• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient and stable wireless power transfer based on the non-Hermitian physics

    2022-01-23 06:37:12ChaoZeng曾超ZhiweiGuo郭志偉KejiaZhu??杉?/span>CaifuFan范才富GuoLi李果JunJiang江俊YunhuiLi李云輝HaitaoJiang江海濤YapingYang羊亞平YongSun孫勇andHongChen陳鴻
    Chinese Physics B 2022年1期
    關(guān)鍵詞:李果亞平海濤

    Chao Zeng(曾超) Zhiwei Guo(郭志偉) Kejia Zhu(??杉? Caifu Fan(范才富)Guo Li(李果)Jun Jiang(江俊) Yunhui Li(李云輝)Haitao Jiang(江海濤)Yaping Yang(羊亞平) Yong Sun(孫勇) and Hong Chen(陳鴻)

    1MOE Key Laboratory of Advanced Micro-structured Materials,School of Physics Sciences and Engineering,Tongji University,Shanghai 200092,China

    2Department of Electrical Engineering,Tongji University,Shanghai 201804,China

    3School of Automotive Studies,Tongji University,Shanghai 210804,China

    Keywords: wireless power transfer,non-Hermitian physics,topological edge states

    1. Introduction

    Magnetic resonance wireless power transfer(WPT)technologies proposed by Kurset al.[1]have been one of the most fascinating areas of energy transfer in recent years. The key components of such a scheme are two coupled resonance coils,where one of them provides energy input (transmitter) and the other receives energy to the load(receiver).[1]Up to now,WPT has been intensively investigated in a variety of applications such as medical implanted devices, electric vehicles,drones, portable electronic devices and so on.[2-6]However,the transfer efficiency in the system of resonance WPT is sensitive to the variation of the coupling condition. On the one hand, the strong magnetic coupling between resonance coils always leads to the splitting of working frequency, which seriously reduces the stability of the devices. On the other hand,the transfer distance strongly depends on the size of the coils.Normally,once the transfer distance is larger than the radius of the coils,the transmission efficient will decrease significantly.In order to obtain the stable and efficient energy transfer,many controlled strategies were proposed based on stability analysis of such WPT systems. For example, an impedance matching method for automatically matching the impedance between transmitter,receiver and power source is proposed. When the coupling distance changes, the reduction of the power transmission efficiency can be effectively avoided.[7,8]Another method is a working frequency tracking scheme, which can track the maximum efficiency point dynamically according to different coupling conditions.[9,10]These methods have been proved to be effective for optimizing the transferred efficiency in electric circuit.However,these circuit-based research methods have some limitations and could not provide clear physical pictures for people to understand some interesting and important phenomena in WPT system. For example, why does the transfer efficiency decrease rapidly(frequency splitting)when the transfer distance is greater (less) than the critical transfer distance and how to realize efficient long-range[11,12]or directional[13,14]energy transfer?

    Very recently, the interaction between coupling (coherent effect) and gain/loss (incoherent effect) in the non-Hermitian system has shown many interesting and unexpected features.[15]In particularly, parity-time (PT) symmetry and exceptional points(EPs)associated with phase transition drawn from non-Hermitian physics have attracted considerable attention.[16-18]From the perspective of non-Hermitian photonics, the coherent and incoherent effects compete and coexist in the WPT system. Especially,it can undergo a phase transition that restores the broken symmetry. When the transfer distance is small, the coherent effect is dominant in this strong coupling region,which leads to the working frequency splitting. On the contrary,when the transfer distance is large,the WPT system corresponds to the weak coupling region(broken phase) of the non-Hermitian physical model. As a result,the transfer efficiency decreases rapidly as the transfer distance increases. Non-Hermitian physics can clearly show the limitations of the current WPT system,and provide a new way to solve the difficulties of previous designs.[3-6,19]

    In this review,we mainly introduce our latest progress in resonance WPT based on non-Hermitian physics.In Section 2,based on the coupled-mode theory, we establish a bridge between open WPT system and PT symmetry in non-Hermitian system,and show that stable power transfer states correspond to the real eigenvalues of the effective Hamiltonian. The frequency splitting in the strong coupling region and the significantly reduced efficiency after passing the critical coupling point are explained clearly by the phase diagram of PT symmetry. In Section 3,we introduce that for a non-ideal secondorder PT symmetric system of the non-Hermitian physics with unbalanced effective gain and loss,there is a special state with real eigenvalue (i.e., bound state in the continuum, BIC) in the broken phase. At the fixed frequency of BIC, efficient and stable WPT can be realized. Furthermore, based on the high-order PT symmetry of non-Hermitian physics,the thirdorder PT symmetric WPT system is presented, which can be used to achieve stable and efficient WPT without frequency tracking and idle power loss remains low. In second part of Section 4, combining the edge state of a topological chain and non-Hermitian physics,the long-range WPT devices with topological properties are introduced. This topological WPT inherits the physical properties of the edge states and has good electromagnetic compatibility because it is immune to impurities and perturbations. Finally,Section 5 summarizes the conclusions of this review.

