方莉娜 王康
道路交叉口作為道路交匯的樞紐,承擔(dān)著連接道路交通網(wǎng)的重要功能,其位置、方向、類(lèi)型是智能交通、高精地圖、導(dǎo)航與定位服務(wù)等應(yīng)用的重要基礎(chǔ)數(shù)據(jù)[1-4],準(zhǔn)確獲取道路交叉口的位置及類(lèi)型信息對(duì)交通路網(wǎng)數(shù)據(jù)更新具有重要意義.車(chē)載激光掃描系統(tǒng)(Mobile Laser Scanning,MLS)作為近年來(lái)快速發(fā)展的高精度測(cè)繪技術(shù),能夠快速、準(zhǔn)確地獲取道路場(chǎng)景精細(xì)的位置信息,為道路交叉口的提取和分類(lèi)提供了一種新的數(shù)據(jù)源.
當(dāng)前道路交叉口提取和分類(lèi)的研究集中于從各類(lèi)傳感器數(shù)據(jù)中自動(dòng)識(shí)別交叉口,主要包括:基于圖像數(shù)據(jù)、基于GPS軌跡數(shù)據(jù)、基于車(chē)載激光點(diǎn)云的道路交叉口識(shí)別.基于圖像數(shù)據(jù)的道路交叉口識(shí)別主要從圖像數(shù)據(jù)中識(shí)別道路交叉口空間位置,將交叉口位置的識(shí)別簡(jiǎn)化為點(diǎn)的識(shí)別[5-8].由于圖像易受天氣、環(huán)境、光照等因素影響,易造成交叉口識(shí)別困難.基于GPS軌跡數(shù)據(jù)的道路交叉口識(shí)別方法則利用軌跡數(shù)據(jù)在交叉口處密度較大等特征,實(shí)現(xiàn)交叉口的識(shí)別[9-10].GPS軌跡交叉口識(shí)別方法受限于軌跡點(diǎn)密度,軌跡點(diǎn)稀疏區(qū)域難以提取道路交叉口的精確位置.相比于圖像數(shù)據(jù)和GPS軌跡數(shù)據(jù),車(chē)載激光點(diǎn)云數(shù)據(jù)包含更精細(xì)的道路場(chǎng)景信息和細(xì)節(jié)要素,能夠提供精細(xì)的道路交叉口三維數(shù)據(jù).近年來(lái),一些學(xué)者嘗試從點(diǎn)云中提取道路交叉口.Li等[11]提出基于一種虛擬圓柱掃描儀(Virtual Cylindrical Scanner,VCS)的道路交叉口檢測(cè)方法,構(gòu)建虛擬點(diǎn)發(fā)射n條射線探測(cè)發(fā)射點(diǎn)與道路交叉口距離提取道路交叉口特征,利用支持向量機(jī)(Support Vector Machine,SVM)分類(lèi)道路交叉口類(lèi)型.Zhang等[12]提出基于光束模型的道路交叉口識(shí)別方法,以車(chē)輛頂部與底部傳感器為中心,發(fā)射多條射線計(jì)算發(fā)射點(diǎn)與道路邊界距離分布直方圖,依據(jù)峰值點(diǎn)個(gè)數(shù)確定道路交叉口類(lèi)型.陳卓等[13]提出一種基于機(jī)載激光點(diǎn)云強(qiáng)度影像的道路交叉口提取方法,利用角度紋理信息和密度聚類(lèi)方法定位機(jī)載影像中道路交叉口粗略位置,然后引入環(huán)形剖面和Snake方法提取道路交叉口輪廓.Chen等[14]采用Gabor濾波器和改進(jìn)的高階張量投票識(shí)別機(jī)載強(qiáng)度圖像中道路交叉口候選區(qū),再基于模板匹配識(shí)別道路交叉口類(lèi)型.目前國(guó)內(nèi)外針對(duì)車(chē)載激光點(diǎn)云道路交叉口檢測(cè)與識(shí)別的研究取得了一定的進(jìn)展.目前道路交叉口檢測(cè)算法主要依據(jù)其形狀、灰度等特征進(jìn)行檢測(cè),對(duì)于形狀簡(jiǎn)單的交叉口具有較好的檢測(cè)效果,但對(duì)復(fù)雜場(chǎng)景下的道路交叉口檢測(cè)難度較大,對(duì)于交叉口類(lèi)型識(shí)別需要較多的先驗(yàn)知識(shí)和人工干預(yù),自動(dòng)化程度和檢測(cè)精度不高.
