• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers

    2022-01-23 06:35:10XiaoBoHe何小波HuaTianHu胡華天JiBoTang唐繼博GuoZhenZhang張國(guó)楨XueChen陳雪JunJunShi石俊俊ZhenWeiOu歐振偉ZhiFengShi史志鋒ShunPingZhang張順平ChangLiu劉昌andHongXingXu徐紅星
    Chinese Physics B 2022年1期
    關(guān)鍵詞:陳雪華天史志

    Xiao-Bo He(何小波) Hua-Tian Hu(胡華天) Ji-Bo Tang(唐繼博) Guo-Zhen Zhang(張國(guó)楨)Xue Chen(陳雪) Jun-Jun Shi(石俊俊) Zhen-Wei Ou(歐振偉) Zhi-Feng Shi(史志鋒)Shun-Ping Zhang(張順平) Chang Liu(劉昌) and Hong-Xing Xu(徐紅星)

    1School of Physics and Technology,Center for Nanoscience and Nanotechnology,

    and Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education,Wuhan University,Wuhan 430072,China

    2Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonic Devices,School of Physics and Electronics,Shandong Normal University,Jinan 250014,China

    3The Institute for Advanced Studies,Wuhan University,Wuhan 430072,China

    4Key Laboratory of Materials Physics of Ministry of Education,School of Physics and Microelectronics,

    Zhengzhou University,Zhengzhou 450052,China

    Keywords: electroluminescence, plasmonics, inelastic electron tunneling, multilayer insulator, atomic layer deposition

    1. Introduction

    Light emission by inelastic tunneling (LEIT) through a tunnel junction can offer unique opportunities to realize ultrafast electrical-optical-signal transduction,[1,2]which can generate light below the diffraction limit and provide potential applications in nanoscale biosensing,[3,4]optical communication,[5]and integrated photonics circuits.[6]First demonstrated by Lambe and McCarthy in 1976,[7]the tunneling electrons in a planar metal-insulator-metal(MIM)tunnel junction will excite the surface plasmons and may subsequently decay into far-field photons. This luminescence process is in principle ultrafast because the timescale for an electron tunneling through the junction proves to be on the order of 10 fs (the excitation process), and the lifetime of an emitter in the nanogap can be shortened to tens of fs(the emission process).[8,9]This phenomenon is then used to visualize the local density of states in scanning tunneling microscopes[10-13]until recently it has received considerable renewed interest in electrically-driven optical antennas.[14,15]Significant advances have been made since then,including the improvement of the emission efficiency,[16,17]radiation directionality,[18]and spectra shape[19-21]of the MIM tunnel sources. The stability of an LEIT device, a key operation figure of merit, depends significantly on the fabrication of the tunnel barrier.Till now, a highly stable tunnel barrier has relied mainly on the synthesis of a dense insulator layer between the biased metal structures,by,e.g.,thermal oxide,[22]exfoliated hexagonal boron nitride,[23]or self-assemble molecules.[24]However, these methods are either hard to control the thickness(oxidization) or incompatible with the modern microfabrication streamline,hindering the LEIT devices from being manufactured and put into practical applications.

    Atomic layer deposition(ALD)is a well-developed technique of depositing thin films in microelectronics,[25,26]lightemitting diodes,[27]hot-electron electrochemistry,[28]and diffusion barrier coatings with low gas permeability.[29]The uniqueness of ALD in these applications is attributed to its ability to grow the uniform,pinhole-free,and nanometer-thick insulator layers.[30,31]However,the operation of LEIT devices with a single Al2O3layer grown by ALD is unstable under ambient condition due to the formation of grains and defects during the growing process.[32]Therefore, it is necessary to obtain high-quality tunnel insulators by ALD so that the fabrication of LEIT devices is fully compatible with microfabrication techniques.

    2. Method

    2.1. Device fabrication

    Electrically driven plasmonic gratings are fabricated on Si/SiO2substrate. The thickness of the SiO2layer is 300 nm that can efficiently reduce the leak current. The bottom Au electrode is prepared by a series of fabrication steps,including EBL, reaction-ion etching (RIE, using CHF3gas flow), and thermal evaporation of Au film(50 nm). After lift-off,the O2plasma treatment process in an RIE is used to generate the high hydroxyl density substrate,in which the treatment power is 50 W and the treatment time is 1 min. The treated sample is then grown on the multiple insulator layers by ALD at a temperature of 150°C. Then, the top gratings are prepared by the EBL, Au evaporation, and lift-off. The details of the fabrication process are shown in the supporting information,Fig.S1.