    2. Non-Hermitian properties of the resonance WPT

    Fig.1. Scheme of a standard magnetic resonance WPT system. Transmitter and receiver coils are resonant coils. Source and load coils are non-resonant coils. γ1 (γ2) represents the coupling strength between source (load) and transmitter(receiver)coils. κ denotes the coupling strength between transmitter and receiver coils.

    Let us start with a standard magnetic resonance WPT system of four-coil configuration. It is composed of the two resonant coils (i.e., transmitter and receiver coils) and two nonresonant coils(i.e., source and load coils), which is shown in Fig.1. When a continuous harmonic waves1+=S1+e-iωtat a real frequencyωis fed into the WPT system, the coupledmode equations for the system are presented as[19]H11=ω0+iγ1,H22=ω0-iγ2,andH12=H21=κ. Comparing Eq. (3) with the Schr¨odinger equation, one can find thatHcan be regarded as the effective Hamiltonian of the system.It is worth noting that the coefficient ofa1has changed from-iγ1in Eq.(1)to iγ1in Eq.(3)under the zero-reflection condition. In this case, the resonator modea1has an effect gainγ1, which comes from the external environment (the incident waves) instead of the actual gain material. Whenγ1=γ2is satisfied,His invariant under the joint action of the parity(H11?H22,H12?H21) and time reversal (i→-i) operators. Therefore, the traditional resonance WPT systems with symmetric configuration can be treated as a second-order PT symmetric system under zero-reflection condition.[23]

    By solving|H-ωI|=0(whereIis an identical matrix),eigenfrequencies of the effective Hamiltonian in Eq.(4)can be obtained as

    Fig. 2. Eigenfrequencies of resonant two-coil WPT systems with ideal PT symmetry(γ1=γ2).

    Analyzing the eigenfrequencies of the effective Hamiltonian could reveal the physics of PT symmetry in WPT system.For the standard symmetric configuration (γ1=γ2=γ), the WPT system meets the requirement of an ideal second-order PT symmetry. In Fig. 2, the transition of the PT symmetry from exact PT phase to PT broken phase is labeled by the gradient color from orange to blue. The exact PT symmetric phase of the second-order system corresponds to the strongly coupled region of the WPT system (κ>γ), whose eigenfrequencies are purely real.[24,25]If the WPT system works at a pure real eigenfrequency, the optimal efficiency transfer can be achieved. However,these eigenfrequencies are very sensitive to the change of the coupling strengthκ, which directly depends on the coupling distance between the transmitter and receiver coils. Especially,when the transfer distance is small,the coherent effect is dominant in this strong coupling region,which leads to the working frequency splitting. But when the transfer distance is large,the WPT system corresponds to the weak coupling region (broken phase) of the non-Hermitian physical model, thus the transfer efficiency decreases rapidly as the transfer distance increases. Therefore, non-Hermitian physics can clearly explain the experimental results of the current resonance WPT systems.[26]Moreover,non-Hermitian physics can also be used to solve some key difficulties of previous designs. From Fig. 2, one can see that when the transmission distance changes,the pure real eigenvalues of the effective Hamiltonian in the non-Hermitian system will change.In order to achieve good transmission,the working frequency of the resonant WPT system needs to change accordingly.[19]Recently,Assawaworraritet al.[19]and Zhouet al.[3]have proposed a nonlinear PT-symmetric system,which automatically tracks the real eigenfrequency through the nonlinear saturable gain to ensure robust WPT. In addition, the PT symmetric broken phase region in Fig. 2(a) corresponds to the weakly coupled region of the WPT system (κ<γ). In this case,the imaginary part of the eigenfrequencies increases sharply with the coupling distance, which leads to the instability of the WPT system, that is, the transfer efficiency will decrease drastically with the increase of the coupling distance. Therefore,the critical transfer distance of the WPT system is determined by the PT phase transition pointκ=γ(also known as the second-order EP) at which the two eigenfrequencies collapse. Although the WPT system can operate under EP with fixed frequency, such a scheme would be extremely difficult in practical implementation due to the intrinsic sensitivity of EP.[18]

    3. Stable and efficient WPT system based on PT symmetry

    3.1. Two-coil WPT system based on non-ideal secondorder PT symmetry

    In order to solve the problems of frequency splitting in the PT symmetric phase and the sensitivity of the EP point,a valuable question naturally arises: is it possible to find a fixed real eigenfrequency in the PT symmetric broken phase to achieve stable energy transmission? In addition, this scheme can be used to improve the transfer distance. As introduced in the above section, the transfer distance of resonance WPT in the PT symmetric broken phase could also be extended beyond the critical transfer distance determined by EP (κ=γ).For a non-ideal PT-symmetry (γ1/=γ2) WPT system withκ<κc=(γ1+γ2)/2,the imaginary part of the eigenfrequency is split into two branches, and one of them will pass through the real frequency axis when the relationshipκ2=γ1γ2is met,as shown in Fig. 3. Although there is no a whole purely real branch in the phase diagram of non-ideal PT symmetry, this critical relationship could ensure a real eigenfrequencyω0of the system. It should be point out that this solution cannot be found in the previous non-Hermitian system without gain except for the caseκ=0.

