• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient and stable wireless power transfer based on the non-Hermitian physics

    2022-01-23 06:37:12ChaoZeng曾超ZhiweiGuo郭志偉KejiaZhu??杉?/span>CaifuFan范才富GuoLi李果JunJiang江俊YunhuiLi李云輝HaitaoJiang江海濤YapingYang羊亞平YongSun孫勇andHongChen陳鴻
    Chinese Physics B 2022年1期
    關(guān)鍵詞:李果亞平海濤

    Chao Zeng(曾超) Zhiwei Guo(郭志偉) Kejia Zhu(??杉? Caifu Fan(范才富)Guo Li(李果)Jun Jiang(江俊) Yunhui Li(李云輝)Haitao Jiang(江海濤)Yaping Yang(羊亞平) Yong Sun(孫勇) and Hong Chen(陳鴻)

    1MOE Key Laboratory of Advanced Micro-structured Materials,School of Physics Sciences and Engineering,Tongji University,Shanghai 200092,China

    2Department of Electrical Engineering,Tongji University,Shanghai 201804,China

    3School of Automotive Studies,Tongji University,Shanghai 210804,China

    Keywords: wireless power transfer,non-Hermitian physics,topological edge states

    1. Introduction

    Magnetic resonance wireless power transfer(WPT)technologies proposed by Kurset al.[1]have been one of the most fascinating areas of energy transfer in recent years. The key components of such a scheme are two coupled resonance coils,where one of them provides energy input (transmitter) and the other receives energy to the load(receiver).[1]Up to now,WPT has been intensively investigated in a variety of applications such as medical implanted devices, electric vehicles,drones, portable electronic devices and so on.[2-6]However,the transfer efficiency in the system of resonance WPT is sensitive to the variation of the coupling condition. On the one hand, the strong magnetic coupling between resonance coils always leads to the splitting of working frequency, which seriously reduces the stability of the devices. On the other hand,the transfer distance strongly depends on the size of the coils.Normally,once the transfer distance is larger than the radius of the coils,the transmission efficient will decrease significantly.In order to obtain the stable and efficient energy transfer,many controlled strategies were proposed based on stability analysis of such WPT systems. For example, an impedance matching method for automatically matching the impedance between transmitter,receiver and power source is proposed. When the coupling distance changes, the reduction of the power transmission efficiency can be effectively avoided.[7,8]Another method is a working frequency tracking scheme, which can track the maximum efficiency point dynamically according to different coupling conditions.[9,10]These methods have been proved to be effective for optimizing the transferred efficiency in electric circuit.However,these circuit-based research methods have some limitations and could not provide clear physical pictures for people to understand some interesting and important phenomena in WPT system. For example, why does the transfer efficiency decrease rapidly(frequency splitting)when the transfer distance is greater (less) than the critical transfer distance and how to realize efficient long-range[11,12]or directional[13,14]energy transfer?

    Very recently, the interaction between coupling (coherent effect) and gain/loss (incoherent effect) in the non-Hermitian system has shown many interesting and unexpected features.[15]In particularly, parity-time (PT) symmetry and exceptional points(EPs)associated with phase transition drawn from non-Hermitian physics have attracted considerable attention.[16-18]From the perspective of non-Hermitian photonics, the coherent and incoherent effects compete and coexist in the WPT system. Especially,it can undergo a phase transition that restores the broken symmetry. When the transfer distance is small, the coherent effect is dominant in this strong coupling region,which leads to the working frequency splitting. On the contrary,when the transfer distance is large,the WPT system corresponds to the weak coupling region(broken phase) of the non-Hermitian physical model. As a result,the transfer efficiency decreases rapidly as the transfer distance increases. Non-Hermitian physics can clearly show the limitations of the current WPT system,and provide a new way to solve the difficulties of previous designs.[3-6,19]

    In this review,we mainly introduce our latest progress in resonance WPT based on non-Hermitian physics.In Section 2,based on the coupled-mode theory, we establish a bridge between open WPT system and PT symmetry in non-Hermitian system,and show that stable power transfer states correspond to the real eigenvalues of the effective Hamiltonian. The frequency splitting in the strong coupling region and the significantly reduced efficiency after passing the critical coupling point are explained clearly by the phase diagram of PT symmetry. In Section 3,we introduce that for a non-ideal secondorder PT symmetric system of the non-Hermitian physics with unbalanced effective gain and loss,there is a special state with real eigenvalue (i.e., bound state in the continuum, BIC) in the broken phase. At the fixed frequency of BIC, efficient and stable WPT can be realized. Furthermore, based on the high-order PT symmetry of non-Hermitian physics,the thirdorder PT symmetric WPT system is presented, which can be used to achieve stable and efficient WPT without frequency tracking and idle power loss remains low. In second part of Section 4, combining the edge state of a topological chain and non-Hermitian physics,the long-range WPT devices with topological properties are introduced. This topological WPT inherits the physical properties of the edge states and has good electromagnetic compatibility because it is immune to impurities and perturbations. Finally,Section 5 summarizes the conclusions of this review.

