• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics of temperature fluctuation in two-dimensional turbulent Rayleigh–B′enard convection

    2022-01-23 06:36:46MingWeiFang方明衛(wèi)JianChaoHe何建超ZhanChaoHu胡戰(zhàn)超andYunBao包蕓
    Chinese Physics B 2022年1期
    關(guān)鍵詞:方明

    Ming-Wei Fang(方明衛(wèi)), Jian-Chao He(何建超), Zhan-Chao Hu(胡戰(zhàn)超), and Yun Bao(包蕓)

    School of Aeronautics and Astronautics,Sun Yat-sen University,Guangzhou 510275,China

    Keywords: Rayleigh-B′enard,temperature fluctuation,distribution patterns,critical value

    1. Introduction

    Turbulent thermal convection occurs ubiquitously in both nature and engineering applications. Turbulent Rayleigh-B′enard convection(RBC),a closed fluid layer thermostatically heated from the bottom and cooled from the top, has chronically been used to study thermally-driven turbulence.[1-4]The enclosed working fluid forms convective motion through the buoyancy force produced by the temperature difference between the bottom and the top plates of a convection cell of heightH.

    Turbulent RBC is controlled primarily by two dimensionless parameters, namely the Rayleigh number and the Prandtl number, defined asRa=αgΔθH3/(κυ) andPr=υ/κ, respectively, where Δθis the temperature difference,g=9.81 m/s2is the gravitational acceleration,andα,υ,andκare, respectively, the thermal expansion coefficient, the kinematic viscosity, and the thermal diffusivity. Apart fromH,the geometry of the convection cell also influences turbulent RBC. Therefore, in classical cubic and cylindrical cells, the aspect ratio also becomes a crucial parameter.

    A core task in the study of turbulent RBC is to understand the heat transport in turbulent flows. In general, the Nusselt number,defined as

    where〈···〉V,trepresents the average over space and time. It is usually calculated to reflect the strength of heat transport.In 2000, Grossmann and Lohse put forward the so-called GL theory[5-7]to predictNuaccording toRaandPrby decomposing the energy dissipation. There are two kinds of characteristic structures that are related to heat transport. One is the large-scale circulation, also known as ‘wind’ of the bulk fluid,[8-10]and the other kind of structure is a cluster of thermal plumes[11-13]that erupts intermittently from the thermal boundary layer. Previous researches have revealed that the heat transport is governed primarily by thermal plumes.[14-18]Moreover, the intensity of thermal plumes can be measured by the amplitude of local temperature fluctuations. In other words, the local temperature fluctuations and heat transport are closely linked to each other. According to the definition,the amplitude of local temperature fluctuations is measured at each specific point. To simplify the study, fortunately, it is convenient to examine the profile of the local temperature fluctuations,defined as

    where〈···〉xrepresents the average over horizontal direction and the subscripttof time average is omitted. One can extract the information about flow state,plume distribution,and heat transport fromθrms(z). Therefore,θrms(z) has been studied frequently in previous work.

    According to the Castainget al.’s theory,[19]Adrian identified two new profiles, termed asλ-I andλ-II models.[20]Recently,looking into the so-called mixing zone,the similarities inθrms(z)between the thin disk and the cylinder cells have been revealed.[21,22]He and Xia[23]investigatedθrms(z)in the shear-dominated zone and the plume-dominated mixing zone in a elongated cubic cell. They that the reportedθrms(z) is a power-law function ofzin the former region, and a logarithmic function in the latter region. Afterward,such a power-law has also been identified in non-elongated cells with different geometries.[24,25]There are also some experimental researches only focusing onθrmsin the cell center. TheRa-dependentθrmsshows the diverse traits in different geometries.[26-31]For example,Huang and Xia[32]discovered thatRa-scaling ofθrmsincreases with the aspect ratio.

    In this paper, we present a direct numerical study on the characteristics ofθrms(z)in a two-dimensional(2D)turbulent RBC.Two different values ofPrare considered,i.e.,0.7 and 4.3. For both of them, the same range ofRais assigned:1×108≤Ra ≤1×1013. The rest of this paper is arranged as follows. In Section 2, we elaborate the governing equations and numerical methods. In Sections 3 and 4,characteristics of local temperature fluctuations and global temperature field forPr=4.3 andPr=0.7 are presented and discussed, respectively. TheRa-dependence of the mean temperature fluctuation is discussed in in Section 5. Our findings are summarized and also some conclusions are drawn in Section 6 finally.

    2. Model and numerical methods

    We perform direct numerical simulations (DNS) of 2D turbulent RBC in a square cavity. The non-dimensional governing equations under the Oberbeck-Boussinesq approximation are given by

    whereu,θ,andpare respectively the non-dimensional velocity,temperature,and pressure,kis the vertical unit vector.RaandPrare the control parameters of the system as mentioned previously. Impermeable and no-slip boundary conditions are imposed on all walls. For temperature, the two vertical sidewalls are adiabatic, while the top and bottom plates are fixed atθt=-0.5 andθb=0.5,respectively. Thus,the dimensionless temperature difference between the two horizontal plates isΔ=θb-θt=1.Governing equations are solved by the parallel direct method(PDM)of DNS(or PDM-DNS)[33,34]with using staggered grids.

    All simulations are carried out on the Tianhe-2 supercomputer.The parameters of all cases are summarized in Fig.1(a).Figure 1(b)presents a sketch of the time-averaged temperature fluctuation field, in which the thick black solid line (the central line)is the sampling region analyzed in this paper. In view of its symmetry, we choose the zone from the bottom to the center of the sampling region.