    Under the circumstance of non-ideal PT-symmetry,Eq.(5)can be rewritten as

    Fig.3. Eigenfrequencies of resonant two-coil WPT systems with non-ideal PT symmetry(γ1/=γ2).

    3.2. Three-coil WPT system based on third-order PT symmetry

    From Fig. 3 in Subsection 3.1, we can see that the real eigenfrequency in the non-ideal PT symmetry system corresponds to a point in the parameter space of PT phase diagram.In order to maintain a stable power transfer, people need to adjustγ2according to the coupling strengthκ. In this section,we will introduce a stable and efficient WPT based on the third-order PT symmetry of non-Hermitian system, in which the working frequency(real eigenfrequency)does not depend on the coupling strength. At present, it has been proved that the three-coil system with the insertion structure of a relay coil,[30-34]metamaterials[35-39]or metsurfaces[40-43]between the transmitter and receiver coils can improve the transmission distance compared with WPT system with two coils. Similar to treating the resonant two-coil system as a second-order PT symmetric system, one can also deal with a three-coil WPT system using the third-order PT symmetry.[44]As shown in Fig.4(a),the system’s effective Hamiltonian is

    Here,κ12(κ23)is the coupling strength between the transmitter(relay)and relay(receiver)coils. When the intrinsic loss Γ(due to absorption or radiation)of the resonant coil is negligible andκ12=κ23=κ,the ideal third-order PT symmetry can be established. For example,Sakhdariet al.tune the values of the two coupling strengths equally by rotating the transmitter coil with a feedback algorithm.[45]By solving the characteristic equation|ωI-H′|=0,the eigenfrequencies are obtained as follows:

    Theoretical and experimental results show that, at the fixed frequency, the efficiency stability of the third-order PT symmetric WPT system is significantly superior to that of the second-order PT symmetry, as shown in Fig. 4(c). This three-coil system is further extended to WPT with miniaturized receivers as an example,which shows stable transfer efficiency with a wide range of axial transfer distance and lateral misalignment.[40]Besides, the idle (in idle state without receiver terminals) power loss of this three-coil WPT system is also very low [see Fig. 4(d)], benefiting wireless charging intermittently. Considering utilizing higher-order(N>4)PT symmetry for WPT system, we can predict that the oddorder (N= 2m+1,mis a positive integer) resonant coils will show more stable transfer performance than that of evenorder (N= 2m) resonant coils because there is a couplingindependent entirely real eigenfrequency.

    Fig.4.(a)Schemes of three-coil WPT system with third-order PT symmetry.(b)The real(left)and imaginary(right)eigenfrequencies of third-order PT symmetric systems. (c)Transfer efficiency versus distance in three-coil(red)and two-coil(black)WPT systems at fixed operating frequency.(d)Idle power losses versus frequency in three-coil(red)and two-coil(black)WPT systems.[44]

    4. Non-Hermitian topological dimer chain for long-range robust WPT

    With the development of WPT devices, the efficient long-range and robust WPT is highly desirable but also challenging.[46-49]Recently, the possibility of obtaining photonic topological modes that are robust against perturbations by mimicking the topological properties of solid state system,has brought a profound impact on optical sciences.[50,51]In particular, topological non-Hermitian systems provide an effective avenue for studying the intriguing properties of topological structures involving PT symmetry and developing new wave functional devices.[52]For example, using the EP of a non-Hermitian dimer chain, a new sensor that is sensitive to perturbation of on-site frequency at the end of the structure and yet topologically protected from internal perturbation of site-to-site couplings is realized.[53]In this section, we introduce the topological dimer chain with effective PT symmetry,which is composed of the topological edge modes(TEMs)and topological interface modes (TIMs), can be used to the long-range WPT.Especially,this topological WPT inherits the physical properties of topological modes and has good electromagnetic compatibility because it is immune to impurities and perturbations.

    In 2018, Jianget al.firstly proposed that the nontrivial dimer chain will provide a suitable platform for the study of robust WPT in the RF regime.[54]The photonic topological dimer chain is inspired by the basic topological Su-Schrieffer-Heeger (SSH) model in condensed-matter physics.[55]Specially, based on the dimer chain composed of split-ring-resonators, the robustness of edge states,[54]topological invariant,[56]and the coupling between two SSH chains[57]have been demonstrated in recent years. The topological dimer chain on the long-range WPT with immunity to disturbance is of great significance in science and technology.Very recently,the physical mechanism of the effective second order PT system with TEMs in the dimer chain is analyzed and corresponding experiments are carried out to verify the long-range WPT.[58-60]Moreover, in order to solve the special technical problems of standby power loss and frequency tracking, Ref. [59] uncovered that an optimized topological WPT system with effective third-order PT symmetry, which is constructed by using one TIM and two TEMs, as shown in Fig. 5(a). The measured reflection spectra of the topological dimer chain with effective third-order PT symmetry under working and standby states are shown in Figs. 5(b) and 5(d),respectively. It should be noted that the reflection is not zero due to the influence of intrinsic loss. Nevertheless, the maximum value of transmission efficiency still corresponds to the real eigenvalue calculated theoretically. Figures 5(b) and 5(d)clearly show that the refection of the chain under working(standby)state is low(high)at the reference frequency,which means the standby power loss of the topological dimer chain with effective third-order PT symmetry is small.[59]Furthermore, in order to intuitively show the characteristics of low standby power loss in the topological WPT system with effective third-order PT symmetry,a source coil is placed at the left end of the chain and both ends of the chain are equipped with an LED lamp. One can see that two LED lamps will be lit up at the working state, as shown in Fig. 5(c). However,two LED lamps remain dark at the reference frequency for the standby state, as shown in Fig.5(e). Therefore, the small standby power loss of the topological dimer chain with effective third-order PT symmetry is demonstrated in Figs.5(c)and 5(d). Although TEMs and TIMs can be used for robust WPT with topological protection and can be immune to purities and perturbations,once the topological edge is totally broken,the topology WPT will be destroyed. In this case,the topological WPT is disappearing.