深度學(xué)習(xí)憑借深度網(wǎng)絡(luò)的強(qiáng)大學(xué)習(xí)能力,能夠從原始數(shù)據(jù)中提取數(shù)據(jù)的高層特征,從而很好地建立從底層信號(hào)到高層信號(hào)的映射關(guān)系,在圖像分類(lèi)、目標(biāo)檢測(cè)等方面深度學(xué)習(xí)該領(lǐng)域重大進(jìn)展.近年來(lái),一些學(xué)者將深度學(xué)習(xí)引入道路交叉口的檢測(cè)與識(shí)別中,有效地實(shí)現(xiàn)了對(duì)道路交叉口的檢測(cè)與自動(dòng)分類(lèi).Baumann等[15]提出了基于U-Net網(wǎng)絡(luò)機(jī)載點(diǎn)云影像的道路交叉口檢測(cè)方法,并取得了較好的識(shí)別效果.何海威等[16]提出一種基于AlexNet網(wǎng)絡(luò)的道路交叉口檢測(cè)方法,將矢量數(shù)據(jù)與柵格數(shù)據(jù)結(jié)合,在十字型、喇叭型等復(fù)雜交叉口的識(shí)別中取得了較好的效果.王龍飛等[17]提出一種基于YOLOv3遙感影像道路交叉口檢測(cè)算法,采用參數(shù)修正單元激活卷積層以及多尺度融合實(shí)現(xiàn)道路交叉口細(xì)節(jié)特征提取,在復(fù)雜背景下道路交叉口識(shí)別中取得了較好的效果.
因車(chē)載激光點(diǎn)云中道路交叉口輪廓特征易受周?chē)匚锔蓴_,目前基于圖像的深度學(xué)習(xí)網(wǎng)絡(luò)不能完全適用于車(chē)載激光點(diǎn)云道路交叉口的類(lèi)型識(shí)別.為了提高道路交叉口識(shí)別效果,本文基于車(chē)載激光掃描點(diǎn)云數(shù)據(jù),分析道路交叉口和非交叉口路段的形狀和結(jié)構(gòu)特征,構(gòu)建了逐軌跡點(diǎn)的滑動(dòng)窗口道路交叉口識(shí)別方法,然后利用動(dòng)態(tài)圖神經(jīng)網(wǎng)絡(luò)進(jìn)行道路交叉口分類(lèi).
相對(duì)于道路兩側(cè)建筑物、樹(shù)木等地物而言,道路邊界在海量點(diǎn)云中形狀不明顯,直接從離散點(diǎn)云中檢測(cè)道路邊界非常耗時(shí)且效率較低.因此本文先對(duì)數(shù)據(jù)進(jìn)行預(yù)處理,采用布料模擬濾波算法[18]提取地面點(diǎn)云,然后從地面點(diǎn)中提取道路邊界,其主要分為以下三個(gè)步驟:
1)基于超體素的道路邊界提取.利用超體素算法過(guò)分割地面點(diǎn)云,分析超體素的分布與結(jié)構(gòu)信息提取道路邊界.
2)基于滑動(dòng)窗口的道路交叉口提取.利用道路交叉口與非交叉口的形態(tài)差異,計(jì)算滑動(dòng)窗口道路邊界點(diǎn)曲率值區(qū)分道路交叉口與非交叉口.
3)基于動(dòng)態(tài)圖神經(jīng)網(wǎng)絡(luò)的道路交叉口類(lèi)型識(shí)別.構(gòu)建適合道路邊界分類(lèi)的圖神經(jīng)網(wǎng)絡(luò),提取道路交叉口的高階特征,區(qū)分道路交叉口的十字和T字路口類(lèi)型.
該方法主要流程如圖1所示.