    2.2. Electrical and optical characterization

    For electrical measurements, two tungsten probes with 10-μm diameter are used to contact the Au electrodes with a sourcemeter(Keithley 2634B).The parameters are 5 NPLC(number of power line cycles) for the analog-to-digital converter,integration times of 1 s,and the current using the automatic range switch. The EL images are recorded by an optical microscope (Olympus BX51) equipped with a 50× long working distance objective (NA = 0.5) and a CCD camera(DVC 710M-00-MW).The emission spectrum is collected by a spectrometer(Andor 550i,150 lines/mm blazing at 800 nm)and detected by the EMCCD (Andor Newton). The reflection spectrum is collected by a home-built microscope using a 100×objective(NA=0.9)and the diameter of the white light spot is 2μm.

    2.3. Electromagnetic simulations

    Full wave electromagnetic simulations are carried out by commercial FEM software (COMSOL Multiphysics, V5.2a).A two-dimensional model is established by considering the grating positioned on the top of an Au film. The permittivity of Au is cited from the Johnson and Christy.[40]The insulator gaps within the structures have a thickness of 4.0 nm and a refractive index of 2.05.

    3. Experiment and results

    In this work, we fabricate an LEIT device with uniform light emission and a long working lifetime under ambient condition, by optimizing the composition during the ALD growth. For the first time, we grow alternative insulator layers (TiO2-Al2O3-TiO2-Al2O3) as the tunnel barrier,in a fully microfabrication-compatible manner. Our devices can be stored for a long time (several weeks) and the tunneling current keeps stable for intermittent measurements from hours to days. The light emission is uniform in the entire active region, and the emission spectra can be controlled by a plasmonic grating. Our study demonstrates that the multilayer insulators grown by ALD enable a stable and uniform LEIT device. Furthermore, the composite tunnel barrier may also provide an additional degree of freedom for the band structure of the tunnel barrier[33,34]or find applications in other ultrafast electro-optical circuits. Figure 1(a) shows the schematic of an LEIT device. It consists of a square bottom Au electrode, alternate insulator (TiO2-Al2O3) layers, and a top Au plasmonic grating simultaneously serving as a coupler for light and a positive electrode. The bottom Au electrode and the top plasmonic grating are prepared by electron beam lithography(EBL),and both layers are 50-nm thick.The grating is aligned accurately to the bottom square electrode during the exposure.Thealternate insulator layers are deposited by ALD,including 18 cycles(0.8 nm)of TiO2,8 cycles(0.8 nm)of Al2O3,18 cycles(0.8 nm)of TiO2,and 16 cycles(1.6 nm)of Al2O3. The total thickness of the four layers is 4 nm.The entire fabrication process fits well with the modern microfabrication streamline(for details see supporting information Fig. S1). The inset of Fig. 1(a) shows a side view of the active region, where the silicon substrate is not shown.

    The energy band diagram of the MIM junction with and without bias voltage is shown in Fig.1(b). There are five potential barrier interfaces between Au electrodes. The shape of the energy band diagram of tunnel barriers is determined by the work function of the Au electrode(5.1 eV),[35]the electron affinity of insulator,and the applied bias voltage. The electron affinity potential of TiO2and Al2O3depend on the thickness and morphology of the film,[36]and are estimated to be 4.3 eV and 3.5 eV from the ALD process. The barrier height of interface at the zero bias is determined to beΦ1=0.8 eV for Au-TiO2interface,Φ2=1.6 eV for Au-Al2O3interface,andΦ3=0.8 eV for TiO2-Al2O3interfaces,as shown in the upper panel of Fig. 1(b). When electrons tunnel over the insulator barrier under the bias voltage, part of electrons will undergo the inelastic scattering and lose their energy by generating a plasmon, subsequently radiating photons or creating heat in the local region. By changing the height, period, duty cycle of the grating and the thickness of the alternate insulators,the spectrum and polarization of the electroluminescence can be controlled. Comparing with the tunneling junctions with single insulators,the choice of two or more insulators facilitates the design of both the electronic and photonic aspects of the devices. For example, the tunneling current can be larger for such an alternate insulator junction than the counterpart of a pure Al2O3junction with equal thickness. For a given tunneling current,a multilayer junction can sustain a higher damage voltage, which is a key to a stable light emission by inelastic tunneling device.Unlike traditional light sources,the emission process of LEIT does not rely on the spontaneous recombination of electron-hole pairs. The response time of the emission can decrease down to tens of femtosecond,dependent mainly on the electron tunneling process and the subsequent radiative decay of the plasmons.[37]These enable the light emission by inelastic tunneling to become a component of an integrated ultrafast optoelectronic circuit.