    Fig.5. (a)Scheme of a multi-coil WPT system based on the effective third-order PT symmetry in a composite topological dimer chain,which is formed by the interaction of the three topological modes, including two TEMs at two ends of the chain and one TIM at the center of the chain.(b) Measured reflection spectrum of the topological dimer chain with effective third-order PT symmetry. (c) Experimental demonstration of the topological WPT of topological dimer chain with effective third-order PT symmetry by lighting two LED lamps at two ends of the chain. (d),(e)Similar to(b),(c),but for the standby state of the topological WPT with third-order PT symmetry.[59]

    Overall,this WPT technology has many advantages in the field of long-range WPT: (1) There is low idle power loss,which can avoid the risk of burning the circuit due to excessive no-load power, thus greatly increasing safety and stability of the WPT system. (2) Stable and efficient transfer can always be realized at a fixed working frequency, which promotes practicability of WPT system. (3) This topological WPT system is realized by TEMs and TIMs,which has topological protection and is insensitive to internal perturbations and structural errors. The rise of topological photonics provides a powerful tool for near-field robust control of WPT.In addition to the properties of robustness and long-range, the robust directional WPT has been demonstrated using asymmetric topological edge states.[61,62]Especially, the realization of actively tuned TEMs in the topological quasiperiodic chain will open up a new avenue in the dynamical control of robust long-range WPT.[62]Although the current topological WPT schemes are mainly based on one-dimensional systems,the concept of topological manipulation can be consulted for higher dimensional system and related WPT devices. Therefore,the investigation in the topological dimer chain provides insightful guidance to exploring the exciting applications associated with topological transport in WPT regime.

    5. Summary and outlook

    This paper reviews some advances in stable and efficient WPT based on non-Hermitian physics, including using the bound states in the continuum of the two-coil WPT system with non-ideal second-order PT symmetry and resorting to the three-coil WPT system with third-order PT symmetry. Moreover, the robust long-range WPT with topological protection is also introduced combing the topological photonics and non-Hermitian physics. In a word,non-Hermitian physics not only provides new perspective to understand the abundant and interesting phenomena in the advanced resonance WPT,but also pave the ways for solving some key difficulties of previous designs.

    The WPT system with high-order PT symmetry can significantly enhance the transfer distance. However, due to the use of more resonant coils, the WPT device has a large size.Considering how to introduce the synthetic dimensions[63-65]and build a multi-mode coupled high-order non-Hermitian system in a single coil is the direction of efforts to realize long-distance, efficient and miniaturized WPT devices in the future. In addition, the non-Hermitian system can also be established by asymmetric coupling rather than gain/loss engineering.[66,67]Specially, it is very interesting that all the eigenmodes are localized in the non-Hermitian system with asymmetric coupling, which are promising for efficient and robust WPT independent on the working frequency.

    Acknowledgements

    This research was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301101), the National Natural Science Foundation of China (Grant Nos. 91850206, 61621001, 2004284,11674247, and 11974261), Shanghai Science and Technology Committee, China (Grant Nos. 18JC1410900 and 18ZR1442900), the China Postdoctoral Science Foundation(Grant Nos. 2019TQ0232 and 2019M661605), the Shanghai Super Postdoctoral Incentive Program, and Fundamental Research Funds for the Central Universities,China.