    2. Non-Hermitian properties of the resonance WPT

    Fig.1. Scheme of a standard magnetic resonance WPT system. Transmitter and receiver coils are resonant coils. Source and load coils are non-resonant coils. γ1 (γ2) represents the coupling strength between source (load) and transmitter(receiver)coils. κ denotes the coupling strength between transmitter and receiver coils.

    Let us start with a standard magnetic resonance WPT system of four-coil configuration. It is composed of the two resonant coils (i.e., transmitter and receiver coils) and two nonresonant coils(i.e., source and load coils), which is shown in Fig.1. When a continuous harmonic waves1+=S1+e-iωtat a real frequencyωis fed into the WPT system, the coupledmode equations for the system are presented as[19]H11=ω0+iγ1,H22=ω0-iγ2,andH12=H21=κ. Comparing Eq. (3) with the Schr¨odinger equation, one can find thatHcan be regarded as the effective Hamiltonian of the system.It is worth noting that the coefficient ofa1has changed from-iγ1in Eq.(1)to iγ1in Eq.(3)under the zero-reflection condition. In this case, the resonator modea1has an effect gainγ1, which comes from the external environment (the incident waves) instead of the actual gain material. Whenγ1=γ2is satisfied,His invariant under the joint action of the parity(H11?H22,H12?H21) and time reversal (i→-i) operators. Therefore, the traditional resonance WPT systems with symmetric configuration can be treated as a second-order PT symmetric system under zero-reflection condition.[23]

    By solving|H-ωI|=0(whereIis an identical matrix),eigenfrequencies of the effective Hamiltonian in Eq.(4)can be obtained as

    Fig. 2. Eigenfrequencies of resonant two-coil WPT systems with ideal PT symmetry(γ1=γ2).

    Analyzing the eigenfrequencies of the effective Hamiltonian could reveal the physics of PT symmetry in WPT system.For the standard symmetric configuration (γ1=γ2=γ), the WPT system meets the requirement of an ideal second-order PT symmetry. In Fig. 2, the transition of the PT symmetry from exact PT phase to PT broken phase is labeled by the gradient color from orange to blue. The exact PT symmetric phase of the second-order system corresponds to the strongly coupled region of the WPT system (κ>γ), whose eigenfrequencies are purely real.[24,25]If the WPT system works at a pure real eigenfrequency, the optimal efficiency transfer can be achieved. However,these eigenfrequencies are very sensitive to the change of the coupling strengthκ, which directly depends on the coupling distance between the transmitter and receiver coils. Especially,when the transfer distance is small,the coherent effect is dominant in this strong coupling region,which leads to the working frequency splitting. But when the transfer distance is large,the WPT system corresponds to the weak coupling region (broken phase) of the non-Hermitian physical model, thus the transfer efficiency decreases rapidly as the transfer distance increases. Therefore, non-Hermitian physics can clearly explain the experimental results of the current resonance WPT systems.[26]Moreover,non-Hermitian physics can also be used to solve some key difficulties of previous designs. From Fig. 2, one can see that when the transmission distance changes,the pure real eigenvalues of the effective Hamiltonian in the non-Hermitian system will change.In order to achieve good transmission,the working frequency of the resonant WPT system needs to change accordingly.[19]Recently,Assawaworraritet al.[19]and Zhouet al.[3]have proposed a nonlinear PT-symmetric system,which automatically tracks the real eigenfrequency through the nonlinear saturable gain to ensure robust WPT. In addition, the PT symmetric broken phase region in Fig. 2(a) corresponds to the weakly coupled region of the WPT system (κ<γ). In this case,the imaginary part of the eigenfrequencies increases sharply with the coupling distance, which leads to the instability of the WPT system, that is, the transfer efficiency will decrease drastically with the increase of the coupling distance. Therefore,the critical transfer distance of the WPT system is determined by the PT phase transition pointκ=γ(also known as the second-order EP) at which the two eigenfrequencies collapse. Although the WPT system can operate under EP with fixed frequency, such a scheme would be extremely difficult in practical implementation due to the intrinsic sensitivity of EP.[18]

    3. Stable and efficient WPT system based on PT symmetry

    3.1. Two-coil WPT system based on non-ideal secondorder PT symmetry

    In order to solve the problems of frequency splitting in the PT symmetric phase and the sensitivity of the EP point,a valuable question naturally arises: is it possible to find a fixed real eigenfrequency in the PT symmetric broken phase to achieve stable energy transmission? In addition, this scheme can be used to improve the transfer distance. As introduced in the above section, the transfer distance of resonance WPT in the PT symmetric broken phase could also be extended beyond the critical transfer distance determined by EP (κ=γ).For a non-ideal PT-symmetry (γ1/=γ2) WPT system withκ<κc=(γ1+γ2)/2,the imaginary part of the eigenfrequency is split into two branches, and one of them will pass through the real frequency axis when the relationshipκ2=γ1γ2is met,as shown in Fig. 3. Although there is no a whole purely real branch in the phase diagram of non-ideal PT symmetry, this critical relationship could ensure a real eigenfrequencyω0of the system. It should be point out that this solution cannot be found in the previous non-Hermitian system without gain except for the caseκ=0.