    Fig. 1. (a) Schematic diagram of the device. The inset shows a side view of active region (unscaled), and contains, from bottom to top, a silica substrate,a square Au bottom electrode,alternative insulator layers,and an Au grating. The 50-nm-thick gratings are fabricated onto the bottom electrode with a 4-nm-thick tunnel barrier of TiO2&Al2O3 grown in between. (b)Energy band diagram of multilayer tunnel junction with zero and positive bias,with Φi (i=1,2,3)denoting barrier height,Vb applied voltage,and ˉhω light emission.

    Fig.2.(a)Current-voltage characteristic curve of connected plasmonic grating device with a tunneling gap, where insets show energy band diagrams of multilayer tunneling junction with a negative or positive bias applied to top Au electrode. (b)Asymmetry(η =|IF/IR|)versus bias voltage for the MIM tunnel diode,where inset displays time trace of tunneling current at a constant bias of Vb=2.0 V with tunnel junction size being 60μm2.

    The tunneling current of our device is determined by both the amplitude and the direction of the applied voltage since there are multiple insulators with different electron affinities in the tunnel barrier. The characteristic of current density(J)as a function of the applied voltage is shown in Fig.2(a). A pronounced asymmetry appears when the direction of injection electrons is reversed. The inset of Fig. 2(a) presents the energy band diagram with negative and positive voltage. When applying a positive bias voltage of +2 V to the top Au electrode, the width of the TiO2&Al2O3tunnel barrier is smaller than that when applying a negative bias of-2 V. Hence, the positive current density is greater than the negative one at the MIM tunnel junction. In the following,we always use a positive bias in the LEIT measurements since the intensity of emission photons depends linearly on the amplitude of the tunnel current.[20]Supporting information figure S2 also shows that the tunneling current increases linearly with the augment of area of the junction.

    We now come to study the asymmetry of the currentversusvoltage(I-V)curve and the stability of the tunnel junctions. The asymmetry of theI-Vcurve is defined as the forward current divided by the reverse current (η=|IF/IR|),which presents the characterization of rectification for a tunnel MIM diode. Figure 2(b)shows that the value of asymmetry is related to the value of applied voltage. The asymmetry value of the tunnel junction reaches 45 when|Vb|=2 V.The inset of Fig. 2(b) shows the time trace of the tunneling current of the MIM junction with a junction size of 60μm2at a bias voltage of 2.0 V. The tunneling current keeps stable during the measurement, guaranteeing key feature required in further applications (e.g., optoelectronic circuits). Stabler devices can be achieved by packaging the final device or utilizing the transferred top Au nanostructure(electrodes).[38]

    Fig. 3. (a) Reflection spectra of grating under parallel (red) and perpendicular (black) excitation. Inset shows scanning electron microscope image of the grating. It has a duty cycle of 0.5 and a period of 700 nm. Scale bar: 1μm. (b)Simulated reflection spectra of the grating under parallel(red)and perpendicular excitation. The inset shows the electric field distribution under the resonance condition with a wavelength of 750 nm. (c)EL spectra of the grating for various applied voltages. The inset shows the I-V curve of the device. (d)Image of light emitted from the grating at a constant bias of Vb=3.0 V.The CCD exposure time is 3 s. The right panels indicate the intensity profiles along the major axis and minor axis of the EL image,corresponding to the dashed line on the left panel.

    The optical characterization of the tunneling device and the emission spectra of the LEIT source are determined by the resonance properties of the grating. The reflection spectra are measured in the home-built microscope (for details, see supporting information Fig. S3). Considering that the plasmon resonance has a smaller loss in the near-infrared region,[37]the grating is designed with a duty cycle of 0.5 and a period of 700 nm.Figure 3(a)shows the reflection spectra from the grating under perpendicular and parallel polarization. The grating shows a strong polarization response, an apparent reflection dip at 770 nm shows up under perpendicular polarization.The polarization dependence of EL spectrum presents a similar behavior,with the emitted photon polarized perpendicular to the grating (supporting information, Fig. S6).The inset of Fig. 3(a) shows the scanning electron microscopy images of the same devices. Numerical simulations of the grating nanostructure are in good agreement with the experimental result as shown in Fig. 3(b). The inset shows a side view of the electric field distribution of a grating at the resonant wavelength.High enhancement of the electric field is confined in the tunnel junction and at the top edge of the grating,which conduces to improving the efficiency of LEIT device.