    猜你喜歡
    李果亞平海濤
    那年的盛夏沒(méi)有果實(shí)
    上海故事(2023年2期)2023-05-30 10:48:04
    軍事文摘(2022年20期)2023-01-10 07:19:44
    高空跳傘
    羅海濤作品
    國(guó)畫家(2022年3期)2022-06-16 05:30:06
    琴聲起(微小說(shuō))
    Effect of blade shape on hydraulic performance and vortex structure of vortex pumps *
    孔亞平和她的三個(gè)夢(mèng)
    李果
    通過(guò)反思尋求最優(yōu)解
    南海隨筆
    草原(2016年1期)2016-01-31 21:21:51
    夜夜夜夜夜久久久久| 偷拍熟女少妇极品色| 精品人妻视频免费看| 在线免费观看的www视频| 91久久精品国产一区二区三区| 在线观看美女被高潮喷水网站| 久久午夜亚洲精品久久| 校园春色视频在线观看| 韩国av一区二区三区四区| 一个人看的www免费观看视频| 成人国产一区最新在线观看| 色吧在线观看| 色吧在线观看| 欧美成人性av电影在线观看| 男插女下体视频免费在线播放| 国产中年淑女户外野战色| 成人二区视频| 中国美白少妇内射xxxbb| 精品福利观看| 黄片wwwwww| 男女边吃奶边做爰视频| 亚洲欧美日韩高清专用| 久久久久久久久久久丰满 | 国产激情偷乱视频一区二区| 欧美xxⅹ黑人| 日日撸夜夜添| 欧美日韩视频高清一区二区三区二| 国内精品宾馆在线| av在线app专区| 国产精品99久久久久久久久| 午夜福利网站1000一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 日本爱情动作片www.在线观看| 在现免费观看毛片| 老熟女久久久| 国产精品一区二区三区四区免费观看| 美女主播在线视频| 日本爱情动作片www.在线观看| 狂野欧美激情性bbbbbb| 国产欧美日韩精品一区二区| 亚洲av日韩在线播放| 成人黄色视频免费在线看| 亚洲国产欧美人成| 久久久久精品性色| 成年女人在线观看亚洲视频| 我的老师免费观看完整版| 亚洲av成人精品一二三区| 深爱激情五月婷婷| 性色av一级| 成人一区二区视频在线观看| 制服丝袜香蕉在线| 亚洲自偷自拍三级| 在线 av 中文字幕| 18禁在线播放成人免费| 久久久成人免费电影| 国产免费视频播放在线视频| 国产日韩欧美亚洲二区| 亚洲欧美一区二区三区黑人 | 久久综合国产亚洲精品| 一区二区三区乱码不卡18| av线在线观看网站| 波野结衣二区三区在线| 日韩大片免费观看网站| av女优亚洲男人天堂| 亚洲三级黄色毛片| 欧美 日韩 精品 国产| 国产免费一区二区三区四区乱码| 一级毛片我不卡| 丝袜脚勾引网站| 国产精品一二三区在线看| 亚洲精品一区蜜桃| 黄色欧美视频在线观看| 国产一区二区三区综合在线观看 | 亚洲欧美成人综合另类久久久| 我的女老师完整版在线观看| 国产精品爽爽va在线观看网站| 毛片一级片免费看久久久久| 黄色视频在线播放观看不卡| 国产大屁股一区二区在线视频| 尾随美女入室| 黄片无遮挡物在线观看| av在线播放精品| 免费黄网站久久成人精品| 亚洲av二区三区四区| 色婷婷av一区二区三区视频| 亚洲精品国产av成人精品| 亚洲人成网站高清观看| 国产成人精品久久久久久| 国产成人精品婷婷| a级毛色黄片| 欧美人与善性xxx| 亚洲成人中文字幕在线播放| 一区二区三区乱码不卡18| 少妇精品久久久久久久| 亚洲真实伦在线观看| 青青草视频在线视频观看| 国产精品久久久久久精品古装| 亚洲在久久综合| av免费观看日本| 久久韩国三级中文字幕| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 观看美女的网站| 特大巨黑吊av在线直播| 肉色欧美久久久久久久蜜桃| 国产高清国产精品国产三级 | 色婷婷av一区二区三区视频| 国产美女午夜福利| 看免费成人av毛片| 久久久久视频综合| 国产精品99久久99久久久不卡 | 精品久久久噜噜| 成人毛片a级毛片在线播放| 夫妻午夜视频| 晚上一个人看的免费电影| 性高湖久久久久久久久免费观看| 五月玫瑰六月丁香| 三级国产精品片| 日韩国内少妇激情av| 日本wwww免费看| 午夜老司机福利剧场| 国产精品麻豆人妻色哟哟久久| 1000部很黄的大片| 亚洲精品久久午夜乱码| 高清毛片免费看| 欧美日韩一区二区视频在线观看视频在线| 伦理电影免费视频| 丝瓜视频免费看黄片| 国产精品久久久久久久电影| 搡老乐熟女国产| 成人二区视频| 午夜福利在线观看免费完整高清在| 啦啦啦在线观看免费高清www| 黄色视频在线播放观看不卡| 