)中觀測(cè)到的渦流現(xiàn)象實(shí)質(zhì)上是水流發(fā)生空化現(xiàn)象,因此數(shù)值結(jié)果采用空泡體積等值面v=0.1來表示渦流結(jié)構(gòu)。渦結(jié)構(gòu)對(duì)比結(jié)果顯示,數(shù)值模擬與試驗(yàn)觀測(cè)獲得的葉道空化渦的強(qiáng)度及相對(duì)位置一致性較好,表明本文采用的數(shù)值模擬策略能較好地預(yù)測(cè)模型水輪機(jī)的水力性能及渦流特性,具有較高的可靠性。
葉道空化渦的誘發(fā)涉及到復(fù)雜的相變過程,轉(zhuǎn)輪的旋轉(zhuǎn)作用會(huì)進(jìn)一步加劇這種不穩(wěn)定特性。為了闡明葉道空化渦在水輪機(jī)內(nèi)部的演化過程,圖8顯示了轉(zhuǎn)輪旋轉(zhuǎn)10個(gè)周期內(nèi),水輪機(jī)轉(zhuǎn)輪內(nèi)空泡體積的時(shí)域和頻域結(jié)果。
圖8顯示,水輪機(jī)內(nèi)誘發(fā)葉道空化渦時(shí),空泡體積隨時(shí)間推移做周期性波動(dòng),表明隨著轉(zhuǎn)輪的旋轉(zhuǎn),葉道空化渦為一個(gè)強(qiáng)度周期性增強(qiáng)和減弱的動(dòng)態(tài)過程。經(jīng)快速傅里葉(FFT- Fast Fourier Transform)變換后的空泡體積脈動(dòng)主頻為1.1f(f為轉(zhuǎn)頻),表明部分負(fù)荷工況誘發(fā)的葉道空化渦顯示了一定強(qiáng)度的低頻脈動(dòng),會(huì)對(duì)水輪機(jī)過流部件及水力系統(tǒng)產(chǎn)生一定的不利影響。
為進(jìn)一步闡明葉道空化渦在水輪機(jī)內(nèi)部的演化過程,圖9顯示了圖8中葉道空化渦演化一個(gè)周期內(nèi)7個(gè)典型時(shí)刻的空泡體積分?jǐn)?shù)等值面分布,葉道空化渦形態(tài)用空泡體積分?jǐn)?shù)v=0.1表示。
圖9 不同時(shí)刻空泡體積等值面
圖9顯示,葉道空化渦在轉(zhuǎn)輪上冠與下環(huán)之間強(qiáng)度發(fā)生變化的過程中,渦結(jié)構(gòu)的相對(duì)位置保持一致,強(qiáng)度較高時(shí)渦結(jié)構(gòu)呈扭曲狀由轉(zhuǎn)輪上冠延伸至出口與下環(huán)交界處。在空泡體積最小的1時(shí)刻,空泡體積附著在轉(zhuǎn)輪上冠面但僅僅延伸至流道中部位置附近。2時(shí)刻,空化程度加劇,空泡由轉(zhuǎn)輪上冠處延伸至出水邊與下環(huán)交界處,從而形成完整連續(xù)的扭曲狀葉道空化渦結(jié)構(gòu),此時(shí),轉(zhuǎn)輪內(nèi)的空泡體積未與轉(zhuǎn)輪葉片發(fā)生接觸。由2至3時(shí)刻,空泡體積沿其渦心軌跡徑向強(qiáng)度增加,尾部進(jìn)一步向出水邊延伸,且尾部與轉(zhuǎn)輪葉片吸力面發(fā)生接觸。4時(shí)刻與3時(shí)刻的空化形態(tài)及其在轉(zhuǎn)輪內(nèi)的相對(duì)位置比較一致,但空化強(qiáng)度進(jìn)一步增強(qiáng)至最高,對(duì)應(yīng)地,空泡尾部與轉(zhuǎn)輪葉片接觸面積進(jìn)一步增大。由4至5時(shí)刻,空泡體積開始收縮和減少,且5時(shí)刻與3時(shí)刻空泡強(qiáng)度及相對(duì)位置基本一致。6時(shí)刻,空泡體積進(jìn)一步減少但仍保持為連續(xù)結(jié)構(gòu)。6時(shí)刻至7時(shí)刻,空泡體積劇烈減少,轉(zhuǎn)輪出口處的空化結(jié)構(gòu)完全被抑制。通過以上分析可知,葉道空化渦在轉(zhuǎn)輪內(nèi)演化過程中,空泡體積總是附著在轉(zhuǎn)輪上冠面,空泡體積的劇烈變化,主要發(fā)生在葉片出口與下環(huán)交界處,此處空泡周期性的膨脹收縮運(yùn)動(dòng)直接影響其附近的流場(chǎng)特性,對(duì)轉(zhuǎn)輪葉片吸力面形成一定的拍打引起不穩(wěn)定的沖擊作用。