在地面點(diǎn)云中,道路邊界與路面點(diǎn)具有一定高程和法向差異,但道路邊界的顯著性和連續(xù)性易受點(diǎn)密度不均、遮擋和噪聲影響,導(dǎo)致道路邊界與路面點(diǎn)較難區(qū)分.為了提取精確的道路邊界點(diǎn)云,本文采用Lin等[19]提出的超體素分割算法,基于局部幾何特征和空間一致性將地面點(diǎn)先分割成邊界保持的超體素(如圖2所示),克服點(diǎn)密度不均對(duì)道路邊界提取影響.對(duì)于地面點(diǎn)P={p1,p2,…,pn},n為其個(gè)數(shù),為了確保每個(gè)點(diǎn)pi對(duì)應(yīng)唯一的超體素并顧及道路邊界,該方法將超體素中分割問(wèn)題轉(zhuǎn)化為變量zij∈{0,1}的優(yōu)化問(wèn)題,即利用最小化能量函數(shù)確定K個(gè)最優(yōu)超體素:
(1)
(2)
圖2 地面點(diǎn)超體素分割及道路邊界提取Fig.2 Ground points supervoxel segmentation and curb extraction
式中,λ為大于0的正則化參數(shù),C(·)為生成的超體素?cái)?shù)量,I(·)為體素合并指示函數(shù).為保證式(1)的優(yōu)化過(guò)程能夠更好顧及邊界特征,本文利用點(diǎn)的空間聚類(lèi)和法向定義點(diǎn)pi和pj的相似性D(pi,pj):
(3)
式中:D(pi,pj)表示點(diǎn)pi與pj特征相似距離;npi和npj表示點(diǎn)pi和pj的法向;|·|表示乘積;‖·‖表示兩點(diǎn)之間歐式距離;r表示超體素分辨率.
從圖2c中可以看出,道路邊界體素具有一定的高程差異且垂直或傾斜于周?chē)访?因此,本文統(tǒng)計(jì)超體素內(nèi)高程差異和法方向與Z軸方向夾角來(lái)提取道路邊界體素:
(4)
道路主要由道路交叉口及非交叉口(道路分支)組成.道路交叉口作為道路交匯的銜接處,與同一道路直線區(qū)域相比較,在幾何形態(tài)上具有較大差異,即道路交叉口處呈現(xiàn)彎曲形態(tài)分布.這種彎曲程度可通過(guò)道路邊界點(diǎn)的曲率進(jìn)行描述:
(5)
式中:x′,y′分別為x和y的一階導(dǎo)數(shù);x″,y″分別為x和y的二階導(dǎo)數(shù).在保證擬合曲線二階可導(dǎo)時(shí),本文采用k個(gè)近鄰點(diǎn)確定二次曲線t的系數(shù)(a1,a2,a3),(b1,b2,b3)來(lái)估計(jì)道路邊界的曲率值(圖3a).
為提取道路交叉口區(qū)域,本文以車(chē)載掃描系統(tǒng)軌跡點(diǎn)Ptrai為中心點(diǎn),構(gòu)建寬度為w的搜索窗口Wi,統(tǒng)計(jì)窗口內(nèi)道路邊界點(diǎn)的曲率和Si來(lái)確定搜索窗口Wi是否為道路交叉口區(qū)域(圖3c).
(6)
(7)
圖3 道路交叉口提取Fig.3 Road intersection extraction
在車(chē)載激光點(diǎn)云數(shù)據(jù)中,道路交叉路口存在較多遮擋、噪聲或是臨近地物干擾等因素,使得道路交叉路口的輪廓特征不完整,同時(shí)其細(xì)節(jié)結(jié)構(gòu)較為多樣,識(shí)別難度大.針對(duì)道路交叉口難以區(qū)分類(lèi)型的情況,本文將檢測(cè)的道路交叉口點(diǎn)云聚合成獨(dú)立對(duì)象,采用動(dòng)態(tài)圖神經(jīng)網(wǎng)絡(luò)(Dynamic Graph CNN,DGCNN)[20]來(lái)學(xué)習(xí)道路交叉口的高級(jí)特征,將其分為“十”和“T”字路口,其網(wǎng)絡(luò)架構(gòu)如圖4所示.