    Fig. 1. (a) Simulated cases scattered in (Ra, Pr) plane. (b) Contour plot of time-averaged temperature fluctuation field,with solid line denoting sampling region.

    Table 1. Parameters of conducted DNS of 2D RBC.

    Table 1 shows the detailed parameters of the simulation of RBC.The number of nodes in each direction of the computational mesh isNx×Ny·Ntavgis the number of dimensionless time (τ) units used for the statistical averaging.NuandRenumbers are the statistical non-dimensional heat transferNunumber and the small scale Reynolds number,respectively.

    3. Results and discussion for Pr=4.3

    3.1. Mean temperature proflie and probability density distribution of temperature

    Fig.2. (a)Profiles of normalized mean temperature Θ at two different values of Ra for Pr=4.3. (b)Corresponding temperature fluctuation θrms profiles.

    The thermal plumes,emitted intermittently from the conducting plates,play an important role in heat transfer of turbulent thermal convection. The plume is the only thermal structure in the system,and its temperature characteristics are analyzed through temperature statistics. We present the statistical results of temperature at different values ofRa.thermal BL. Whenz/δ>1, the mean temperature gradually approaches to the central temperature. AtRa=1×1011, it tends to the central temperature more slowly. After three thermal BLs,the temperature profiles overlap again and reach the core temperature. Note also from Fig. 2(b) that the temperature fluctuation profiles show significantly different characteristics. The temperature fluctuation rises fast and reaches a maximum value, then always decays forRa= 1×1011.While forRa=1×109, the temperature fluctuation change is relatively small. The overall temperature fluctuation first increases, then decreases, and finally rises slowly. The temperature fluctuation profiles of twoRanumbers reach their corresponding maximum values near the thermal boundary layers.

    Fig.3. PDF of local temperature and normalized temperature fluctuations for several values of Ra.

    Figure 2 shows the calculated mean temperature profileΘ(open circles) and temperature fluctuation profileθrms(solid circles) each as a function of normalized distancez/δfrom the lower plate along central axis region of flow space for two typicalRavalues, withPr= 4.3 fixed. Hereδis the thickness of the thermal boundary layer(BL)defined by the slope method.[35]The mean temperatureΘis normalized and defined asΘ=[θbot-〈θ(x,z)〉x]/θbot,whereθbotand〈···〉xare respectively the temperature of the bottom plate and the average over horizontal direction. In Fig. 2(a), the mean temperature profiles overlap each other and rise rapidly inside the

    Temperature probability density distribution (PDF) represents the proportion of the temperature distribution in the region,where PDF stands for probability density distribution.Figure 3(a) shows PDF of the temperature in the central axis region (from the bottom to the center) for different values ofRa. It is seen that the PDFs from five different values ofRaare very similar,and can be well described as exponential functions. The bulk temperature s skews significantly towards higher temperature. It is seen that asRaincreases, the probability of occurrence of lower temperature at the left tail decreases,while the phenomenon does not exist for higher temperature at the right tail. By measuring the temperatures of six different positions on the central axis,Zhou and Xia[35]found that the PDF of temperature in the boundary layer presents a nearly Gaussian shape, and the PDFs of other positions are different from each other.

    Figure 3(b)shows the plots of the corresponding PDFs of the normalized temperature fluctuations obtained at different values ofRa. It is seen that all the PDFs exhibit almost an exponential shape of symmetry. While,in previous experiments it was found that the normalized temperature fluctuation in the center of the cell can be well described by a stretched exponential function.[31,32,36,37]The right tail shifts slightly downward highRa, indicating that the probability of larger temperature fluctuation decreases. The PDF form of temperature fluctuation has apparent distinctions for different flowing states.

    3.2. Local temperature fluctuations

    Plume, as the most prominent thermal structure in RB system,is closely related to the temperature fluctuation of the system, and it possesses its own characteristics and motion mode. The local temperature fluctuation is an important indication for plume spatial distribution. Figure 4 shows a loglog plot of temperature fluctuationθrmsas a function of the normalized distancez/δfor various values ofRa.

    Fig. 4. Profiles of measured temperature fluctuation θrms corresponding to half the black solid line region in Fig.1(b)(from bottom plate to center),and at various values of Ra from 1.0×108 to 1.0×1013.

    Figure 2 shows that the temperature fluctuation profile increases linearly in the boundary layer, and then decays away from the plate. It can be seen from Fig. 4 that there are two distribution patterns. Under 1×108≤Ra ≤5×109, the temperature fluctuation profiles have two peaks at aboutz/δ=1 andz/δ= 10 respectively. The two peaks of the temperature fluctuation profiles decrease withRaincreasing. It is seen from this figure that forRagreater than 5×109, the temperature fluctuation profiles all collapse into a single curve. Theθrmsprofiles rise first and then decrease when leaving from the bottom plate,reaching a peak at aboutz/δ=1.

    The comparison between the two types ofθrmsprofiles ofRa ≤5×109andRa ≥1×1010shows that theθrmsprofiles are overall significantly larger forRa ≥1×1010. This means that system flow status and plume distribution are obviously different.