由于轉(zhuǎn)輪葉片下環(huán)位置處距離活動(dòng)導(dǎo)葉更近,此處受動(dòng)靜干涉的作用更顯著,而葉道空化渦的潰滅及再生主要發(fā)生在轉(zhuǎn)輪吸力面與下環(huán)交界位置處,渦結(jié)構(gòu)的演化對(duì)此處流場(chǎng)的影響最直接,因此選擇葉片吸力面測(cè)點(diǎn)SS91和SS99進(jìn)行分析。圖10顯示了所選擇的典型測(cè)點(diǎn)壓力系數(shù)時(shí)域及頻域結(jié)果。圖中結(jié)果顯示,葉道空化渦誘發(fā)時(shí),轉(zhuǎn)輪葉片進(jìn)水邊及出水邊的壓力顯示為周期性脈動(dòng),壓力脈動(dòng)主頻均為1.1f,葉片出水邊位置測(cè)點(diǎn)SS99與進(jìn)水邊測(cè)點(diǎn)SS91脈動(dòng)峰值分別為0.073和0.037,表明葉道空化渦對(duì)轉(zhuǎn)輪內(nèi)的壓力脈動(dòng)幅值有直接的提升作用,而且特別放大了葉片出水邊與下環(huán)處的脈動(dòng)幅值。此外,圖10中出現(xiàn)了1.0f的次峰值,在測(cè)點(diǎn)SS91和SS99處的脈動(dòng)峰值分別為0.021和0.038,與1.1f對(duì)應(yīng)峰值之間的比值分別為57.5%和51.4%。本文認(rèn)為,1.0f對(duì)應(yīng)的次峰值與葉道空化渦的出現(xiàn)有關(guān)。本文數(shù)值計(jì)算獲得的測(cè)點(diǎn)壓力脈動(dòng)波形圖,并未保持非常嚴(yán)格的周期性,而是脈動(dòng)周期及幅值在一定范圍內(nèi)波動(dòng),這是空化流動(dòng)現(xiàn)象的非定常特性決定的。圖10中的波形圖,同時(shí)包含頻率為1.0f和1.1f的壓力脈動(dòng)信息,為兩者的疊加,由于兩個(gè)頻率很接近,故在波形圖中并未顯示出駐波。盡管進(jìn)水邊測(cè)點(diǎn)受活動(dòng)導(dǎo)葉與轉(zhuǎn)輪之間動(dòng)靜干涉的顯著影響,但捕捉到的活動(dòng)導(dǎo)葉通過頻率24.0f對(duì)應(yīng)的幅值相對(duì)較小,表明葉道空化渦的出現(xiàn)會(huì)激發(fā)轉(zhuǎn)輪內(nèi)部的高振幅壓力脈動(dòng)。值得注意的是,葉道空化渦工況預(yù)測(cè)的壓力脈動(dòng)主頻與空泡體積的脈動(dòng)主頻相同,表明部分負(fù)荷工況水輪機(jī)轉(zhuǎn)輪內(nèi)高振幅壓力脈動(dòng)的誘發(fā)與空泡體積的演化之間存在一定的聯(lián)系。
圖11為轉(zhuǎn)輪葉片壓力面、吸力面沿5個(gè)不同無量綱展向高度()上的壓力脈動(dòng)幅值對(duì)比,圖中壓力脈動(dòng)幅值為經(jīng)FFT變換后對(duì)應(yīng)頻率均為1.1f的脈動(dòng)幅值。圖12為空泡體積最大時(shí)刻時(shí)在轉(zhuǎn)輪軸面上的投影圖。按照?qǐng)D9的分析結(jié)果,葉道空化渦演化過程中由上冠延伸至下環(huán)的軌跡相對(duì)固定,只是空泡體積發(fā)生變化,因此空泡演化過程中氣泡體積沿流向及展向的發(fā)展不會(huì)越過圖12中的投影位置。