    Under the circumstance of non-ideal PT-symmetry,Eq.(5)can be rewritten as

    Fig.3. Eigenfrequencies of resonant two-coil WPT systems with non-ideal PT symmetry(γ1/=γ2).

    3.2. Three-coil WPT system based on third-order PT symmetry

    From Fig. 3 in Subsection 3.1, we can see that the real eigenfrequency in the non-ideal PT symmetry system corresponds to a point in the parameter space of PT phase diagram.In order to maintain a stable power transfer, people need to adjustγ2according to the coupling strengthκ. In this section,we will introduce a stable and efficient WPT based on the third-order PT symmetry of non-Hermitian system, in which the working frequency(real eigenfrequency)does not depend on the coupling strength. At present, it has been proved that the three-coil system with the insertion structure of a relay coil,[30-34]metamaterials[35-39]or metsurfaces[40-43]between the transmitter and receiver coils can improve the transmission distance compared with WPT system with two coils. Similar to treating the resonant two-coil system as a second-order PT symmetric system, one can also deal with a three-coil WPT system using the third-order PT symmetry.[44]As shown in Fig.4(a),the system’s effective Hamiltonian is

    Here,κ12(κ23)is the coupling strength between the transmitter(relay)and relay(receiver)coils. When the intrinsic loss Γ(due to absorption or radiation)of the resonant coil is negligible andκ12=κ23=κ,the ideal third-order PT symmetry can be established. For example,Sakhdariet al.tune the values of the two coupling strengths equally by rotating the transmitter coil with a feedback algorithm.[45]By solving the characteristic equation|ωI-H′|=0,the eigenfrequencies are obtained as follows:

    Theoretical and experimental results show that, at the fixed frequency, the efficiency stability of the third-order PT symmetric WPT system is significantly superior to that of the second-order PT symmetry, as shown in Fig. 4(c). This three-coil system is further extended to WPT with miniaturized receivers as an example,which shows stable transfer efficiency with a wide range of axial transfer distance and lateral misalignment.[40]Besides, the idle (in idle state without receiver terminals) power loss of this three-coil WPT system is also very low [see Fig. 4(d)], benefiting wireless charging intermittently. Considering utilizing higher-order(N>4)PT symmetry for WPT system, we can predict that the oddorder (N= 2m+1,mis a positive integer) resonant coils will show more stable transfer performance than that of evenorder (N= 2m) resonant coils because there is a couplingindependent entirely real eigenfrequency.

    Fig.4.(a)Schemes of three-coil WPT system with third-order PT symmetry.(b)The real(left)and imaginary(right)eigenfrequencies of third-order PT symmetric systems. (c)Transfer efficiency versus distance in three-coil(red)and two-coil(black)WPT systems at fixed operating frequency.(d)Idle power losses versus frequency in three-coil(red)and two-coil(black)WPT systems.[44]

    4. Non-Hermitian topological dimer chain for long-range robust WPT

    With the development of WPT devices, the efficient long-range and robust WPT is highly desirable but also challenging.[46-49]Recently, the possibility of obtaining photonic topological modes that are robust against perturbations by mimicking the topological properties of solid state system,has brought a profound impact on optical sciences.[50,51]In particular, topological non-Hermitian systems provide an effective avenue for studying the intriguing properties of topological structures involving PT symmetry and developing new wave functional devices.[52]For example, using the EP of a non-Hermitian dimer chain, a new sensor that is sensitive to perturbation of on-site frequency at the end of the structure and yet topologically protected from internal perturbation of site-to-site couplings is realized.[53]In this section, we introduce the topological dimer chain with effective PT symmetry,which is composed of the topological edge modes(TEMs)and topological interface modes (TIMs), can be used to the long-range WPT.Especially,this topological WPT inherits the physical properties of topological modes and has good electromagnetic compatibility because it is immune to impurities and perturbations.

    In 2018, Jianget al.firstly proposed that the nontrivial dimer chain will provide a suitable platform for the study of robust WPT in the RF regime.[54]The photonic topological dimer chain is inspired by the basic topological Su-Schrieffer-Heeger (SSH) model in condensed-matter physics.[55]Specially, based on the dimer chain composed of split-ring-resonators, the robustness of edge states,[54]topological invariant,[56]and the coupling between two SSH chains[57]have been demonstrated in recent years. The topological dimer chain on the long-range WPT with immunity to disturbance is of great significance in science and technology.Very recently,the physical mechanism of the effective second order PT system with TEMs in the dimer chain is analyzed and corresponding experiments are carried out to verify the long-range WPT.[58-60]Moreover, in order to solve the special technical problems of standby power loss and frequency tracking, Ref. [59] uncovered that an optimized topological WPT system with effective third-order PT symmetry, which is constructed by using one TIM and two TEMs, as shown in Fig. 5(a). The measured reflection spectra of the topological dimer chain with effective third-order PT symmetry under working and standby states are shown in Figs. 5(b) and 5(d),respectively. It should be noted that the reflection is not zero due to the influence of intrinsic loss. Nevertheless, the maximum value of transmission efficiency still corresponds to the real eigenvalue calculated theoretically. Figures 5(b) and 5(d)clearly show that the refection of the chain under working(standby)state is low(high)at the reference frequency,which means the standby power loss of the topological dimer chain with effective third-order PT symmetry is small.[59]Furthermore, in order to intuitively show the characteristics of low standby power loss in the topological WPT system with effective third-order PT symmetry,a source coil is placed at the left end of the chain and both ends of the chain are equipped with an LED lamp. One can see that two LED lamps will be lit up at the working state, as shown in Fig. 5(c). However,two LED lamps remain dark at the reference frequency for the standby state, as shown in Fig.5(e). Therefore, the small standby power loss of the topological dimer chain with effective third-order PT symmetry is demonstrated in Figs.5(c)and 5(d). Although TEMs and TIMs can be used for robust WPT with topological protection and can be immune to purities and perturbations,once the topological edge is totally broken,the topology WPT will be destroyed. In this case,the topological WPT is disappearing.