    Figure 5 shows the plots of the normalized temperature fluctuationθrms/θrms,maxversus z/δand in these figures the values ofθrmswere measured in the thin disk from Wanget al.[21,22]and in the cylinder from Wanget al.,[22]respectively,whereθrms,maxrepresents the maximum value ofθrms.It shows clearly that all profiles of the normalized temperature fluctuationθrms/θrms,maxfor different values ofRacollapse into a single curve quite well inside the thermal BL, which implies that in theθrms/θrms,maxprofiles there exists a self-similarity or independence ofRa. Beyond the boundary layer,for different values ofRa,θrms/θrms,maxprofiles take on different distribution characteristics. In the range ofRa<1×1010, when moving away from the BL, temperature fluctuation profilesθrms/θrms,maxdecrease withz/δincreasing, then moderately increase in the region 1≤z/δ ≤10,and finally drop dramatically. Withz/δvarying from 1 to 10, the ascending slope gradually decreases withRaincreasing. The appearance may be caused by corner rolls’ motion. ForRa ≥1×1010, theθrms/θrms,maxprofiles always decrease with increasing the distance from the BL.As shown in Fig.5,our DNS results accord well with the experimental data measured by Wang (red and blue open circles)in the range ofz/δfrom 1 to 8 and the DNS results obtained by Wang(green solid circles)for 1≤z/δ ≤2.

    Fig. 5. Here data the same as in Fig. 4 but normalized by maximal value θrms,max of temperature fluctuations θrms where green solid circles and blue empty circles are for thin disk and cylinder, taken from Ref. [21] and red open circles for thin disk taken from Refs.[21,22].

    Note that outside 10 BLs,the profiles of theθrms/θrms,maxpresented expose some different features from the results acquired Wang, where the temperature fluctuation is found to decrease continuously,probably due to the fact that the effect of corner rolls for their experiments conducted in the thin disk is neglected.However,inside the thermal BL,our data slightly deviate from the experiment data,which may be because there are too few data measured in the boundary layer.

    Fig.6. Here data the same as those in Fig.5,but divided into two plots: (a)from 1.0×108 to 5.0×109, (b) from 1.0×1010 to 5.0×1012, where solid lines show the power-law fits.

    To show the temperature fluctuation profiles more clearly,in the following Fig.6,we plot the same data as those in Fig.5 but two forms drawn separately corresponding to different values ofRa.

    Figure 6(a) presents the normalized temperature fluctuation profilesθrms/θrms,maxin the range ofRafrom 1×108to 5×109. It is seen that the temperature fluctuationθrms/θrms,maxremains unchanged withRavarying and scales withz/δin boundary layer, which is in excellent agreement with the previous experimental results.[22,26]The temperature fluctuationθrms/θrms,maxcan be well described by the power law,θrms/θrms,max~(z/δ)0.99withz/δ ≤1, andθrms/θrms,max~(z/δ)-1.27in the region 1≤z/δ ≤2.

    It is seen from Fig. 6(b) that in a wide range ofRa,i.e.,Ra ≥1×1010and these profiles collapse into a single curve irrespective ofRa, but there is slight fluctuation in the mixing zone 6≤z/δ ≤50. In the boundary layer, the solid line represents a best fit to the data:θrms/θrms,max~(z/δ)0.99,this scaling law is the same as the one in Fig. 5(a). In the region 1≤z/δ ≤5, the data can be well described by a power law,i.e.,θrms/θrms,max~(z/δ)-0.978that are consistent with the DNS result[22]for the thin disk.

    3.3. Global flow features

    Regarding the two different characteristics of the temperature fluctuation profiles discussed above,to find the real variation characteristic for the temperature fluctuation, now we come to discuss the temperature and flow characteristics of the system in detail by visualizing the instantaneous temperature fields.

    Figure 7 shows the typical example of instantaneous temperature fields atPr=4.3 with five different values ofRa,in which the colormap limit for all temperature snapshots in our study is set between-0.1≤θ ≤0.1,so that the flow structure can be shown clearly. As shown in Figs. 7(a) and 7(b), the overall flow pattern consists of a large clockwise titled-ellipse motion (large-scale circulation) and two corner rolls diagonally opposite to each other. This flow pattern is the same as those observed in previous studies.[38,39]WhenRaincreases toRa=1×1010(Fig.7(c)),surprisingly,the LSC and two secondary rolls vanish,and the whole flow becomes chaotic. AsRafurther increases,it is clearly seen from Figs.7(d)and 7(e)that the flow becomes more chaotic and there are a lot of free cold and hot small vortices. We note that the instantaneous temperature fields before and afterRa=1×1010show completely different flow states, suggesting that the mechanism of temperature fluctuation distribution showing two different characteristics may be due to the convective flow change.

    Fig.7. Typical evolution of the instantaneous temperature field with Ra at Pr=4.3: (a)Ra=1×108,(b)Ra=1×109,(c)Ra=1×1010,(d)Ra=1×1011,(e)Ra=1×1012.

    4. Results and discussion for Pr=0.7

    The temperature fluctuation and flow structure are discussed in detail forPr=4.3 above. Next, we will study the temperature fluctuation and flow characteristics withPr=0.7.

    Figure 8(a) shows the variations of temperature fluctuationθrmswith distancez/δfrom the bottom plate for different values ofRaand fixedPr=0.7. It is seen that the temperature fluctuationθrmsprofiles also present two different morphologies. To compare withPr=4.3,we note that the turning point of theRaof the two morphologies becomesRa=1×109and the temperature fluctuationθrmsdoes not rise outside the BL.We plot, in Fig. 8(b), the same data as in Fig. 8(a) butθrmsnormalized by maximal valueθrms,max. Inside the BL,all data profiles for different values ofRaalways collapse on the top of each other. The solid line represents a power-law fit to the data,θrms/θrms,max~(z/δ)0.98. For 230 forRa ≥1×109.