    Next,we explore the properties of the emission light from the electrically driven grating. We use two tungsten probes connected with a sourcemeter to apply the bias voltage to the device. Light emission from the tunneling junction is collected by a long working distance objective (Olympus, 50×,NA=0.5)and then recorded by a CCD camera or by a spectrometer(for details,see Methods).All measurements are conducted at room temperature. Figure 3(c) shows the emission spectra with various bias voltages, the intensity of EL peak becomes stronger with voltage increasing. The peak position of EL spectrum is 728 nm,which fits well with the reflection spectrum. We note that the drop of the EL spectrum at about 820 nm is not caused by the experimental collection system.It may be due to the lower electric field enhancement in the tunnel junction and at the top edge of the grating,corresponding to a weak radiation efficiency at the dip (~840 nm) in the reflection spectrum in Fig. 3(b) (also see supporting information Fig. S7). The inset of Fig. 3(c) shows the correspondingI-Vcurves of the same device. Figure 3(d) shows the direct imaging of light emitted from gratings at a constant bias voltage ofVb=3.0 V.The intensity of the emission spot is uniform, which shows that the tunneling electrons uniformly pass through the barrier of the MIM junction. The right panels show that the intensity profiles along the different axes of the tunnel source, and there appear only small fluctuations from different positions. Supporting information Fig.S5 shows the photon emission from a planar MIM tunnel junction, and the emitted photons are observed only from the edges of the top electrode. The external conversion efficiency of the electronto-photon of the light source is estimated at about 3.8×10-6atVb=3.0 V,following the same procedure as in our previous work.[20]

    4. Conclusions

    In this work, we demonstrate electrically driven plasmonic gratings based on a multilayer tunneling barrier grown by ALD,where the source shows stable and uniform emission characteristics. Four insulator layers are utilized to fabricate the MIM tunneling sources for the first time. It shows that the tunneling probability of one electron is dependent on the injection direction due to the utilization of the multiple insulators with different electron affinities in one tunnel barrier.The tunneling probability of the electrons from the bottom Au electrode is much higher than that from the top grating. The problem of poor stability of the ultrathin insulator layer grown by ALD in the MIM tunnel source is solved by utilizing multilayer barriers. According to Ref.[39],the resonant electron tunneling based on multilayer barriers may happen and will further enhance the efficiency.[39]Our work paves the way for fabricating a stabler and efficient subwavelength LEIT device,which is of potential significance in implmenting the on-chip optical communication,biosensing,and photodetection.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12004222 and 91850207),the National Key Research and Development Program of China(Grant Nos.2017YFA0303504 and 2017YFA0205800),the Fundamental Research Funds for the Central Universities, China, the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000),and the Postdoctoral Science Foundation of China (Grant No.2020M682223).