圖11結(jié)果顯示,轉(zhuǎn)輪葉片壓力面沿葉片流向及展向的壓力脈動(dòng)幅值基本維持在一個(gè)相對(duì)穩(wěn)定的范圍,而葉片吸力面幅值出現(xiàn)顯著改變。按照?qǐng)D8結(jié)果可知,葉道空化渦在轉(zhuǎn)輪流道內(nèi)遠(yuǎn)離葉片壓力面,因而壓力面壓力脈動(dòng)強(qiáng)度接近,而葉道空化渦靠近葉片吸力面,其對(duì)吸力面壓力脈動(dòng)幅值有較大影響。
轉(zhuǎn)輪葉片進(jìn)水邊一側(cè),吸力面壓力脈動(dòng)幅值變化平緩,與壓力面脈動(dòng)幅值比較接近,如圖11a所示,流向≤0.37(為無量綱流向長度)范圍內(nèi),吸力面與壓力面脈動(dòng)幅值幾乎完全相同。流向0.37≤≤0.72范圍內(nèi),脈動(dòng)幅值出現(xiàn)交替上升和下降現(xiàn)象,這主要由空泡體積的膨脹和收縮決定。渦核中心附近區(qū)域始終為低壓區(qū),其壓力變幅較小,而空泡與水流交界面附近發(fā)生劇烈的質(zhì)量交換,造成葉道空化渦邊界附近脈動(dòng)幅值升高。展向面=0.3和=0.5,吸力面壓力脈動(dòng)強(qiáng)度有所降低但最大幅值位置未發(fā)生變化,這是轉(zhuǎn)輪上冠處空泡體積較大且葉道空化渦在轉(zhuǎn)輪內(nèi)呈扭曲狀分布共同作用的結(jié)果。沿展向發(fā)展至=0.7,壓力脈動(dòng)最大幅值有所提高并且向出水邊一側(cè)移動(dòng)。最靠近轉(zhuǎn)輪下環(huán)一側(cè)的展向面=0.9,壓力脈動(dòng)幅值沿流向首先緩慢降低,在流向=0.63處達(dá)到最小值,隨后迅速上升,在=0.9處到達(dá)最高值0.073。
圖12結(jié)果顯示,展向高度=0.1處,空泡投影位置范圍為0.43<<0.65,這與圖11a中流向0.37≤≤0.72范圍內(nèi)脈動(dòng)幅值出現(xiàn)交替上升和下降的結(jié)果比較一致。由于空泡體積變化對(duì)流場(chǎng)的影響并不是嚴(yán)格與空泡體積邊界位置對(duì)應(yīng),因此空泡投影位置范圍與脈動(dòng)幅值出現(xiàn)波動(dòng)的范圍之間會(huì)存在一定的差異。此外,空泡體積由上冠向下環(huán)的分布為由葉道中間位置向葉片出口移動(dòng),因此圖11中葉片吸力面壓力脈動(dòng)值變動(dòng)位置也呈現(xiàn)出由葉道中間向出水邊移動(dòng)的趨勢(shì)。
通過上述分析可知,葉道空化渦在轉(zhuǎn)輪內(nèi)的演化不僅對(duì)整個(gè)轉(zhuǎn)輪域內(nèi)的壓力分布具有全局影響,而且提高了葉道空化渦結(jié)構(gòu)附近的壓力脈動(dòng)幅值。另外,葉道空化渦的演化對(duì)轉(zhuǎn)輪上冠及下環(huán)處壓力脈動(dòng)幅值分布的影響相對(duì)于葉道中間位置更大。
上述分析結(jié)果顯示,部分負(fù)荷工況高振幅壓力脈動(dòng)的形成與水輪機(jī)內(nèi)部空泡體積的演化直接相關(guān),為了建立不穩(wěn)定渦流與壓力脈動(dòng)之間的聯(lián)系,本文將空化一維理論模型引入至三維湍流數(shù)值計(jì)算中。按照該理論[31-32],空化發(fā)生區(qū)域的進(jìn)出口流量差與空泡體積一階導(dǎo)數(shù)成正比,壓力與空泡體積二階導(dǎo)數(shù)成正比,如式(5)所示:
式中2與1分別為轉(zhuǎn)輪進(jìn)出口流量,m3/s;V為空泡體積,m3;為時(shí)間,s。
圖13顯示了本文計(jì)算工況下測(cè)點(diǎn)SS19與SS99處壓力脈動(dòng)與空泡體積二階導(dǎo)數(shù)的比較曲線,由于其余測(cè)點(diǎn)結(jié)果與SS19及SS99相似,因此不再給出。
由圖13可知,葉道空化渦發(fā)生時(shí),轉(zhuǎn)輪內(nèi)不同位置壓力與空泡體積二階導(dǎo)數(shù)d2V/d2之間的吻合度較高,這與葉道空化渦發(fā)生位置相對(duì)固定、其影響作用下轉(zhuǎn)輪不同位置的壓力脈動(dòng)是同相位有關(guān)。因此,混流式水輪機(jī)在葉道空化渦發(fā)生條件下,瞬時(shí)壓力脈動(dòng)與空泡體積的加速度成正比,通過空化一維理論與三維湍流計(jì)算之間的驗(yàn)證,建立了不穩(wěn)定渦流與高振幅壓力脈動(dòng)之間的直接聯(lián)系,揭示了水輪機(jī)內(nèi)部空泡體積演化是誘發(fā)高振幅壓力脈動(dòng)的內(nèi)在原因。
本文對(duì)混流式水輪機(jī)部分負(fù)荷工況下的葉道空化渦不穩(wěn)定渦流特性進(jìn)行了數(shù)值模擬和可視化試驗(yàn)研究,基于SST湍流模型和Zwart-Gerber-Belamri空化模型的氣液兩相流動(dòng)數(shù)值模擬與試驗(yàn)測(cè)試的水輪機(jī)外特性及可視化渦流結(jié)構(gòu)具有較高的一致性。本文主要結(jié)論如下:
1)葉道空化渦在水輪機(jī)內(nèi)的演化為一個(gè)空泡體積周期性變化的非穩(wěn)態(tài)運(yùn)動(dòng)過程,渦結(jié)構(gòu)運(yùn)動(dòng)頻率為轉(zhuǎn)輪轉(zhuǎn)頻的1.1倍,且轉(zhuǎn)輪內(nèi)捕捉到與空泡體積脈動(dòng)主頻一致的壓力脈動(dòng)信號(hào)。
2)葉道空化渦的演化對(duì)轉(zhuǎn)輪內(nèi)的壓力脈動(dòng)具有全局影響,由于渦結(jié)構(gòu)體積的變化主要發(fā)生在轉(zhuǎn)輪葉片背面出水邊與下環(huán)交界附近,引起壓力脈動(dòng)幅值的局部提高。
3)水輪機(jī)內(nèi)誘發(fā)葉道空化渦時(shí),高振幅壓力脈動(dòng)與空泡體積的加速度成正比,表明空泡體積的演化是誘發(fā)高振幅壓力脈動(dòng)的根本原因。
由于空泡體積的變化是影響高幅值壓力脈動(dòng)生成的重要因素,因此可采取一定的措施控制轉(zhuǎn)輪內(nèi)空泡的形成,進(jìn)而抑制、推遲葉道空化渦的初生及發(fā)展,以提高水輪機(jī)部分負(fù)荷工況的水力穩(wěn)定性。
[1] Müller A, Favrel A, Landry C, et al. Fluid–structure interaction mechanisms leading to dangerous power swings in Francis turbines at full load[J]. Journal of Fluids and Structures, 2017, 69: 56-71.
[2] Kumar P, Saini R P. Study of cavitation in hydro turbines: A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14 (1): 374-383.