    Figure 9 shows snapshots of the typical temperature field at five different values ofRaforPr=0.7. It is seen from Fig. 9(a) that the flow consists of large-scale circulation of an ellipse in the bulk and two corner rolls in the upper left and lower right corners. WhenRaincreases toRa=1×109,the flow structure becomes unexpectedly different, the largescale circulation of ellipse and two corner rolls disappearing,the convection flows disorderly. Comparing with diverse characteristic of the temperature fluctuation profiles observed in Fig.8,we find the flow status transitionRais consistent with the turning point of fluctuation profiles morphology.

    Fig.8. (a)Profiles of temperature fluctuation θrms for different values of Ra,and(b)normalized θrms/θrms,max profiles.

    Fig.9. Typical evolution of instantaneous temperature field with Ra at Pr=0.7: (a)Ra=1×108, (b)Ra=1×109, (c)Ra=1×1010, (d)Ra=1×1011,(e)Ra=1×1012.

    The different distribution characteristics of the temperature fluctuation correspond to various flow statuses and plumes’ morphologies, and the physical mechanism of the phenomenon correlation will be further discussed.

    5. The Ra dependence of temperature fluctuation properties

    Finally,we discuss theRadependence of〈θrms〉Vfor the temperature fluctuation atPr=0.7 and 4.3,respectively. Here〈···〉Vrepresents a time average and a spatial average in the black shaded region in Fig.1(b)(from the bottom plate to the center). Figure 10 show a log-log plot of the temperature fluctuation〈θrms〉Vas a function ofRa.

    It is seen from Fig. 10(a) that the〈θrms〉V versus Rahas an apparent transition atRa=1×109. WhenRais below this transition point,there is no obvious characteristic law that describes the relation of〈θrms〉VwithRa. At the transition point,〈θrms〉Vsuddenly increases, then decreases asRaincreases and the change relation between the two quantities is described as〈θrms〉V~Ra-0.15±0.01. Note that the scaling exponent reported here accords well with the previous measurement conducted by Zhou and Xia[35]in a rectangular cell.

    Figure 10(b) shows the〈θrms〉Vas a function ofRaatPr=4.3. It can be seen that a similar transition point also exists, which is obviously larger than that atPr=0.7, i.e.,Ra= 1×1010. Below the transition point,〈θrms〉Vexhibits reduction along with obvious fluctuations. WhenRais beyond this transition point,〈θrms〉Valso decreases withRaincreasing and the data can be well described by the power law,〈θrms〉V~(-0.68±0.01)Ra-0.14±0.01. Interestingly, the exponent of the power law is the same as the results obtained from experiments.[19,26,31,37]

    Fig. 10. Variations of 〈θrms〉V versus Ra in central axis range of cell: (a)Pr=0.7,(b)Pr=4.3. The solid lines are power-law fits.

    6. Conclusions

    In this work,we systematically study the statistical properties of the local temperature fluctuation in 2D RBC of aspect ratio unity with the Prandtl number fixed at 0.7 and 4.3 and the Rayleigh number varying from 1×108to 1×1013. For the study of temperature fluctuation in the central axis region,we summarize the major findings as follows.

    (i)The PDF of the temperature and the temperature fluctuation generally presents a consistent form and can be well described by an exponential function at fixed Prandtl number 4.3 for different values ofRa. Integrally,the temperature PDF skews significantly towards higher temperature. The PDF of the temperature fluctuation takes on a symmetrical exponential shape,nevertheless,on the whole it slightly inclines to the right atRa=1×1013. It is found that the PDF of the temperature and the temperature fluctuation have similar characteristics under eachRa.

    (ii) With the variation ofRa, the profile of temperature fluctuation exhibits two different distribution characteristics atPr= 0.7 andPr= 4.3. WhenPr= 4.3, in the BL region, all the temperature fluctuation profilesθrmscollapse into a single master curve. Beyond the boundary layer,theθrmsprofiles decrease withz/δincreasing, then increase gradually and finally drop dramatically forRa< 1×1010.WhenRa>1×1010, theθrmsprofiles continuously decrease and overlap with each other. Normalized fluctuation profilesθrms/θrms,maxalso have similar features. Inside the BL,there is a power law,θrms/θrms,max~(z/δ)0.99. Outside the boundary layer, underRa ≤5×109, theθrms/θrms,maxcan be described by a power law,θrms/θrms,max~(z/δ)-1.27withz/δ ≤2. ForRa ≥1×1010,θrms/θrms,max~(z/δ)-0.978withz/δ ≤5. In particular,whenPr=0.7,the temperature fluctuationθrms/θrms,maxprofile distribution is similar to that whenPr=4.3. Especially,beyond the temperature boundary layer,the profile always drops and does not upraise. The two different distribution characteristics of temperature fluctuations are closely related to whether there are stable large-scale circulations and corner rolls in the instantaneous flow.

    (iii) The〈θrms〉V, the spatiotemporal averages of local temperature fluctuation, have similar dependence onRafor two differentPrnumbers.ForPr=0.7,whenRais above this transition point,i.e.,Ra=1×109,〈θrms〉Vas a function ofRais well described by the power law〈θrms〉V~Ra-0.15±0.01.WhilePr= 4.3, the transition point is given byRa= 1×1010. Beyond this transition point, there is also a power law〈θrms〉V~Ra-0.14±0.01.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11772362),the Shenzhen Fundamental Research Program (Grant No. JCYJ20190807160413162), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University,China(Grant No.19lgzd15).