    Fig.5. (a)Scheme of a multi-coil WPT system based on the effective third-order PT symmetry in a composite topological dimer chain,which is formed by the interaction of the three topological modes, including two TEMs at two ends of the chain and one TIM at the center of the chain.(b) Measured reflection spectrum of the topological dimer chain with effective third-order PT symmetry. (c) Experimental demonstration of the topological WPT of topological dimer chain with effective third-order PT symmetry by lighting two LED lamps at two ends of the chain. (d),(e)Similar to(b),(c),but for the standby state of the topological WPT with third-order PT symmetry.[59]

    Overall,this WPT technology has many advantages in the field of long-range WPT: (1) There is low idle power loss,which can avoid the risk of burning the circuit due to excessive no-load power, thus greatly increasing safety and stability of the WPT system. (2) Stable and efficient transfer can always be realized at a fixed working frequency, which promotes practicability of WPT system. (3) This topological WPT system is realized by TEMs and TIMs,which has topological protection and is insensitive to internal perturbations and structural errors. The rise of topological photonics provides a powerful tool for near-field robust control of WPT.In addition to the properties of robustness and long-range, the robust directional WPT has been demonstrated using asymmetric topological edge states.[61,62]Especially, the realization of actively tuned TEMs in the topological quasiperiodic chain will open up a new avenue in the dynamical control of robust long-range WPT.[62]Although the current topological WPT schemes are mainly based on one-dimensional systems,the concept of topological manipulation can be consulted for higher dimensional system and related WPT devices. Therefore,the investigation in the topological dimer chain provides insightful guidance to exploring the exciting applications associated with topological transport in WPT regime.

    5. Summary and outlook

    This paper reviews some advances in stable and efficient WPT based on non-Hermitian physics, including using the bound states in the continuum of the two-coil WPT system with non-ideal second-order PT symmetry and resorting to the three-coil WPT system with third-order PT symmetry. Moreover, the robust long-range WPT with topological protection is also introduced combing the topological photonics and non-Hermitian physics. In a word,non-Hermitian physics not only provides new perspective to understand the abundant and interesting phenomena in the advanced resonance WPT,but also pave the ways for solving some key difficulties of previous designs.

    The WPT system with high-order PT symmetry can significantly enhance the transfer distance. However, due to the use of more resonant coils, the WPT device has a large size.Considering how to introduce the synthetic dimensions[63-65]and build a multi-mode coupled high-order non-Hermitian system in a single coil is the direction of efforts to realize long-distance, efficient and miniaturized WPT devices in the future. In addition, the non-Hermitian system can also be established by asymmetric coupling rather than gain/loss engineering.[66,67]Specially, it is very interesting that all the eigenmodes are localized in the non-Hermitian system with asymmetric coupling, which are promising for efficient and robust WPT independent on the working frequency.

    Acknowledgements

    This research was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301101), the National Natural Science Foundation of China (Grant Nos. 91850206, 61621001, 2004284,11674247, and 11974261), Shanghai Science and Technology Committee, China (Grant Nos. 18JC1410900 and 18ZR1442900), the China Postdoctoral Science Foundation(Grant Nos. 2019TQ0232 and 2019M661605), the Shanghai Super Postdoctoral Incentive Program, and Fundamental Research Funds for the Central Universities,China.