    猜你喜歡
    陳雪華天史志
    《鸚鵡演奏會(huì)》
    《節(jié)約用水》
    《讓愛包圍艾》
    華天軟件完成B輪融資1.8億元
    智能制造(2021年4期)2021-11-14 18:56:41
    紅嘴藍(lán)鵲
    綠色天府(2021年9期)2021-10-15 06:16:32
    華天驊手捏戲文泥塑作品
    Superlubricity enabled dry transfer of non-encapsulated graphene?
    盛大華天直銷之殤
    機(jī)構(gòu)薦股:華天科技、萬(wàn)方發(fā)展、科陸電子、證通電子
    有朋遠(yuǎn)方來(lái)
    免费搜索国产男女视频| 中国美白少妇内射xxxbb| 国产精品.久久久| 日本与韩国留学比较| 国产成人精品婷婷| 91av网一区二区| 亚洲内射少妇av| 男人的好看免费观看在线视频| 国产精品久久久久久久久免| 成人高潮视频无遮挡免费网站| 国内少妇人妻偷人精品xxx网站| 亚洲精品色激情综合| 成人午夜高清在线视频| 亚洲国产成人一精品久久久| 岛国毛片在线播放| 欧美日韩在线观看h| or卡值多少钱| 麻豆乱淫一区二区| 特级一级黄色大片| 亚洲欧美精品专区久久| 日韩成人av中文字幕在线观看| 乱系列少妇在线播放| 乱码一卡2卡4卡精品| 三级经典国产精品| 3wmmmm亚洲av在线观看| 久久精品久久精品一区二区三区| 久久精品久久久久久久性| 波多野结衣巨乳人妻| 1000部很黄的大片| 国产男人的电影天堂91| 亚洲精品国产av成人精品| 99热6这里只有精品| 麻豆成人午夜福利视频| 午夜福利高清视频| 边亲边吃奶的免费视频| 亚洲成人中文字幕在线播放| 日日撸夜夜添| АⅤ资源中文在线天堂| 免费大片18禁| 日日摸夜夜添夜夜爱| av卡一久久| 好男人在线观看高清免费视频| 麻豆精品久久久久久蜜桃| 亚洲国产精品久久男人天堂| 国产色婷婷99| 久久久久久久久久成人| 在线a可以看的网站| 日韩精品青青久久久久久| 亚洲欧洲国产日韩| 床上黄色一级片| 日本爱情动作片www.在线观看| 精品久久久久久久末码| 高清在线视频一区二区三区 | 亚洲av中文av极速乱| 我的女老师完整版在线观看| 久久精品夜夜夜夜夜久久蜜豆| 九九爱精品视频在线观看| 乱系列少妇在线播放| 色视频www国产| 中文字幕人妻熟人妻熟丝袜美| 可以在线观看毛片的网站| 亚洲成av人片在线播放无| 国产亚洲精品av在线| 久久久久久久久久成人| 欧美+日韩+精品| 三级经典国产精品| 我的老师免费观看完整版| 亚洲成人中文字幕在线播放| 国产成年人精品一区二区| 校园人妻丝袜中文字幕| 99热全是精品| 99久久成人亚洲精品观看| 国产激情偷乱视频一区二区| 日本黄色视频三级网站网址| 3wmmmm亚洲av在线观看| 久久精品影院6| 午夜老司机福利剧场| 嘟嘟电影网在线观看| 十八禁国产超污无遮挡网站| 亚洲av中文字字幕乱码综合| 成年版毛片免费区| 亚洲成色77777| 欧美精品一区二区大全| 五月伊人婷婷丁香| 99久久精品热视频| 久久久久久伊人网av| 国产亚洲91精品色在线| 99久久精品国产国产毛片| 成人美女网站在线观看视频| 男人舔奶头视频| 综合色av麻豆| 国产精品久久电影中文字幕| 国产成人精品久久久久久| 又粗又硬又长又爽又黄的视频| 成人av在线播放网站| 18+在线观看网站| 亚洲欧美精品专区久久| 国产精品久久久久久av不卡| 亚洲三级黄色毛片| 久久欧美精品欧美久久欧美| 岛国在线免费视频观看| 精品人妻一区二区三区麻豆| 国内精品美女久久久久久| 国产精品一区二区三区四区久久| 欧美成人一区二区免费高清观看| 日日干狠狠操夜夜爽| 国产免费男女视频| a级一级毛片免费在线观看| 亚洲人成网站在线观看播放| 欧美日韩国产亚洲二区| 亚洲成人av在线免费| ponron亚洲| 久久久久久久久大av| 国产黄片视频在线免费观看| 简卡轻食公司| av黄色大香蕉| 欧美激情国产日韩精品一区| 精品一区二区三区人妻视频| 国产精品av视频在线免费观看| 男女国产视频网站| 日本五十路高清| 国产精品av视频在线免费观看| 深爱激情五月婷婷| 国产真实乱freesex| 中文字幕制服av| 人人妻人人看人人澡| 中文天堂在线官网| 少妇裸体淫交视频免费看高清| 18禁动态无遮挡网站| 夫妻性生交免费视频一级片| 国产黄a三级三级三级人| 少妇熟女欧美另类| 伦理电影大哥的女人| 七月丁香在线播放| 久99久视频精品免费| 日日摸夜夜添夜夜添av毛片| 久久久久精品久久久久真实原创| 春色校园在线视频观看| 美女被艹到高潮喷水动态| 日产精品乱码卡一卡2卡三| 一夜夜www| 99久久人妻综合| 欧美三级亚洲精品| or卡值多少钱| 