    猜你喜歡
    方明
    新疆園林施工管理及后期養(yǎng)護(hù)技術(shù)的要點(diǎn)分析
    Application of the edge of chaos in combinatorial optimization?
    Effects of Prandtl number in two-dimensional turbulent convection?
    著名旅法詩(shī)人 方明
    鴨綠江(2020年23期)2020-10-13 13:29:04
    左右為難
    距離(小小說(shuō))
    Interface microstructure and properties of submerged arc brazing tin-based babbit
    China Welding(2019年2期)2019-10-22 07:13:18
    曾方明:超越血緣的20年贍養(yǎng)之路
    晚晴(2017年6期)2017-06-27 13:41:14
    解三角方程題的常用方法
    Detection of promoter methylation of p27 gene in gastric carcinoma by methylation-specific PCR technique
    亚洲 欧美一区二区三区| 777米奇影视久久| 美女午夜性视频免费| 亚洲成人免费电影在线观看| 亚洲成人手机| 一级毛片精品| 99久久综合精品五月天人人| 日韩一卡2卡3卡4卡2021年| 中文字幕人妻丝袜制服| 国产成人精品在线电影| 18禁国产床啪视频网站| 国产欧美日韩一区二区三区在线| 国产乱人伦免费视频| av电影中文网址| 99国产精品99久久久久| 亚洲av成人一区二区三| 黑人操中国人逼视频| 欧美日韩国产mv在线观看视频| 免费av中文字幕在线| 9色porny在线观看| 三级毛片av免费| aaaaa片日本免费| 亚洲人成电影观看| 男人的好看免费观看在线视频 | 午夜福利在线免费观看网站| 国产欧美亚洲国产| 午夜福利一区二区在线看| 国产又色又爽无遮挡免费看| 欧美在线黄色| 日韩欧美一区视频在线观看| 伊人久久大香线蕉亚洲五| 国产在线一区二区三区精| 精品电影一区二区在线| 国产高清视频在线播放一区| 亚洲精品一卡2卡三卡4卡5卡| 变态另类成人亚洲欧美熟女 | 黄片大片在线免费观看| 18禁裸乳无遮挡免费网站照片 | 国产淫语在线视频| 一级黄色大片毛片| 一级a爱视频在线免费观看| 中文字幕精品免费在线观看视频| 日韩免费高清中文字幕av| 不卡av一区二区三区| 丝袜美足系列| 国产精品乱码一区二三区的特点 | 中文字幕另类日韩欧美亚洲嫩草| cao死你这个sao货| av网站免费在线观看视频| 国产成人影院久久av| 操出白浆在线播放| 99久久综合精品五月天人人| 国产精品久久电影中文字幕 | 一级毛片高清免费大全| 麻豆乱淫一区二区| 久久久久久久国产电影| 午夜精品国产一区二区电影| 亚洲性夜色夜夜综合| 黑人猛操日本美女一级片| 亚洲五月天丁香| 久久精品国产清高在天天线| 一边摸一边抽搐一进一出视频| videosex国产| 亚洲美女黄片视频| 亚洲色图av天堂| 免费久久久久久久精品成人欧美视频| 久久精品91无色码中文字幕| 一二三四社区在线视频社区8| 女人高潮潮喷娇喘18禁视频| 在线观看舔阴道视频| 欧美中文综合在线视频| 如日韩欧美国产精品一区二区三区| 亚洲人成77777在线视频| 精品久久久久久,| a级毛片黄视频| 精品久久久久久久久久免费视频 | 亚洲欧美色中文字幕在线| 一本综合久久免费| 99久久综合精品五月天人人| 中国美女看黄片| 69精品国产乱码久久久| 捣出白浆h1v1| av天堂在线播放| 少妇 在线观看| 日日摸夜夜添夜夜添小说| av片东京热男人的天堂| 狠狠婷婷综合久久久久久88av| 欧美精品高潮呻吟av久久| 手机成人av网站| 丰满迷人的少妇在线观看| 嫁个100分男人电影在线观看| 在线永久观看黄色视频| 少妇 在线观看| 精品欧美一区二区三区在线| 欧美日韩视频精品一区| 免费黄频网站在线观看国产| 欧美日韩亚洲国产一区二区在线观看 | 国产精品一区二区在线观看99| 亚洲三区欧美一区| 亚洲国产中文字幕在线视频| 男人操女人黄网站| 男人的好看免费观看在线视频 | 高清欧美精品videossex| 丰满人妻熟妇乱又伦精品不卡| 男人操女人黄网站| 欧美精品人与动牲交sv欧美| 国产精品九九99| 国产高清激情床上av| 99久久人妻综合| 欧美精品一区二区免费开放| 99re6热这里在线精品视频| 日韩精品免费视频一区二区三区| 日韩制服丝袜自拍偷拍| 曰老女人黄片| 久久精品亚洲精品国产色婷小说| 最新美女视频免费是黄的| 男女高潮啪啪啪动态图| 久久久久国产一级毛片高清牌| 精品一区二区三区四区五区乱码| 91国产中文字幕| 性色av乱码一区二区三区2| 国产高清激情床上av| 