    猜你喜歡
    李果亞平海濤
    那年的盛夏沒(méi)有果實(shí)
    上海故事(2023年2期)2023-05-30 10:48:04
    軍事文摘(2022年20期)2023-01-10 07:19:44
    高空跳傘
    羅海濤作品
    國(guó)畫家(2022年3期)2022-06-16 05:30:06
    琴聲起(微小說(shuō))
    Effect of blade shape on hydraulic performance and vortex structure of vortex pumps *
    孔亞平和她的三個(gè)夢(mèng)
    李果
    通過(guò)反思尋求最優(yōu)解
    南海隨筆
    草原(2016年1期)2016-01-31 21:21:51
    国产高清有码在线观看视频| 伊人久久精品亚洲午夜| 99热网站在线观看| 熟女电影av网| 97在线人人人人妻| 一区二区三区乱码不卡18| 国产精品免费大片| 免费人妻精品一区二区三区视频| 国产av精品麻豆| 午夜激情福利司机影院| videossex国产| 色哟哟·www| 精品久久久久久久久亚洲| 两个人的视频大全免费| 尾随美女入室| 乱系列少妇在线播放| 亚洲四区av| 我要看日韩黄色一级片| 久久99精品国语久久久| 久久人妻熟女aⅴ| 香蕉精品网在线| 女性被躁到高潮视频| 久久国产亚洲av麻豆专区| 舔av片在线| 久久久久久伊人网av| 男的添女的下面高潮视频| 亚洲经典国产精华液单| av视频免费观看在线观看| av线在线观看网站| 麻豆成人午夜福利视频| 亚洲高清免费不卡视频| 欧美另类一区| 一级毛片 在线播放| 搡女人真爽免费视频火全软件| 亚洲精品乱码久久久久久按摩| 日韩国内少妇激情av| 最新中文字幕久久久久| 国产在线免费精品| 久久女婷五月综合色啪小说| 免费看光身美女| 久久国产精品男人的天堂亚洲 | 高清不卡的av网站| 久久女婷五月综合色啪小说| 国产精品久久久久久久久免| 日韩强制内射视频| 人妻 亚洲 视频| 我要看黄色一级片免费的| 中国三级夫妇交换| 成人无遮挡网站| 男女边吃奶边做爰视频| 午夜福利在线观看免费完整高清在| 晚上一个人看的免费电影| 2018国产大陆天天弄谢| 午夜福利在线在线| 国产成人精品一,二区| 国产免费一区二区三区四区乱码| 久久精品国产自在天天线| 五月开心婷婷网| 亚洲成人一二三区av| 日本欧美国产在线视频| 中国国产av一级| 亚洲欧美清纯卡通| 丝袜脚勾引网站| 成人特级av手机在线观看| a级毛片免费高清观看在线播放| 亚洲国产欧美人成| 成人特级av手机在线观看| 国产高清国产精品国产三级 | 国产精品一二三区在线看| 97精品久久久久久久久久精品| 亚洲欧美日韩另类电影网站 | 亚洲欧美成人精品一区二区| 日本黄色日本黄色录像| 亚洲丝袜综合中文字幕| 男人舔奶头视频| 亚洲精品久久久久久婷婷小说| 两个人的视频大全免费| 国产精品国产三级专区第一集| 国产极品天堂在线| 国产一区二区在线观看日韩| 日本色播在线视频| 亚洲美女视频黄频| 大码成人一级视频| 观看美女的网站| 久久6这里有精品| 国产成人a∨麻豆精品| 成人无遮挡网站| av卡一久久| 久久99蜜桃精品久久| 七月丁香在线播放| 国产一区二区三区综合在线观看 | 国产精品久久久久久久久免| 亚洲aⅴ乱码一区二区在线播放| 成人漫画全彩无遮挡| 婷婷色综合大香蕉| 欧美日韩精品成人综合77777| 高清午夜精品一区二区三区| 黄色日韩在线| 99热这里只有是精品在线观看| 嫩草影院新地址| 高清日韩中文字幕在线| 日日摸夜夜添夜夜添av毛片| 国产精品国产av在线观看| 国产片特级美女逼逼视频| 久久久久久久精品精品| 美女xxoo啪啪120秒动态图| 午夜免费鲁丝| av国产久精品久网站免费入址| 一级毛片我不卡| 国产精品99久久99久久久不卡 | 日本黄色片子视频| 国产精品久久久久久精品电影小说 | 男人和女人高潮做爰伦理| 丰满少妇做爰视频| 毛片女人毛片| 美女高潮的动态| 老师上课跳d突然被开到最大视频| 久热这里只有精品99| 亚洲最大成人中文| 美女脱内裤让男人舔精品视频| 午夜福利在线观看免费完整高清在| 中文字幕av成人在线电影| 中文欧美无线码| 两个人的视频大全免费| 久久99蜜桃精品久久| 亚州av有码| 国产黄片视频在线免费观看| 亚州av有码| 国产高清国产精品国产三级 | 一区二区三区免费毛片| 嫩草影院入口| 久久影院123| 一级片'在线观看视频| 搡女人真爽免费视频火全软件| 精品国产一区二区三区久久久樱花 | 九九久久精品国产亚洲av麻豆| 性高湖久久久久久久久免费观看| 美女内射精品一级片tv| 亚洲真实伦在线观看| 午夜免费观看性视频| 99久久精品国产国产毛片| 亚洲国产欧美人成| 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区黑人 | 美女视频免费永久观看网站| 国产成人免费无遮挡视频| 少妇被粗大猛烈的视频| 精品一区二区免费观看| 一级片'在线观看视频| 亚洲欧美清纯卡通| 国产深夜福利视频在线观看| 欧美老熟妇乱子伦牲交| 蜜桃在线观看..