[3] 孫龍剛,郭鵬程. 混流式水輪機(jī)部分負(fù)荷工況典型渦流特征研究[A]. 第三十屆全國水動(dòng)力學(xué)研討會(huì)暨第十五屆全國水動(dòng)力學(xué)學(xué)術(shù)會(huì)議論文集(下冊(cè))[C]. 北京:海洋出版社,2019:799-806.
[4] Sun L, Guo P, Yan J. Transient analysis of load rejection for a high-head Francis turbine based on structured overset mesh[J]. Renewable Energy, 2021, 171: 658-671.
[5] 鮑海艷,龍麗婷,付亮,等. 水輪機(jī)調(diào)速器功率調(diào)節(jié)模式下負(fù)荷調(diào)節(jié)過渡過程穩(wěn)定性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(17): 50-57.
Bao Haiyan, Long Liting, Fu Liang, et al. Study on stability of load regulation transition process of hydro turbine governor in power mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 50-57. (in Chinese with English abstract)
[6] 毛秀麗,孫奧冉,Giorgio Pavesi,等. 水泵水輪機(jī)甩負(fù)荷過程流動(dòng)誘導(dǎo)噪聲數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20): 52-58.
Mao Xiuli, Sun Aoran, Giorgio Pavesi, et al. Simulation of flow induced noise in process of pump-turbine load rejection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 52-58. (in Chinese with English abstract)
[7] Guo P C, Wang Z N, Sun L G, et al. Characteristic analysis of the efficiency hill chart of Francis turbine for different water heads[J]. Advances in Mechanical Engineering, 2017, 9(2): 1-8.
[8] Guo P C, Wang Z N, Luo X Q, et al. Flow characteristics on the blade channel vortex in the Francis turbine[J]. IOP Conference Series: Materials Science and Engineering, 2016, 129: 012038.
[9] Cheng H, Zhou L, Liang Q, et al. The investigation of runner blade channel vortices in two different Francis turbine models[J]. Renewable Energy, 2020, 156: 201-212.
[10] 羅興锜,朱國俊,馮建軍. 水輪機(jī)技術(shù)進(jìn)展與發(fā)展趨勢(shì)[J]. 水力發(fā)電學(xué)報(bào),2020, 39(8): 1-18.
Luo Xingqi, Zhu Guojun, Feng Jianjun. Progress and development trends in hydraulic technology[J]. Journal of Hydroelectric Engineering, 2020, 39(8): 1-18. (in Chinese with English abstract)
[11] Liu D M, Liu X B, Zhao Y Z. Experimental investigation of inter-blade vortices in a model Francis turbine[J]. Chinese Journal of Mechanical Engineering, 2017, 30(4): 854-865.
[12] 王釗寧,孫龍剛,郭鵬程,等. 混流式水輪機(jī)葉道渦形成分析及抑制研究[J]. 水力發(fā)電學(xué)報(bào),2020,39(12):113-120.
Wang Zhaoning, Sun Longgang, Guo Pengcheng, et al. Investigation on formations and alleviation of inter-blade vortices in Francis turbine[J]. Journal of Hydroelectric Engineering, 2020, 39(12): 113-120. (in Chinese with English abstract)
[13] Yamamoto K, Müller A, Favrel A, et al. Physical mechanism of interblade vortex development at deep part load operation of a Francis turbine[J]. Journal of Fluids Engineering, 2019, 141(11): 111113.
[14] Sun L, Guo P, Luo X. Numerical investigation of inter-blade cavitation vortex for a Francis turbine at part load conditions[J]. IET Renewable Power Generation, 2021, 158: 1-15.
[15] Sun L, Guo P, Luo X. Numerical investigation on inter-blade cavitation vortex in a Franics turbine[J]. Renewable Energy, 2020, 158: 64-74.
[16] 郭鵬程,孫龍剛,羅興锜. 混流式水輪機(jī)葉道渦流動(dòng)特性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(20):43-51.