国产又爽黄色视频| 婷婷精品国产亚洲av在线 | 日韩视频一区二区在线观看| 国产一区二区激情短视频| 大陆偷拍与自拍| 嫁个100分男人电影在线观看| 无人区码免费观看不卡| av网站在线播放免费| 国产成人av激情在线播放| av电影中文网址| 黄网站色视频无遮挡免费观看| 激情在线观看视频在线高清 | 视频区欧美日本亚洲| 欧美日韩亚洲综合一区二区三区_| 久久久久久久久久久久大奶| 18禁裸乳无遮挡免费网站照片 | xxxhd国产人妻xxx| 国产精品一区二区免费欧美| 91精品国产国语对白视频| 午夜福利影视在线免费观看| 侵犯人妻中文字幕一二三四区| 少妇粗大呻吟视频| 亚洲片人在线观看| videosex国产| 电影成人av| 精品熟女少妇八av免费久了| 首页视频小说图片口味搜索| 久久久久视频综合| 中文字幕av电影在线播放| 亚洲色图av天堂| 12—13女人毛片做爰片一| avwww免费| 91成人精品电影| 国产高清激情床上av| 午夜福利免费观看在线| 夜夜爽天天搞| 在线观看免费午夜福利视频| 国产精品免费大片| 久久午夜综合久久蜜桃| 热re99久久国产66热| 无限看片的www在线观看| 国产精品99久久99久久久不卡| 热re99久久精品国产66热6| 国产淫语在线视频| 免费高清在线观看日韩| 久久午夜亚洲精品久久| 亚洲免费av在线视频| 久久久久国产一级毛片高清牌| 中文字幕人妻熟女乱码| 国产亚洲欧美精品永久| 两个人看的免费小视频| 中文字幕高清在线视频| 国产亚洲一区二区精品| 亚洲精品成人av观看孕妇| 免费看a级黄色片| 美女高潮到喷水免费观看| 男女免费视频国产| 在线观看日韩欧美| 国产精品欧美亚洲77777| 久久国产亚洲av麻豆专区| 国产精品99久久99久久久不卡| 乱人伦中国视频| 亚洲欧美色中文字幕在线| 国产欧美亚洲国产| 少妇裸体淫交视频免费看高清 | 精品久久久精品久久久| 亚洲午夜理论影院| 欧美日韩av久久| 婷婷精品国产亚洲av在线 | 精品午夜福利视频在线观看一区| 国产单亲对白刺激| 国产在线精品亚洲第一网站| 中文字幕精品免费在线观看视频| 久热爱精品视频在线9| 亚洲专区中文字幕在线| 一本一本久久a久久精品综合妖精| 国产男女超爽视频在线观看| 日本vs欧美在线观看视频| e午夜精品久久久久久久| 午夜成年电影在线免费观看| 亚洲精品av麻豆狂野| 麻豆乱淫一区二区| 日本欧美视频一区| 久久久国产精品麻豆| 桃红色精品国产亚洲av| 777米奇影视久久| 91精品国产国语对白视频| 久热爱精品视频在线9| 乱人伦中国视频| 人妻一区二区av| 免费人成视频x8x8入口观看| 操美女的视频在线观看| 91老司机精品| 757午夜福利合集在线观看| 91成人精品电影| 成在线人永久免费视频| 视频区图区小说| 亚洲精品国产一区二区精华液| 高潮久久久久久久久久久不卡| 九色亚洲精品在线播放| 日本五十路高清| 欧美日本中文国产一区发布| 精品福利永久在线观看| 两人在一起打扑克的视频| 国精品久久久久久国模美| 欧美日韩黄片免| 少妇被粗大的猛进出69影院| 狠狠狠狠99中文字幕| 午夜老司机福利片| 精品少妇久久久久久888优播| 一级a爱视频在线免费观看| av中文乱码字幕在线| 欧美黑人欧美精品刺激| 亚洲av熟女| 日本撒尿小便嘘嘘汇集6| 久久午夜综合久久蜜桃| 国产精品99久久99久久久不卡| 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久男人| 久久久久久亚洲精品国产蜜桃av| 伦理电影免费视频| www日本在线高清视频| 亚洲欧美色中文字幕在线| 中文字幕人妻丝袜制服| 国产精品美女特级片免费视频播放器 | 别揉我奶头~嗯~啊~动态视频| 怎么达到女性高潮| 亚洲熟女毛片儿| 人妻 亚洲 视频| 亚洲黑人精品在线| 校园春色视频在线观看| 亚洲av片天天在线观看| 妹子高潮喷水视频| 国产精品久久久人人做人人爽| 天天操日日干夜夜撸| 欧美另类亚洲清纯唯美| 又黄又爽又免费观看的视频| 久久久国产欧美日韩av| 人人妻人人澡人人爽人人夜夜| 人人妻人人澡人人看| 啦啦啦视频在线资源免费观看| 大型黄色视频在线免费观看| 国产免费现黄频在线看| 免费观看a级毛片全部| 脱女人内裤的视频| 999精品在线视频| 19禁男女啪啪无遮挡网站| 男人操女人黄网站| 91在线观看av| tube8黄色片| 黄频高清免费视频| 日韩一卡2卡3卡4卡2021年| 欧美日韩国产mv在线观看视频| 超碰97精品在线观看| 久久天堂一区二区三区四区| 一边摸一边抽搐一进一小说 | 日本欧美视频一区| 久久精品国产亚洲av高清一级| 老司机福利观看| 精品少妇一区二区三区视频日本电影| 在线观看免费视频网站a站| 最近最新免费中文字幕在线| 久久久久精品国产欧美久久久| 热99国产精品久久久久久7| 欧美精品高潮呻吟av久久| 亚洲一区二区三区欧美精品| 久久国产精品人妻蜜桃| 黄网站色视频无遮挡免费观看| 欧美老熟妇乱子伦牲交| 