| 亚洲人成网站高清观看| 高清在线视频一区二区三区| 日韩电影二区| 免费看光身美女| 三级国产精品欧美在线观看| 日韩成人av中文字幕在线观看| 视频中文字幕在线观看| av在线播放精品| 一本一本综合久久| 又爽又黄a免费视频| 国产伦理片在线播放av一区| 黑丝袜美女国产一区| 汤姆久久久久久久影院中文字幕| 男女下面进入的视频免费午夜| 日韩三级伦理在线观看| 日日摸夜夜添夜夜爱| 国产精品99久久99久久久不卡 | 97在线人人人人妻| 蜜桃在线观看..| 国产av精品麻豆| 欧美三级亚洲精品| av播播在线观看一区| 高清日韩中文字幕在线| 18禁在线无遮挡免费观看视频| 性色av一级| 夜夜爽夜夜爽视频| 五月开心婷婷网| 久久久久久九九精品二区国产| 亚洲av欧美aⅴ国产| 日韩中字成人| xxx大片免费视频| 一级二级三级毛片免费看| 国产亚洲精品久久久com| 一级av片app| 在线播放无遮挡| 成人毛片60女人毛片免费| 哪个播放器可以免费观看大片| 七月丁香在线播放| 亚洲色图综合在线观看| 简卡轻食公司| 精品亚洲乱码少妇综合久久| 少妇的逼水好多| 成人亚洲欧美一区二区av| 高清黄色对白视频在线免费看 | av.在线天堂| 婷婷色综合大香蕉| 久久综合国产亚洲精品| 春色校园在线视频观看| 免费黄网站久久成人精品| 亚洲色图av天堂| 久久精品国产自在天天线| av免费在线看不卡| 美女福利国产在线 | 欧美最新免费一区二区三区| 成人黄色视频免费在线看| 久久人人爽av亚洲精品天堂 | 边亲边吃奶的免费视频| 高清av免费在线| 日韩免费高清中文字幕av| 久久精品国产亚洲av天美| 不卡视频在线观看欧美| 黄片无遮挡物在线观看| 久久久精品94久久精品| 午夜老司机福利剧场| 亚洲国产成人一精品久久久| 亚洲欧美成人精品一区二区| 精品人妻偷拍中文字幕| 国产亚洲91精品色在线| 久久午夜福利片| 久久久久久久国产电影| 精品少妇黑人巨大在线播放| 亚洲精品亚洲一区二区| 亚洲国产精品专区欧美| 亚洲精品国产av成人精品| 亚洲av不卡在线观看| 欧美激情极品国产一区二区三区 | 色哟哟·www| 久久韩国三级中文字幕| 免费看av在线观看网站| 亚洲三级黄色毛片| 久久久亚洲精品成人影院| 中文精品一卡2卡3卡4更新| 最近手机中文字幕大全| 国产精品一二三区在线看| 亚洲三级黄色毛片| 国产成人午夜福利电影在线观看| 日日啪夜夜撸| 久久97久久精品| 内地一区二区视频在线| 女人久久www免费人成看片| 亚洲美女视频黄频| 美女内射精品一级片tv| 亚洲国产精品国产精品| 在线精品无人区一区二区三 | 秋霞在线观看毛片| 欧美人与善性xxx| 最新中文字幕久久久久| 大香蕉97超碰在线| 国产又色又爽无遮挡免| 欧美日韩精品成人综合77777| 欧美成人一区二区免费高清观看| 精品久久久噜噜| 亚洲av欧美aⅴ国产| 国产高清国产精品国产三级 | 久久久久久久久大av| 中文字幕精品免费在线观看视频 | 在线观看免费日韩欧美大片 | 男女下面进入的视频免费午夜| 久久午夜福利片| 99久久精品一区二区三区| 国产精品成人在线| 男男h啪啪无遮挡| 大又大粗又爽又黄少妇毛片口| 久久精品人妻少妇| 青春草亚洲视频在线观看| 亚洲av不卡在线观看| 亚洲精品一二三| 中文欧美无线码| 午夜福利影视在线免费观看| 成人一区二区视频在线观看| 婷婷色综合大香蕉| 婷婷色综合www| 午夜免费观看性视频| 在线观看免费日韩欧美大片 | 街头女战士在线观看网站| 少妇猛男粗大的猛烈进出视频| 久久久a久久爽久久v久久| 亚洲av欧美aⅴ国产| av在线播放精品| 一级爰片在线观看| 国产精品偷伦视频观看了| 春色校园在线视频观看| 人人妻人人爽人人添夜夜欢视频 | 国产一区二区三区av在线| 欧美xxxx黑人xx丫x性爽| 日韩一区二区视频免费看| 一区在线观看完整版| 春色校园在线视频观看| 国产av一区二区精品久久 | 欧美日韩国产mv在线观看视频 | 2018国产大陆天天弄谢| 亚洲成人一二三区av| 黄色日韩在线| 日韩av免费高清视频| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 