Guo Pengcheng, Sun Longang, Luo Xingqi. Flow characteristic investigation into inter-blade vortex for Francis turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 43-51. (in Chinese with English abstract)
[17] Sun L G, Guo P C, Wu L C. Numerical investigation of alleviation of undesirable effect of inter-blade vortex with air admission for a low-head Francis turbine[J]. Journal of Hydrodynamics, 2020, 32(6): 1151-1164.
[18] Magnoli M V, Anciger D, Maiwald M. Numerical and experimental investigation of the runner channel vortex in Francis turbines regarding its dynamic flow characteristics and its influence on pressure oscillations[J]. IOP Conference Series: Earth and Environmental Science, 2019, 240: 022044.
[19] Bouajila S, Brammer J, Flores E, et al. Modelization and simulation of Francis turbine inter-blade vortices in partial load conditions[C]. Singapore: Advances in Hydroinformatics: SimHydro 2017-Choosing The Right Model in Applied Hydraulics, 2017.
[20] Yamamoto K, Müller A, Favrel A, et al. Experimental evidence of inter-blade cavitation vortex development in Francis turbines at deep part load condition[J]. Experiments in Fluids, 2017, 58(10): 142.
[21] Bouajila S, de Colombel T, Lowys P Y, et al. Hydraulic phenomena frequency signature of Francis turbines operating in part load conditions[J]. IOP Conference Series: Earth and Environmental Science, 2016, 49: 082001.
[22] Zuo Z G, Liu S H, Liu D M, et al. Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine[J]. Journal of Hydrodynamics, Ser B, 2015, 27(4): 513-521.
[23] Xiao Y X, Wang Z W, Yan Z G. Experimental and numerical analysis of blade channel vortices in a Francis turbine runner[J]. Engineering Computations, 2011, 28(2): 154-171.
[24] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32 (8): 1598-1605.
[25] 孫龍剛,郭鵬程,麻全,等. 基于TBR模型的高水頭混流式水輪機(jī)水力性能預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(7):62-69.
Sun Longgang, Guo Pengcheng, Ma Quan, et al. Hydraulic performance prediction for high-head francis turbine based on TBR model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(7): 62-69. (in Chinese with English abstract)
[26] 吳子娟,梁武科,董瑋,等. 轉(zhuǎn)輪下環(huán)間隙對(duì)混流式水輪機(jī)內(nèi)部流動(dòng)特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):23-29.
Wu Zijuan, Liang Wuke, Dong Wei, et al. Influence of seal clearance of runner on internal fluid field in Francis turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 23-29. (in Chinese with English abstract)
[27] Hydraulic Turbines, Storage Pumps and Pump Turbines-Model Acceptance Tests IEC60193-1999 [S]. International Electrotechnical Commission: Geneva, Switzerland, 1999.
[28] Zwart P, Gerber A G, Belamri T. A two-phase flow model for predicting cavitation dynamics[C]. Yokohama: ICMF 2004 International Conference on Multiphase Flow, 2004.
[29] Ji B, Luo X, Wu Y, et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J]. International Journal of Multiphase Flow, 2013, 51: 33-43.
[30] Sun L G, Guo P C, Zheng X B, et al. Numerical investigation into cavitating flow around a NACA66 hydrofoil with DCM models[J]. IOP Conference Series: Earth and Environmental Science, 2019, 240: 062020.
[31] Ji B, Luo X, Wu Y, et al. Numerical investigation of three-dimensional cavitation evolution and excited pressure fluctuations around a twisted hydrofoil[J]. Journal of Mechanical Science and Technology, 2014, 28(7): 2659-2668.
[32] Chen C, Nicolet C, Yonezawa K, et al. One-dimensional analysis of full load draft tube surge[J]. Journal of Fluids Engineering, 2008, 130(4): 041106.