圖4 DGCNN網(wǎng)絡(luò)架構(gòu)Fig.4 DGCNN network architecture
DGCNN網(wǎng)絡(luò)核心為EdgeConv模塊,該模塊能夠保證點(diǎn)云置換不變性的同時(shí)提取點(diǎn)云的局部鄰域特征,并采用動(dòng)態(tài)圖更新的方式聚合局部鄰域節(jié)點(diǎn)特征更新點(diǎn)的新特征.對(duì)于輸入的道路交叉口對(duì)象X={x1,x2,…,xn}?R3,n為點(diǎn)個(gè)數(shù),R3為三維點(diǎn)云集合,邊卷積EdgeConv模塊提取局部特征的主要流程如下:
1)逐點(diǎn)計(jì)算k近鄰節(jié)點(diǎn),對(duì)于頂點(diǎn)xi,獲取距離其最鄰近的k個(gè)點(diǎn)xi1,xi2,…,xik.
2)計(jì)算頂點(diǎn)xiKNN圖結(jié)構(gòu)的邊特征ei1,ei2,…,eik:
eik=hΘ(xi,xik-xi),
(8)
式中hΘ:RF×RF→RF′是參數(shù)化的非線性函數(shù),其權(quán)重Θ=(θ1,…,θF′,φ1,…,φF′)利用多層感知機(jī)(Multi-Layer Perceptron,MLP)進(jìn)行學(xué)習(xí),F(xiàn)及F′是特征維度.
3)采用Maxpooling層進(jìn)行通道級(jí)的對(duì)稱聚合操作,對(duì)k個(gè)邊特征進(jìn)行鄰域特征聚合,提取每維向量中最大值更新作為頂點(diǎn)xi的特征x′i:
(9)
為提取不同類(lèi)型道路交叉口的可區(qū)分信息,本文堆疊兩個(gè)EdgeConv模塊提取道路交叉口的多層次局部幾何特征,然后輸入到分類(lèi)器(mlp{64})進(jìn)行交叉路口類(lèi)別預(yù)測(cè).在目標(biāo)分類(lèi)任務(wù)中,主要使用交叉熵(Softmax Cross Entropy)來(lái)計(jì)算網(wǎng)絡(luò)的預(yù)測(cè)損失(Prediction Loss).因此本文使用交叉熵作為損失函數(shù)(L),依據(jù)DGCNN模型輸出的道路交叉口類(lèi)別概率進(jìn)行網(wǎng)絡(luò)的擬合,具體公式如下:
(10)
本文采用兩份不同城市的車(chē)載激光點(diǎn)云數(shù)據(jù)作為實(shí)驗(yàn)數(shù)據(jù)(圖5)驗(yàn)證道路交叉口識(shí)別效果.其中數(shù)據(jù)Ⅰ為由Rigel-VMX45車(chē)載激光掃描系統(tǒng)采集的福州市城區(qū)數(shù)據(jù),道路總長(zhǎng)約為16.48 km,約14.5億個(gè)點(diǎn),點(diǎn)密度約為276點(diǎn)/m2,整體呈現(xiàn)環(huán)狀分布,其特點(diǎn)在于整體呈現(xiàn)較大的地勢(shì)起伏,且點(diǎn)云密度較大,包含了城市區(qū)域主干道及次干道主要道路交叉口.數(shù)據(jù)Ⅱ?yàn)橹泻__(dá)掃描系統(tǒng)采集的泉州市街區(qū)場(chǎng)景數(shù)據(jù),其道路總長(zhǎng)約為5.03 km,約7 000萬(wàn)個(gè)點(diǎn),點(diǎn)密度約為180點(diǎn)/m2,整體呈現(xiàn)帶狀分布,其特點(diǎn)在于點(diǎn)云密度較小、道路較為狹窄,包含了典型街區(qū)小型路口.