91久久精品国产一区二区三区| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 91在线精品国自产拍蜜月| 联通29元200g的流量卡| 日本午夜av视频| 亚洲精品日本国产第一区| 亚洲久久久国产精品| 亚洲一级一片aⅴ在线观看| 三级国产精品片| 国产白丝娇喘喷水9色精品| 亚洲欧洲日产国产| 晚上一个人看的免费电影| 肉色欧美久久久久久久蜜桃| 男女国产视频网站| 精品亚洲乱码少妇综合久久| 婷婷色麻豆天堂久久| 午夜福利影视在线免费观看| 亚洲久久久国产精品| 国产男人的电影天堂91| 欧美日韩亚洲高清精品| 亚洲av日韩在线播放| 啦啦啦中文免费视频观看日本| 国产高清三级在线| 2022亚洲国产成人精品| 亚洲综合精品二区| 欧美日本视频| 成人国产麻豆网| 国产黄色视频一区二区在线观看| 女性生殖器流出的白浆| 成人特级av手机在线观看| 特大巨黑吊av在线直播| 一级毛片黄色毛片免费观看视频| xxx大片免费视频| 热99国产精品久久久久久7| 一级毛片aaaaaa免费看小| 中文欧美无线码| 亚洲aⅴ乱码一区二区在线播放| 九九爱精品视频在线观看| 国产成人精品福利久久| 久久久久久伊人网av| 美女cb高潮喷水在线观看| 日韩欧美一区视频在线观看 | 我的老师免费观看完整版| 精品午夜福利在线看| 国产精品久久久久久精品电影小说 | 中文资源天堂在线| 久久精品国产自在天天线| 欧美日韩国产mv在线观看视频 | www.色视频.com| 热99国产精品久久久久久7| 99热这里只有是精品50| 交换朋友夫妻互换小说| 青青草视频在线视频观看| 久久久久久人妻| 身体一侧抽搐| 欧美另类一区| 在线亚洲精品国产二区图片欧美 | 最近中文字幕高清免费大全6| 国产精品久久久久久精品古装| 国产在线免费精品| 国产精品国产三级国产av玫瑰| 国产黄色视频一区二区在线观看| 亚洲av中文字字幕乱码综合| 国产精品偷伦视频观看了| 丰满人妻一区二区三区视频av| 亚洲精品国产av成人精品| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 午夜福利视频精品| 国产乱人偷精品视频| 久久精品国产亚洲av涩爱| 日本vs欧美在线观看视频 | 简卡轻食公司| 内射极品少妇av片p| 亚洲美女视频黄频| 在线 av 中文字幕| 在线播放无遮挡| 草草在线视频免费看| 亚洲成人一二三区av| 亚洲激情五月婷婷啪啪| 亚洲精品国产av成人精品| 免费大片黄手机在线观看| 国产精品欧美亚洲77777| 又黄又爽又刺激的免费视频.| 精品国产乱码久久久久久小说| 色婷婷久久久亚洲欧美| 五月开心婷婷网| 日本猛色少妇xxxxx猛交久久| 女的被弄到高潮叫床怎么办| 日本-黄色视频高清免费观看| 国产视频首页在线观看| 18禁动态无遮挡网站| 中文天堂在线官网| 人人妻人人添人人爽欧美一区卜 | 人人妻人人看人人澡| 国产一区二区在线观看日韩| 精品人妻熟女av久视频| 女性生殖器流出的白浆| 国产亚洲最大av| 亚洲精品乱码久久久v下载方式| av天堂中文字幕网| 亚洲国产欧美人成| 免费黄网站久久成人精品| 插逼视频在线观看| 黑人猛操日本美女一级片| 久久韩国三级中文字幕| 中文字幕久久专区| 高清日韩中文字幕在线| 久久99热6这里只有精品| 十八禁网站网址无遮挡 | 少妇人妻 视频| 亚洲人与动物交配视频| 精品少妇黑人巨大在线播放| 久久久久视频综合| 韩国高清视频一区二区三区| 性高湖久久久久久久久免费观看| 国产一区亚洲一区在线观看| 人妻系列 视频| av天堂中文字幕网| 国国产精品蜜臀av免费| 久久精品国产鲁丝片午夜精品| 国产精品一区二区性色av| 综合色丁香网| 一个人免费看片子| 亚洲精品自拍成人| 国产免费视频播放在线视频| 秋霞伦理黄片| 精品一区二区免费观看| 免费看av在线观看网站| 欧美xxⅹ黑人| 国产av国产精品国产| 在线观看免费视频网站a站| 观看av在线不卡| 最近2019中文字幕mv第一页| 免费观看av网站的网址| 午夜免费鲁丝| 乱码一卡2卡4卡精品| 在线观看免费日韩欧美大片 | av福利片在线观看| 男女国产视频网站| 极品教师在线视频| 国产精品一区二区性色av| 日本爱情动作片www.