Characteristics of high-amplitude pressure fluctuation induced by inter-blade cavitation vortex in Francis turbine
Sun Longgang1, Guo Pengcheng1,2※, Zheng Xiaobo1,2, Wu Luochang1,2
(1.’, 710048,;2.,’’710048,)
Hydraulic turbines can accommodate the variable electricity demand and frequently operate at part load conditions, thereby keeping the dynamic balance of grid parameters, particularly under the tremendous development and integration of renewable resources. In the case of part-load operation, a particular cavitation flowing (called inter-blade cavitation vortex) can be developed adjacent to runner blades in a Francis turbine. It has been a great threat to the service life of the machine, such as the rapid degradation of performance, and fatigue damage. Therefore, the hydraulic instability induced by the inter-blade cavitation vortex has been an urgent technical issue, particularly for the extending operating range of the hydraulic turbine. In the presented study, an unsteady numerical investigation was carried out to simulate the evolution of the inter-blade cavitation vortex using the combined SST-turbulence model and the Zwart-Gerber-Belamri cavitation model. The pressure fluctuation characteristics were also determined in a low-head Francis turbine operating at 40% of the rated output. Furthermore, an experimental test was conducted to visualize the external characteristics, including the head and hydraulic efficiency, as well as the vortex appearance. The vapor volume in the time and frequency domains was also calculated to clarify the evolution of the inter-blade cavitation vortex in the turbine. The results show that a periodical oscillation of the vapor volume was captured under the inter-blade cavitation vortex, where the dominant frequency of vapor volume was 1.1 times the rotational frequency. Simultaneously, the high-amplitude pressure fluctuations were also captured with the same frequency of inter-blade cavitation vortex in the runner. More importantly, a dynamic cycle in the evolution of inter-blade cavitation was associated with the cavitation vortex incipient, development, local collapse, and disappearance, as well as the cavitation vortex re-formation in the blade channels. Specifically, the vortex structure was attached up to the runner hub all the time, where the most pronounced collapse of cavitation was observed at the intersection of the trailing edge and the runner shroud on the suction sides. There was a global influence on the distribution of pressure fluctuation, thereby locally amplifying the amplitude of pressure fluctuation in the suction side of the runner blade. A relationship was also established between the transient characteristics of the high-amplitude pressure fluctuation signals and the spatial-temporal evolution of the vortex structure, using the combined one-dimensional theory of cavitation and the three-dimensional turbulence numerical calculation. It confirmed that the difference in flow rate between the runner inlet and the outlet was proportional to the change rate of vapor volume. Furthermore, the instantaneous pressure fluctuation was proportional to the acceleration of the vapor volume, indicating that the inter-blade cavitation mainly dominated the high-amplitude pressure fluctuation. The presented investigation can further clarify the evolution of inter-blade cavitation vortex at the part load, thereby revealing the internal physical mechanism of high-amplitude pressure fluctuation induced by inter-blade cavitation vortex in the Francis turbine.
flow rate; pressure; numerical analysis;inter-blade cavitation vortex; high-amplitude pressure fluctuation; Francis turbine; evolution feature; induce mechanism
10.11975/j.issn.1002-6819.2021.21.008
TK733+.1
A
1002-6819(2021)-21-0062-09
孫龍剛,郭鵬程,鄭小波,等. 混流式水輪機(jī)葉道空化渦誘發(fā)高振幅壓力脈動(dòng)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21):62-70.doi:10.11975/j.issn.1002-6819.2021.21.008 http://www.tcsae.org
Sun Longgang, Guo Pengcheng, Zheng Xiaobo, et al. Characteristics of high-amplitude pressure fluctuation induced by inter-blade cavitation vortex in Francis turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 62-70. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.21.008 http://www.tcsae.org
2021-04-11
2021-10-10
國家自然科學(xué)基金(51839010、52109109);中國博士后科學(xué)基金(2021M702641);陜西省重點(diǎn)研發(fā)計(jì)劃(2017ZDXM-GY-081);陜西省教育廳服務(wù)地方專項(xiàng)計(jì)劃(17JF019);清潔能源與生態(tài)水利工程研究中心(QNZX-2019-05、QNZX-2019-06);陜西高校青年創(chuàng)新團(tuán)隊(duì)(2020-29)
孫龍剛,博士后,研究方向?yàn)樗C(jī)械內(nèi)部流動(dòng)理論。Email:sunlg@xaut.edu.cn。
郭鵬程,教授,博士生導(dǎo)師,研究方向?yàn)樗C(jī)械內(nèi)部流動(dòng)理論及優(yōu)化設(shè)計(jì)。Email:guoyicheng@xaut.edu.cn