久久精品成人免费网站| svipshipincom国产片| 日本黄色视频三级网站网址 | av一本久久久久| 亚洲中文字幕日韩| 欧美黑人欧美精品刺激| 欧美成狂野欧美在线观看| 黄色怎么调成土黄色| 大型黄色视频在线免费观看| 国产男女超爽视频在线观看| 女人精品久久久久毛片| 又黄又粗又硬又大视频| 国产高清激情床上av| 青草久久国产| 免费观看精品视频网站| 不卡一级毛片| 日韩三级视频一区二区三区| 在线观看免费午夜福利视频| 天天躁日日躁夜夜躁夜夜| 日韩免费av在线播放| 日韩视频一区二区在线观看| 十分钟在线观看高清视频www| 老熟妇乱子伦视频在线观看| 一a级毛片在线观看| 欧美日韩成人在线一区二区| 久久热在线av| 国产欧美日韩一区二区三区在线| 国产精品九九99| 在线av久久热| 老司机亚洲免费影院| 亚洲片人在线观看| 视频在线观看一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 999精品在线视频| 亚洲精品美女久久av网站| 99热网站在线观看| 久久精品亚洲精品国产色婷小说| 一区福利在线观看| 最新的欧美精品一区二区| xxxhd国产人妻xxx| videos熟女内射| 日韩人妻精品一区2区三区| 黄色a级毛片大全视频| 国产精品久久久久久精品古装| 91成年电影在线观看| 可以免费在线观看a视频的电影网站| 国产乱人伦免费视频| 91麻豆精品激情在线观看国产 | 最新的欧美精品一区二区| 黄色a级毛片大全视频| 亚洲国产欧美日韩在线播放| 老司机影院毛片| 精品欧美一区二区三区在线| 在线观看免费视频日本深夜| 日韩三级视频一区二区三区| 久久久久久久久久久久大奶| 欧美中文综合在线视频| 亚洲三区欧美一区| videosex国产| 成人三级做爰电影| 国产精品一区二区精品视频观看| 亚洲视频免费观看视频| 男人的好看免费观看在线视频 | av免费在线观看网站| 久久中文看片网| 亚洲人成伊人成综合网2020| 久久久久国产精品人妻aⅴ院 | www.精华液| 热re99久久精品国产66热6| 99国产综合亚洲精品| 大片电影免费在线观看免费| 欧美日韩黄片免| 成在线人永久免费视频| 成人18禁在线播放| 免费在线观看影片大全网站| 亚洲性夜色夜夜综合| 色尼玛亚洲综合影院| 丝袜在线中文字幕| 黄频高清免费视频| 夫妻午夜视频| 国产精品综合久久久久久久免费 | 国产区一区二久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲视频免费观看视频| 欧美成狂野欧美在线观看| 成人永久免费在线观看视频| 国产一卡二卡三卡精品| 99精品久久久久人妻精品| 欧美 亚洲 国产 日韩一| 欧美激情 高清一区二区三区| 精品无人区乱码1区二区| 国产精品99久久99久久久不卡| 国产精品九九99| 成人三级做爰电影| 欧美亚洲日本最大视频资源| 亚洲av第一区精品v没综合| 亚洲在线自拍视频| 成人国产一区最新在线观看| 电影成人av| 精品国产乱子伦一区二区三区| 午夜视频精品福利| 日本a在线网址| 久久久久精品国产欧美久久久| 天天躁夜夜躁狠狠躁躁| 国产成人精品久久二区二区91| 亚洲 欧美一区二区三区| 午夜影院日韩av| 男人操女人黄网站| 91精品国产国语对白视频| 成年动漫av网址| 亚洲五月婷婷丁香| 欧美日韩瑟瑟在线播放| 久久香蕉国产精品| 欧美国产精品一级二级三级| 久久国产乱子伦精品免费另类| 日韩有码中文字幕| 精品少妇一区二区三区视频日本电影| 国产一区二区三区综合在线观看| 日本vs欧美在线观看视频| 亚洲色图av天堂| 国产精品九九99| svipshipincom国产片| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品一区二区三区在线| 淫妇啪啪啪对白视频| 精品久久久久久,| av超薄肉色丝袜交足视频| 亚洲中文日韩欧美视频| 国产蜜桃级精品一区二区三区 | 建设人人有责人人尽责人人享有的| 亚洲精品国产精品久久久不卡| 久久久久视频综合| 日本黄色视频三级网站网址 | 91老司机精品| 国产又色又爽无遮挡免费看| 波多野结衣一区麻豆| 亚洲自偷自拍图片 自拍| 欧美黄色片欧美黄色片| 操美女的视频在线观看| 丰满饥渴人妻一区二区三| 男女之事视频高清在线观看| 国产在线精品亚洲第一网站| 国产一区在线观看成人免费| 亚洲一区二区三区欧美精品| 少妇猛男粗大的猛烈进出视频| 热99久久久久精品小说推荐| 精品午夜福利视频在线观看一区| 欧美 日韩 精品 国产| 免费看十八禁软件| 午夜福利影视在线免费观看| 夫妻午夜视频| 亚洲中文字幕日韩| 精品免费久久久久久久清纯 | 亚洲,欧美精品.