在线观看| 国产色爽女视频免费观看| av在线观看视频网站免费| 一本久久精品| 老女人水多毛片| 自拍偷自拍亚洲精品老妇| 亚洲av免费高清在线观看| 国产毛片在线视频| 亚州av有码| 特大巨黑吊av在线直播| 中文天堂在线官网| 久久国产亚洲av麻豆专区| 香蕉精品网在线| 国内少妇人妻偷人精品xxx网站| 国产黄片视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 久久久久久久久大av| 国产亚洲一区二区精品| 亚洲欧美一区二区三区黑人 | 国产成人a区在线观看| 亚洲精品日韩在线中文字幕| 美女福利国产在线 | 狂野欧美激情性bbbbbb| 亚洲国产日韩一区二区| 日日撸夜夜添| 国产美女午夜福利| 网址你懂的国产日韩在线| 国产男人的电影天堂91| 超碰97精品在线观看| av.在线天堂| 国产精品女同一区二区软件| 最近最新中文字幕大全电影3| 亚洲激情五月婷婷啪啪| 亚洲精品久久午夜乱码| 99久久精品一区二区三区| 有码 亚洲区| 国产av一区二区精品久久 | 欧美成人精品欧美一级黄| 观看av在线不卡| 亚洲av综合色区一区| 人妻夜夜爽99麻豆av| 在线观看免费高清a一片| 另类亚洲欧美激情| www.色视频.com| 午夜激情福利司机影院| 黑丝袜美女国产一区| 色视频在线一区二区三区| 99热这里只有是精品50| 久久99精品国语久久久| 中文字幕精品免费在线观看视频 | 老女人水多毛片| 亚洲精品乱码久久久久久按摩| videossex国产| 午夜免费男女啪啪视频观看| 免费播放大片免费观看视频在线观看| 熟女人妻精品中文字幕| av天堂中文字幕网| 免费观看无遮挡的男女| 高清视频免费观看一区二区| 日本猛色少妇xxxxx猛交久久| 久久久久久久国产电影| freevideosex欧美| 亚洲欧美一区二区三区国产| 久久久久久九九精品二区国产| 国产精品熟女久久久久浪| 免费av不卡在线播放| 久久6这里有精品| 亚洲人成网站在线观看播放| 99久久精品热视频| 欧美日韩亚洲高清精品| 国产一区二区三区av在线| 免费在线观看成人毛片| 日韩av不卡免费在线播放| 亚洲va在线va天堂va国产| 亚洲性久久影院| 黑人高潮一二区| 亚洲av在线观看美女高潮| 亚洲精品久久久久久婷婷小说| 好男人视频免费观看在线| 91狼人影院| 午夜免费鲁丝| 国产成人午夜福利电影在线观看| 亚洲精品乱久久久久久| 亚洲av综合色区一区| 中文天堂在线官网| 一二三四中文在线观看免费高清| 日本黄色日本黄色录像| 少妇被粗大猛烈的视频| 久久久久国产精品人妻一区二区| 国产免费福利视频在线观看| 18禁在线无遮挡免费观看视频| 久久久久国产网址| 国产高清国产精品国产三级 | 日日啪夜夜撸| 国产v大片淫在线免费观看| 九九在线视频观看精品| 午夜福利影视在线免费观看| 亚洲久久久国产精品| 激情五月婷婷亚洲| 国产高清三级在线| 日日撸夜夜添| 熟妇人妻不卡中文字幕| 国产极品天堂在线| 亚洲欧美中文字幕日韩二区| 精品熟女少妇av免费看| 视频中文字幕在线观看| 小蜜桃在线观看免费完整版高清| 哪个播放器可以免费观看大片| 麻豆成人午夜福利视频| 亚洲电影在线观看av| 久久国产亚洲av麻豆专区| 在线精品无人区一区二区三 | 国产精品久久久久久精品古装| 国产黄色免费在线视频| 日韩一区二区三区影片| 亚洲精品,欧美精品| 性色av一级| 91aial.com中文字幕在线观看| 国产乱来视频区| 亚洲av中文av极速乱| 建设人人有责人人尽责人人享有的 | 亚洲最大成人中文| 91在线精品国自产拍蜜月| 高清视频免费观看一区二区| 久久综合国产亚洲精品| 99国产精品免费福利视频| 一级毛片久久久久久久久女| 99re6热这里在线精品视频| 人人妻人人添人人爽欧美一区卜 | 精品人妻偷拍中文字幕| 国产 精品1| 亚洲精品视频女| 久久久久国产精品人妻一区二区| 男女啪啪激烈高潮av片| 51国产日韩欧美| 这个男人来自地球电影免费观看 | 国产片特级美女逼逼视频| 久久久久久久久久久免费av| 国产综合精华液| 91精品一卡2卡3卡4卡| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站高清观看| 国产精品一及| 国产 一区 欧美 日韩| www.色视频.com| 一个人免费看片子| 黑人高潮一二区| 亚洲第一av免费看| 日本猛色少妇xxxxx猛交久久| 色5月婷婷丁香| 嫩草影院入口| 永久网站在线| 在线 av 中文字幕| 国产高潮美女av| 麻豆成人午夜福利视频| 成人毛片60女人毛片免费| 精品一区二区三区视频在线| 成人毛片60女人毛片免费| 亚洲欧美一区二区三区国产| 国产精品国产三级专区第一集| 99热这里只有是精品在线观看| 亚洲一区二区三区欧美精品| 麻豆成人午夜福利视频| 1000部很黄的大片| av女优亚洲男人天堂| 欧美亚洲 丝袜 人妻 在线| 香蕉精品网在线| 国产精品av视频在线免费观看| 伊人久久国产一区二区| 亚洲av福利一区| 18+在线观看网站| 综合色丁香网| 成人亚洲欧美一区二区av|