色综合色国产| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久精品电影小说 | 久久久成人免费电影| 国内精品宾馆在线| 国产又色又爽无遮挡免| 精品一区二区免费观看| 国产老妇伦熟女老妇高清| 18+在线观看网站| 欧美日韩视频精品一区| 日本一二三区视频观看| 一个人看视频在线观看www免费| 久久精品国产自在天天线| 一级毛片我不卡| 在线观看免费视频网站a站| 久久99精品国语久久久| 午夜福利影视在线免费观看| 麻豆成人av视频| 成人国产麻豆网| av不卡在线播放| kizo精华| 十分钟在线观看高清视频www | 蜜桃亚洲精品一区二区三区| 欧美三级亚洲精品| 啦啦啦中文免费视频观看日本| 极品少妇高潮喷水抽搐| 1000部很黄的大片| 午夜福利视频精品| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 国语对白做爰xxxⅹ性视频网站| av专区在线播放| 国产一区二区三区av在线| 欧美xxxx黑人xx丫x性爽| 男人添女人高潮全过程视频| 婷婷色综合大香蕉| 国产淫片久久久久久久久| 国产又色又爽无遮挡免| 97超视频在线观看视频| 51国产日韩欧美| 亚洲国产日韩一区二区| 日韩av免费高清视频| 久久精品久久久久久久性| 波野结衣二区三区在线| 99九九线精品视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 午夜福利网站1000一区二区三区| 国产综合精华液| 国产在线一区二区三区精| 国产免费福利视频在线观看| 亚洲欧美日韩卡通动漫| 人妻 亚洲 视频| 欧美日韩视频精品一区| 黄色视频在线播放观看不卡| 亚洲成人av在线免费| 国产精品免费大片| 亚洲国产精品国产精品| 黄片无遮挡物在线观看| 国产人妻一区二区三区在| 在线精品无人区一区二区三 | 久久毛片免费看一区二区三区| 日本午夜av视频| 亚洲欧美清纯卡通| 国产真实伦视频高清在线观看| 国产成人免费观看mmmm| 好男人视频免费观看在线| 超碰97精品在线观看| 亚洲av中文字字幕乱码综合| 熟女电影av网| 精品久久久久久电影网| 久久精品久久精品一区二区三区| 国产亚洲一区二区精品| 日韩一区二区视频免费看| 高清黄色对白视频在线免费看 | av又黄又爽大尺度在线免费看| 欧美日韩国产mv在线观看视频 | 国产精品av视频在线免费观看| 观看美女的网站| 久久精品久久久久久久性| 色5月婷婷丁香| 亚洲精品日韩av片在线观看| 欧美精品亚洲一区二区| 亚洲第一区二区三区不卡| 久久综合国产亚洲精品| 国产 一区 欧美 日韩| 欧美日韩一区二区视频在线观看视频在线| 国产一区有黄有色的免费视频| 全区人妻精品视频| 久久人人爽人人爽人人片va| 亚洲欧美一区二区三区国产| 久久精品熟女亚洲av麻豆精品| 大话2 男鬼变身卡| 国产精品三级大全| 三级国产精品片| 亚洲国产精品999| 日韩中字成人| 精品久久久久久久末码| 一级爰片在线观看| 男女啪啪激烈高潮av片| 久久97久久精品| 尤物成人国产欧美一区二区三区| 日本-黄色视频高清免费观看| 免费av中文字幕在线| 妹子高潮喷水视频| 人人妻人人澡人人爽人人夜夜| 七月丁香在线播放| 狂野欧美白嫩少妇大欣赏| 国产精品99久久久久久久久| 哪个播放器可以免费观看大片| 午夜老司机福利剧场| 欧美变态另类bdsm刘玥| 一区在线观看完整版| 最近中文字幕高清免费大全6| 熟妇人妻不卡中文字幕| 老司机影院毛片| 一级片'在线观看视频| 国产视频内射| av福利片在线观看| 大片电影免费在线观看免费| 精品人妻熟女av久视频| 蜜桃在线观看..| 街头女战士在线观看网站| 高清不卡的av网站| 亚洲av成人精品一区久久| 亚洲av欧美aⅴ国产| 亚洲av电影在线观看一区二区三区| 天堂俺去俺来也www色官网| 国产在线男女| 91aial.com中文字幕在线观看| 午夜老司机福利剧场| 黄色欧美视频在线观看| 亚洲av日韩在线播放| 日本猛色少妇xxxxx猛交久久| 免费黄色在线免费观看| 日韩在线高清观看一区二区三区| 身体一侧抽搐| 国产视频首页在线观看| 国产亚洲一区二区精品| 久久精品国产亚洲av涩爱| 哪个播放器可以免费观看大片| av国产精品久久久久影院| 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 99久久中文字幕三级久久日本| 成年人午夜在线观看视频| 午夜视频国产福利| 中文欧美无线码| 最近中文字幕高清免费大全6| 女的被弄到高潮叫床怎么办| 亚洲经典国产精华液单| 国产伦精品一区二区三区四那| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 麻豆成人午夜福利视频| 色5月婷婷丁香| 国产成人91sexporn| 久久精品夜色国产| 精品酒店卫生间| 