| 成熟少妇高潮喷水视频| 国产深夜福利视频在线观看| 一边摸一边抽搐一进一小说 | 久久中文字幕人妻熟女| 亚洲情色 制服丝袜| 久久国产精品男人的天堂亚洲| 99热国产这里只有精品6| 国产视频一区二区在线看| 久久精品国产亚洲av高清一级| 欧美精品啪啪一区二区三区| 亚洲精品粉嫩美女一区| av网站在线播放免费| 免费黄频网站在线观看国产| 国产精品美女特级片免费视频播放器 | 在线十欧美十亚洲十日本专区| 国产一区二区激情短视频| 黑人猛操日本美女一级片| 村上凉子中文字幕在线| 男人操女人黄网站| 亚洲精品一卡2卡三卡4卡5卡| 免费女性裸体啪啪无遮挡网站| 午夜日韩欧美国产| 国产蜜桃级精品一区二区三区 | 精品亚洲成国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩av久久| 久久中文字幕一级| 真人做人爱边吃奶动态| 人人妻人人爽人人添夜夜欢视频| 在线播放国产精品三级| 国产一区有黄有色的免费视频| 在线观看免费日韩欧美大片| 超碰成人久久| 人人妻人人澡人人爽人人夜夜| 国产99久久九九免费精品| 热99久久久久精品小说推荐| 中出人妻视频一区二区| 亚洲少妇的诱惑av| 中文字幕人妻熟女乱码| 国产精品久久久久久精品古装| 1024视频免费在线观看| 国产精品久久久久成人av| 90打野战视频偷拍视频| 免费在线观看日本一区| 91麻豆精品激情在线观看国产 | 高清av免费在线| 新久久久久国产一级毛片| 在线观看免费午夜福利视频| 一区二区三区激情视频| 亚洲五月天丁香| 欧美性长视频在线观看| 大陆偷拍与自拍| 少妇猛男粗大的猛烈进出视频| 国产精品二区激情视频| 最近最新中文字幕大全电影3 | 日韩欧美国产一区二区入口| 国产欧美日韩综合在线一区二区| 国产一区二区三区视频了| 久久久久国内视频| 少妇 在线观看| 丝袜人妻中文字幕| 97人妻天天添夜夜摸| а√天堂www在线а√下载 | 国产一区二区三区综合在线观看| 久久影院123| 国产不卡av网站在线观看| 法律面前人人平等表现在哪些方面| 免费少妇av软件| 精品午夜福利视频在线观看一区| 村上凉子中文字幕在线| 两人在一起打扑克的视频| 乱人伦中国视频| 人人妻人人澡人人看| 亚洲伊人色综图| 很黄的视频免费| 欧美+亚洲+日韩+国产| 后天国语完整版免费观看| 国产亚洲精品久久久久久毛片 | 一级a爱视频在线免费观看| 亚洲av日韩在线播放| 又黄又爽又免费观看的视频| 国产有黄有色有爽视频| 午夜日韩欧美国产| 久久精品人人爽人人爽视色| 美女福利国产在线| av有码第一页| 成人精品一区二区免费| 视频区欧美日本亚洲| 少妇猛男粗大的猛烈进出视频| 啦啦啦 在线观看视频| 精品国产乱子伦一区二区三区| 天堂动漫精品| xxxhd国产人妻xxx| 久久久久精品人妻al黑| av国产精品久久久久影院| 中文字幕人妻丝袜一区二区| xxx96com| 黄色女人牲交| 成人影院久久| 亚洲男人天堂网一区| 午夜免费鲁丝| 亚洲成av片中文字幕在线观看| 久久人人爽av亚洲精品天堂| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 高清视频免费观看一区二区| 精品久久久久久久久久免费视频 | 亚洲 国产 在线| 久久香蕉激情| 嫩草影视91久久| 亚洲人成伊人成综合网2020| 极品少妇高潮喷水抽搐| 免费不卡黄色视频| 精品亚洲成国产av| 欧美一级毛片孕妇| av在线播放免费不卡| 亚洲成国产人片在线观看| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看 | 日本vs欧美在线观看视频| 村上凉子中文字幕在线| 91麻豆av在线| av欧美777| 国产aⅴ精品一区二区三区波| a级片在线免费高清观看视频| 国产精品永久免费网站| 国产精品久久久人人做人人爽| 欧美大码av| 男女床上黄色一级片免费看| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 亚洲 欧美一区二区三区| 久久久久久久午夜电影 | 国产亚洲精品一区二区www | 两性午夜刺激爽爽歪歪视频在线观看 | 脱女人内裤的视频| 美女高潮到喷水免费观看| 在线国产一区二区在线| 欧美日韩乱码在线| 欧美国产精品va在线观看不卡| 久久久久久久精品吃奶| 一级a爱视频在线免费观看| 久久精品亚洲av国产电影网| 国产成人欧美| 很黄的视频免费| 搡老岳熟女国产| 成人18禁在线播放| 十八禁网站免费在线| 最新美女视频免费是黄的| 国产精品国产av在线观看| 50天的宝宝边吃奶边哭怎么回事| 19禁男女啪啪无遮挡网站| 精品卡一卡二卡四卡免费| 日本a在线网址| 97人妻天天添夜夜摸| 在线观看免费日韩欧美大片| 一进一出抽搐gif免费好疼 | 中出人妻视频一区二区| 一区福利在线观看| xxx96com| 国产免费现黄频在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 一本大道久久a久久精品| а√天堂www在线а√下载 | 露出奶头的视频| 久久人妻av系列| 啦啦啦免费观看视频1| cao死你这个sao货| 国产成人av激情在线播放| 免费少妇av软件|