国产亚洲av片在线观看秒播厂 | 综合色av麻豆| 国内精品美女久久久久久| 国产三级中文精品| 亚洲精品乱久久久久久| 国产免费视频播放在线视频 | 亚洲人与动物交配视频| 中文在线观看免费www的网站| 天天一区二区日本电影三级| 国产精品国产三级专区第一集| 长腿黑丝高跟| 一区二区三区乱码不卡18| 久久久久久久国产电影| 国产探花极品一区二区| 日本与韩国留学比较| 最近视频中文字幕2019在线8| 男插女下体视频免费在线播放| 日韩视频在线欧美| 国产午夜精品久久久久久一区二区三区| 91精品伊人久久大香线蕉| 日韩视频在线欧美| 亚洲精品成人久久久久久| 性色avwww在线观看| 美女被艹到高潮喷水动态| 美女大奶头视频| 男插女下体视频免费在线播放| 人人妻人人看人人澡| 26uuu在线亚洲综合色| 美女cb高潮喷水在线观看| kizo精华| 精品一区二区免费观看| 桃色一区二区三区在线观看| 夜夜看夜夜爽夜夜摸| 久久久精品94久久精品| 蜜桃久久精品国产亚洲av| 国产免费福利视频在线观看| 69人妻影院| av在线老鸭窝| 哪个播放器可以免费观看大片| 一本久久精品| 不卡视频在线观看欧美| 高清av免费在线| 一级av片app| 亚洲国产高清在线一区二区三| 亚洲最大成人av| 内地一区二区视频在线| 波多野结衣高清无吗| 一二三四中文在线观看免费高清| 精品久久久久久久人妻蜜臀av| 久久久久精品久久久久真实原创| 日韩 亚洲 欧美在线| 国产精品一区二区三区四区免费观看| a级毛片免费高清观看在线播放| 成人亚洲精品av一区二区| 亚洲第一区二区三区不卡| 18禁在线播放成人免费| 国产成人精品一,二区| 自拍偷自拍亚洲精品老妇| 欧美成人一区二区免费高清观看| 搞女人的毛片| 日本猛色少妇xxxxx猛交久久| 国产v大片淫在线免费观看| 日本黄色视频三级网站网址| 一二三四中文在线观看免费高清| 日韩成人伦理影院| 国产精品国产三级国产av玫瑰| 国产亚洲一区二区精品| 在线观看66精品国产| 中文字幕熟女人妻在线| 男女那种视频在线观看| 精华霜和精华液先用哪个| 2021少妇久久久久久久久久久| 国产伦一二天堂av在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日日撸夜夜添| 国产精品一二三区在线看| 国产老妇女一区| 中文字幕熟女人妻在线| 中文在线观看免费www的网站| 2021天堂中文幕一二区在线观| 亚洲婷婷狠狠爱综合网| 欧美人与善性xxx| 亚洲精品色激情综合| 99久国产av精品| 我的老师免费观看完整版| 亚洲aⅴ乱码一区二区在线播放| 国产探花在线观看一区二区| 亚洲av男天堂| 国产v大片淫在线免费观看| 91久久精品电影网| 男女视频在线观看网站免费| 国产伦在线观看视频一区| 亚洲精品乱久久久久久| 国产精品久久电影中文字幕| 成人三级黄色视频| 三级毛片av免费| 夫妻性生交免费视频一级片| 校园人妻丝袜中文字幕| 看黄色毛片网站| 国产私拍福利视频在线观看| 久久久久久久国产电影| 只有这里有精品99| 在现免费观看毛片| 你懂的网址亚洲精品在线观看 | 夫妻性生交免费视频一级片| 日韩成人av中文字幕在线观看| 国产精品电影一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 国产人妻一区二区三区在| 岛国毛片在线播放| 舔av片在线| 午夜精品一区二区三区免费看| 神马国产精品三级电影在线观看| 精品欧美国产一区二区三| 岛国毛片在线播放| 久久久久久大精品| 真实男女啪啪啪动态图| 国产精品综合久久久久久久免费| 久久久精品大字幕| 国产精品久久视频播放| 亚洲在线自拍视频| 久久热精品热| 超碰av人人做人人爽久久| 丝袜喷水一区| 免费看a级黄色片| 免费搜索国产男女视频| 中文字幕久久专区| 国产av在哪里看| 最后的刺客免费高清国语| 最近最新中文字幕大全电影3| 亚洲真实伦在线观看| 亚洲五月天丁香| 午夜视频国产福利| 日韩中字成人| 禁无遮挡网站| 波多野结衣巨乳人妻| av免费观看日本| 亚洲国产最新在线播放| 啦啦啦韩国在线观看视频| 亚洲真实伦在线观看| 亚洲精品影视一区二区三区av| 久久久精品大字幕| 亚洲乱码一区二区免费版| 一边摸一边抽搐一进一小说| 又黄又爽又刺激的免费视频.