亚洲伊人久久精品综合| 国产亚洲精品久久久com| 国产亚洲av片在线观看秒播厂| 波野结衣二区三区在线| 最近最新中文字幕免费大全7| 久久久色成人| 国产成人午夜福利电影在线观看| 亚洲精品久久久久久婷婷小说| 啦啦啦视频在线资源免费观看| 国产 一区 欧美 日韩| 国产高潮美女av| a级毛片免费高清观看在线播放| 亚洲成人一二三区av| 国产av精品麻豆| 国产成人精品婷婷| 99热这里只有是精品在线观看| 国产成人精品福利久久| 我的女老师完整版在线观看| 麻豆成人午夜福利视频| 午夜免费男女啪啪视频观看| 国产一区二区三区av在线| 激情 狠狠 欧美| 亚洲av不卡在线观看| 国产av码专区亚洲av| 啦啦啦在线观看免费高清www| 少妇人妻精品综合一区二区| 国产精品99久久久久久久久| 国产一区二区在线观看日韩| 99久久精品国产国产毛片| 久久久久久人妻| 国产精品久久久久久久久免| 久久久久国产网址| 亚洲综合色惰| 美女福利国产在线 | 国产91av在线免费观看| 2022亚洲国产成人精品| 欧美成人一区二区免费高清观看| av专区在线播放| 亚洲国产精品专区欧美| 性色av一级| 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 直男gayav资源| 久久久午夜欧美精品| av不卡在线播放| 伦理电影大哥的女人| 丰满人妻一区二区三区视频av| 我要看黄色一级片免费的| 在线播放无遮挡| www.av在线官网国产| 高清午夜精品一区二区三区| 亚洲综合色惰| 韩国av在线不卡| 看十八女毛片水多多多| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 久久鲁丝午夜福利片| 一本色道久久久久久精品综合| 日本黄色片子视频| 亚洲经典国产精华液单| 久久久精品94久久精品| 男人狂女人下面高潮的视频| 永久网站在线| 最近中文字幕高清免费大全6| 日本欧美视频一区| 婷婷色综合大香蕉| 国产精品久久久久久精品电影小说 | 五月开心婷婷网| 国产精品三级大全| 熟妇人妻不卡中文字幕| 欧美精品一区二区大全| 亚洲高清免费不卡视频| 免费看不卡的av| 色婷婷av一区二区三区视频| 久久精品久久久久久久性| 国产永久视频网站| 亚洲成人手机| 欧美+日韩+精品| 99九九线精品视频在线观看视频| 中文资源天堂在线| 久久综合国产亚洲精品| 99re6热这里在线精品视频| 色视频在线一区二区三区| 99re6热这里在线精品视频| 99九九线精品视频在线观看视频| 国产成人freesex在线| 精品少妇久久久久久888优播| 人人妻人人爽人人添夜夜欢视频 | 久久6这里有精品| 成人高潮视频无遮挡免费网站| 久久97久久精品| 国产精品99久久久久久久久| 高清不卡的av网站| 国产白丝娇喘喷水9色精品| av卡一久久| 成人亚洲精品一区在线观看 | 国产av一区二区精品久久 | 精品亚洲成a人片在线观看 | 日韩在线高清观看一区二区三区| 欧美一区二区亚洲| 精品少妇黑人巨大在线播放| 一级毛片久久久久久久久女| 五月开心婷婷网| 91久久精品国产一区二区成人| 精品少妇黑人巨大在线播放| av卡一久久| 性高湖久久久久久久久免费观看| 久久久久人妻精品一区果冻| 人人妻人人添人人爽欧美一区卜 | 高清毛片免费看| 亚洲欧美一区二区三区黑人 | 日韩精品有码人妻一区| 下体分泌物呈黄色| 国产成人精品福利久久| a级毛片免费高清观看在线播放| 久久久久久久大尺度免费视频| 亚洲一区二区三区欧美精品| 777米奇影视久久| 国产大屁股一区二区在线视频| 国产午夜精品久久久久久一区二区三区| 最近的中文字幕免费完整| 纵有疾风起免费观看全集完整版| 毛片一级片免费看久久久久| a级一级毛片免费在线观看| 七月丁香在线播放| 少妇 在线观看| 色网站视频免费| 国产精品一区二区在线不卡| 久久久a久久爽久久v久久| 国产精品成人在线| 亚洲,一卡二卡三卡| 成年女人在线观看亚洲视频| 九九久久精品国产亚洲av麻豆| 美女高潮的动态| 久久人妻熟女aⅴ| 一二三四中文在线观看免费高清| 久久久久久久亚洲中文字幕| 亚洲精品久久久久久婷婷小说| 国精品久久久久久国模美| 男人添女人高潮全过程视频| 久久久成人免费电影| 久久热精品热| 国国产精品蜜臀av免费| 蜜桃久久精品国产亚洲av| 亚洲av中文av极速乱| 国产在视频线精品| 大香蕉久久网| 美女福利国产在线 | 亚洲精品国产色婷婷电影| 高清视频免费观看一区二区| 亚洲婷婷狠狠爱综合网| 高清黄色对白视频在线免费看 | 国产成人午夜福利电影在线观看| av国产精品久久久久影院| 免费av不卡在线播放| 2021少妇久久久久久久久久久| 欧美精品一区二区大全| 干丝袜人妻中文字幕| 日韩不卡一区二区三区视频在线| 一级爰片在线观看| 我要看日韩黄色一级片| 网址你懂的国产日韩在线| 一本久久精品| 久久久亚洲精品成人影院| 欧美3d第一页| 99热网站在线观看| 人妻 亚洲 视频| 综合色丁香网| 99精国产麻豆久久婷婷| 久久久色成人| 亚洲欧美精品专区久久| 高清在线视频一区二区三区| 男女边吃奶边做爰视频| 日韩,欧美,国产一区二区三区| 日韩欧美精品免费久久| 日韩一本色道免费dvd| 热re99久久精品国产66热6| 久久精品国产自在天天线| 一个人免费看片子| 久久久精品94久久精品| 少妇高潮的动态图| 中文乱码字字幕精品一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲精品乱码久久久v下载方式| 免费不卡的大黄色大毛片视频在线观看| 日韩欧美一区视频在线观看 | 特大巨黑吊av在线直播| 亚洲一级一片aⅴ在线观看| 国产av一区二区精品久久 | 亚洲av中文字字幕乱码综合| 国产av国产精品国产| 在线天堂最新版资源| 欧美xxxx性猛交bbbb| 欧美日韩精品成人综合77777| 亚洲av在线观看美女高潮| 国产亚洲一区二区精品| 男人狂女人下面高潮的视频| 久久久亚洲精品成人影院| 亚洲国产精品成人久久小说| 国产成人精品久久久久久| 亚洲欧美清纯卡通| 九九在线视频观看精品| 91久久精品国产一区二区成人| www.av在线官网国产| 日本爱情动作片www.在线观看| 精品少妇黑人巨大在线播放| 最新中文字幕久久久久| 一本—道久久a久久精品蜜桃钙片| 成人二区视频| av在线观看视频网站免费| 国产精品熟女久久久久浪| 性高湖久久久久久久久免费观看| 亚洲精品久久午夜乱码| 成人高潮视频无遮挡免费网站| 噜噜噜噜噜久久久久久91| 中文字幕人妻熟人妻熟丝袜美| 最黄视频免费看| 亚洲av不卡在线观看| 国内揄拍国产精品人妻在线| 欧美高清性xxxxhd video| 亚洲精品久久久久久婷婷小说| 免费在线观看成人毛片| 欧美精品人与动牲交sv欧美| 国产精品一区www在线观看| 男女边摸边吃奶| 日韩一区二区三区影片| 亚洲精品日韩在线中文字幕| 男人爽女人下面视频在线观看| 两个人的视频大全免费| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 午夜激情久久久久久久| 国产乱人偷精品视频| 五月玫瑰六月丁香| 久久久精品免费免费高清| 亚洲精品乱久久久久久| 最近最新中文字幕大全电影3| 久久久久视频综合| 亚洲人成网站高清观看| 中文精品一卡2卡3卡4更新| 欧美一级a爱片免费观看看| 男女边吃奶边做爰视频| 97超碰精品成人国产| 麻豆国产97在线/欧美| 国产免费又黄又爽又色| 亚洲美女视频黄频| 婷婷色av中文字幕| 男人舔奶头视频| 日韩亚洲欧美综合| av福利片在线观看| 一区二区三区四区激情视频| 高清视频免费观看一区二区| 久久国产亚洲av麻豆专区| 国产男女超爽视频在线观看| 日本一二三区视频观看| 十八禁网站网址无遮挡 | 亚洲性久久影院| 高清日韩中文字幕在线| 狂野欧美激情性bbbbbb| 国产精品一区二区三区四区免费观看| 五月玫瑰六月丁香| 香蕉精品网在线| 欧美精品一区二区大全| av在线播放精品| 在线观看一区二区三区激情| 日本与韩国留学比较| 欧美成人a在线观看| 午夜视频国产福利| 精品一区二区免费观看| 国产乱来视频区| 日本免费在线观看一区| 在线观看美女被高潮喷水网站| 国产精品麻豆人妻色哟哟久久| 少妇人妻一区二区三区视频| 色婷婷久久久亚洲欧美| 九草在线视频观看| 丰满乱子伦码专区| 直男gayav资源| 中文字幕av成人在线电影| 久久6这里有精品| 久久久久久久久久久免费av| 国模一区二区三区四区视频| 熟女av电影| 色婷婷av一区二区三区视频| 建设人人有责人人尽责人人享有的 | 如何舔出高潮| 日韩av在线免费看完整版不卡| 最后的刺客免费高清国语| 亚洲无线观看免费| av免费在线看不卡| 亚洲精品456在线播放app| 欧美精品人与动牲交sv欧美| 97热精品久久久久久| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 免费看日本二区| 国产爱豆传媒在线观看| 亚洲国产最新在线播放| 欧美+日韩+精品| 夫妻午夜视频| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9| 美女高潮的动态| 日韩人妻高清精品专区| 我要看黄色一级片免费的| 伦理电影大哥的女人| 在线观看美女被高潮喷水网站| 亚洲丝袜综合中文字幕| 爱豆传媒免费全集在线观看| 亚洲人成网站在线播| 精品人妻视频免费看| 亚洲欧美一区二区三区国产| av.在线天堂| 欧美xxxx黑人xx丫x性爽| www.av在线官网国产| 天堂8中文在线网| 久久久精品免费免费高清| 亚洲国产欧美在线一区| 乱码一卡2卡4卡精品| 日本wwww免费看| 国产精品蜜桃在线观看| 国产一区二区三区av在线| 日韩一区二区三区影片|