| 日本黄色视频三级网站网址| 国产亚洲91精品色在线| 日韩大片免费观看网站 | 久久综合国产亚洲精品| 国产乱来视频区| 久久久欧美国产精品| 久久精品国产自在天天线| 午夜激情福利司机影院| 边亲边吃奶的免费视频| 国产精品嫩草影院av在线观看| h日本视频在线播放| 听说在线观看完整版免费高清| 青春草视频在线免费观看| 久久99热这里只有精品18| 久热久热在线精品观看| 亚洲乱码一区二区免费版| 亚洲人与动物交配视频| 日本免费在线观看一区| 精品久久久久久久末码| 免费无遮挡裸体视频| 免费大片18禁| 国产免费男女视频| 免费大片18禁| 免费av观看视频| 国产av不卡久久| 日韩欧美国产在线观看| 草草在线视频免费看| 一级av片app| 免费看a级黄色片| 国产黄色视频一区二区在线观看 | 国产精品国产三级国产专区5o | 成人亚洲精品av一区二区| 2021天堂中文幕一二区在线观| 最近2019中文字幕mv第一页| 两个人的视频大全免费| 一本一本综合久久| 三级国产精品欧美在线观看| 好男人在线观看高清免费视频| 亚洲国产高清在线一区二区三| 97热精品久久久久久| 国产黄片美女视频| 男女视频在线观看网站免费| av福利片在线观看| 欧美成人a在线观看| 大香蕉久久网| 卡戴珊不雅视频在线播放| 国产成人freesex在线| 免费看美女性在线毛片视频| 久久久久久久久久成人| 日本爱情动作片www.在线观看| 伦精品一区二区三区| or卡值多少钱| 欧美+日韩+精品| 色综合站精品国产| 亚洲成av人片在线播放无| 男女国产视频网站| 欧美日本视频| 最近视频中文字幕2019在线8| 国产午夜精品一二区理论片| 亚洲av电影在线观看一区二区三区 | 精品欧美国产一区二区三| 免费观看在线日韩| 99在线视频只有这里精品首页| 国产一级毛片七仙女欲春2| 禁无遮挡网站| 两个人的视频大全免费| 日韩 亚洲 欧美在线| 欧美一区二区精品小视频在线| 久久久国产成人免费| 在线观看66精品国产| 欧美一区二区亚洲| 久久草成人影院| 久久综合国产亚洲精品| 国产一区有黄有色的免费视频 | 中文在线观看免费www的网站| 2022亚洲国产成人精品| 日韩高清综合在线| 国内精品一区二区在线观看| 欧美性猛交黑人性爽| 99久久成人亚洲精品观看| 国内少妇人妻偷人精品xxx网站| 性色avwww在线观看| 大香蕉久久网| 嫩草影院新地址| 久久久久久久亚洲中文字幕| 国产极品天堂在线| 好男人视频免费观看在线| 波多野结衣巨乳人妻| 国产成人91sexporn| 一级av片app| 欧美一区二区精品小视频在线| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 亚洲精品乱久久久久久| 亚洲一区高清亚洲精品| 亚洲精品乱码久久久久久按摩| 国产亚洲精品久久久com| 国产午夜精品一二区理论片| 亚洲国产精品专区欧美| 国产精品一二三区在线看| 国产成人一区二区在线| 久久精品综合一区二区三区| 99久久人妻综合| 蜜臀久久99精品久久宅男| 大香蕉97超碰在线| 欧美+日韩+精品| 舔av片在线| 欧美高清成人免费视频www| 亚洲一级一片aⅴ在线观看| 成年免费大片在线观看| 免费观看在线日韩| 少妇猛男粗大的猛烈进出视频 | 国产黄色小视频在线观看| 国产av一区在线观看免费| 自拍偷自拍亚洲精品老妇| 69av精品久久久久久| 岛国毛片在线播放| 日韩成人av中文字幕在线观看| 日韩视频在线欧美| 亚洲伊人久久精品综合 | 久久久久国产网址| 舔av片在线| 日韩成人伦理影院| 国产成人91sexporn| 99热6这里只有精品| 成年女人看的毛片在线观看| 两个人视频免费观看高清| 国产午夜精品一二区理论片| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品人妻久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av电影不卡..在线观看| 亚洲自拍偷在线| 男人和女人高潮做爰伦理| 在线a可以看的网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲性久久影院| 亚洲欧洲日产国产| 又黄又爽又刺激的免费视频.| 少妇人妻一区二区三区视频| 国产精品国产三级国产专区5o | av国产久精品久网站免费入址| 亚洲,欧美,日韩| 成年女人永久免费观看视频| 精品久久久噜噜| 亚洲av成人精品一二三区| 午夜精品国产一区二区电影 | 欧美色视频一区免费| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| 国产在视频线在精品| 美女国产视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品福利在线免费观看| 热99re8久久精品国产| 日韩av不卡免费在线播放| 日韩亚洲欧美综合| 日本黄色视频三级网站网址| 国产精品精品国产色婷婷| 综合色丁香网| 深爱激情五月婷婷| 免费人成在线观看视频色| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av成人精品一区久久| 国产精品久久久久久精品电影| 中文字幕亚洲精品专区| 免费黄网站久久成人精品| 又粗又爽又猛毛片免费看| 亚洲最大成人手机在线| 亚洲经典国产精华液单| 国产黄色小视频在线观看| 亚洲精华国产精华液的使用体验| 99在线人妻在线中文字幕| 国产成人a区在线观看| 精品一区二区免费观看| 日韩欧美国产在线观看| 久久久久久久午夜电影| 欧美激情久久久久久爽电影| 国内精品宾馆在线| 亚洲精品久久久久久婷婷小说 | 亚洲精品久久久久久婷婷小说 | 国产三级在线视频| 欧美成人午夜免费资源| 国产成人福利小说| 日韩国内少妇激情av| 18禁裸乳无遮挡免费网站照片| 成人毛片60女人毛片免费| 麻豆乱淫一区二区| 日韩制服骚丝袜av| 国产精品电影一区二区三区| 国产黄片视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 国产乱人视频| 欧美成人免费av一区二区三区| 最近最新中文字幕免费大全7| 国产欧美日韩精品一区二区| 日韩成人av中文字幕在线观看| 欧美区成人在线视频| 亚洲人与动物交配视频| 国内揄拍国产精品人妻在线| 国产精品电影一区二区三区| 国产高清有码在线观看视频| 国内精品美女久久久久久| 国产亚洲一区二区精品| 亚洲av.av天堂| 国产午夜精品一二区理论片| av卡一久久| 亚洲精品aⅴ在线观看| 美女高潮的动态| 亚洲av.av天堂| 中文字幕av在线有码专区| 99国产精品一区二区蜜桃av| 寂寞人妻少妇视频99o| 国产精品国产三级国产专区5o | 天堂av国产一区二区熟女人妻| 免费观看性生交大片5| 中文亚洲av片在线观看爽| 少妇熟女欧美另类| 美女国产视频在线观看| 国产精品人妻久久久久久| 欧美成人a在线观看| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片| 又粗又硬又长又爽又黄的视频| 欧美激情国产日韩精品一区| 国产亚洲精品久久久com| 国产三级在线视频| av在线老鸭窝| 观看美女的网站| 插逼视频在线观看| 久久精品久久久久久久性| 免费电影在线观看免费观看| 国产伦理片在线播放av一区| 一区二区三区免费毛片| 汤姆久久久久久久影院中文字幕 | 欧美变态另类bdsm刘玥| 男女视频在线观看网站免费| 日韩av不卡免费在线播放| 特大巨黑吊av在线直播| 久久人人爽人人爽人人片va| 日本熟妇午夜| 男人和女人高潮做爰伦理| 久久久久久九九精品二区国产| 欧美xxxx性猛交bbbb| 国产亚洲5aaaaa淫片| 国产乱人偷精品视频| 床上黄色一级片| 国产精品人妻久久久久久| 超碰av人人做人人爽久久| 插逼视频在线观看| 干丝袜人妻中文字幕| 国产欧美另类精品又又久久亚洲欧美| 国产午夜精品论理片| 男插女下体视频免费在线播放| 日产精品乱码卡一卡2卡三| 老师上课跳d突然被开到最大视频| 成人漫画全彩无遮挡| 九九在线视频观看精品| 久久久国产成人精品二区| 美女黄网站色视频| 久久精品国产亚洲av涩爱| 午夜精品在线福利| 久久精品国产自在天天线| 国产精品野战在线观看| 久久午夜福利片| 久久99精品国语久久久| 国产又黄又爽又无遮挡在线| 免费大片18禁| 精品一区二区三区人妻视频| 亚洲av不卡在线观看| 一边亲一边摸免费视频| 白带黄色成豆腐渣| 免费在线观看成人毛片| 美女黄网站色视频| 伊人久久精品亚洲午夜| 能在线免费观看的黄片| 黄片wwwwww| 欧美潮喷喷水| 天天躁日日操中文字幕| 亚洲精品,欧美精品| 成人美女网站在线观看视频| 女人十人毛片免费观看3o分钟| 日韩人妻高清精品专区| 中文字幕人妻熟人妻熟丝袜美| 一级毛片久久久久久久久女| 我的老师免费观看完整版| 蜜桃久久精品国产亚洲av| 国产高清国产精品国产三级 | 国产69精品久久久久777片| 国产精品一区二区三区四区久久| 大香蕉久久网| 99热全是精品| av又黄又爽大尺度在线免费看 | 超碰av人人做人人爽久久| 三级国产精品欧美在线观看| 九九爱精品视频在线观看| 乱人视频在线观看| 精品一区二区三区人妻视频| 欧美成人午夜免费资源| 99九九线精品视频在线观看视频| 寂寞人妻少妇视频99o| 免费黄网站久久成人精品| 久久久精品欧美日韩精品| 国产一级毛片七仙女欲春2| 精品久久久久久成人av| 乱人视频在线观看| av在线蜜桃| 蜜桃久久精品国产亚洲av| av在线天堂中文字幕| 亚洲精品aⅴ在线观看| 国产av一区在线观看免费| 国产黄色小视频在线观看| 国产乱人视频| 国产高清三级在线| 久久韩国三级中文字幕| 国产三级在线视频| 可以在线观看毛片的网站| 一区二区三区乱码不卡18| 精品久久久久久久久亚洲| av在线天堂中文字幕| 成人毛片60女人毛片免费| 久久精品国产鲁丝片午夜精品| 一个人免费在线观看电影| 91久久精品电影网| 国产又黄又爽又无遮挡在线| 亚洲欧美日韩卡通动漫|