圖5 兩份不同道路場(chǎng)景的實(shí)驗(yàn)數(shù)據(jù)Fig.5 Experimental data of two road scenes
由于車(chē)載激光點(diǎn)云數(shù)據(jù)大,為減小點(diǎn)云數(shù)據(jù)處理工作量,本文對(duì)兩份點(diǎn)云進(jìn)行抽稀處理,保證兩點(diǎn)之間最小閾值為0.02 m.根據(jù)《城市道路施工規(guī)范》(CJJ37—2012)標(biāo)準(zhǔn)中對(duì)道路邊界高度的相關(guān)規(guī)定為0.2 m,因此在預(yù)處理的布料模擬濾波過(guò)程中,將地面點(diǎn)高度閾值設(shè)置為0.2 m,格網(wǎng)分辨率設(shè)置為0.5.在道路邊界提取中,地面超體素分割結(jié)果受體素分辨率r的影響.為了確定適合實(shí)驗(yàn)數(shù)據(jù)的體素分辨率r,本文選取數(shù)據(jù)Ⅰ中的部分場(chǎng)景(圖5),設(shè)置體素分辨率r值從0.5 m到2 m進(jìn)行4組實(shí)驗(yàn).如圖6所示:當(dāng)r為0.5時(shí),超體素分割效果最佳,能較好地分割道路邊界且不超過(guò)邊界區(qū)域;隨著r的增加,超體素分割開(kāi)始跨越邊界.據(jù)此,綜合考慮分割道路邊界分割效果,在后面實(shí)驗(yàn)中將超體素分辨率r設(shè)置為0.5 m.
圖6 超體素參數(shù)實(shí)驗(yàn)方案Fig.6 Experimental schemes of supervoxel parameters
將地面過(guò)分割為超體素后,為提取完整道路邊界點(diǎn)云,本文將道路邊界體素高程差閾值設(shè)置為0.18 m、最小法向夾角閾值設(shè)置為67°、去噪點(diǎn)數(shù)閾值為500提取道路邊界點(diǎn)云,結(jié)果如圖7所示.
圖7 實(shí)驗(yàn)數(shù)據(jù)道路邊界提取結(jié)果Fig.7 Extraction of road curb from test data
從圖7中道路邊界提取結(jié)果可以看出,本文方法能夠準(zhǔn)確地提取絕大多數(shù)的道路邊界點(diǎn)云.對(duì)于道路交叉口處(圖7a中②③和圖7b中①)等道路邊界取得了較好的提取結(jié)果.從圖7中可以看出提取道路邊界中存在少量其他地物點(diǎn),這些錯(cuò)誤道路邊界點(diǎn)云主要分布在道路兩側(cè)的人行道邊界和花壇底部邊緣.這主要是因?yàn)檫@兩類(lèi)地物的形狀與道路邊界較為相似.同時(shí)從圖7a中④和圖7b中②可以看出存在部分路坎漏提取的情況,主要是因?yàn)樵撀范斡捎诘缆方徊婵邳c(diǎn)云非常稀疏和地物遮擋造成的邊界點(diǎn)云缺失,形成細(xì)碎點(diǎn)云,在道路邊界優(yōu)化階段被錯(cuò)分為噪聲點(diǎn)剔除.
由于實(shí)驗(yàn)數(shù)據(jù)Ⅰ為城區(qū)數(shù)據(jù),道路交叉口范圍較小,本文設(shè)置道路交叉口搜索窗口為70 m;而實(shí)驗(yàn)數(shù)據(jù)Ⅱ?yàn)榻謪^(qū)數(shù)據(jù),道路寬度較窄,軌跡點(diǎn)搜索窗口則設(shè)置為30 m,道路交叉口聚類(lèi)點(diǎn)曲率和閾值設(shè)置為1.1.兩份實(shí)驗(yàn)數(shù)據(jù)中道路交叉口和非道路交叉口提取結(jié)果如圖8所示.
圖8 道路交叉口提取結(jié)果Fig.8 Road intersection extraction results
從圖8中的道路交叉口提取結(jié)果可以看出,本文方法可以提取絕大多數(shù)道路交叉口,不僅能夠有效識(shí)別形狀明顯的道路交叉口區(qū)域(圖8a中①),同時(shí)能較好地識(shí)別小型道路交叉口(圖8b中③),具有較強(qiáng)的穩(wěn)健性.同時(shí),本文方法存在少量誤提取與漏提取道路邊界,主要分布在彎曲程度較小(如圖9中場(chǎng)景A)或數(shù)據(jù)缺失道路交叉口區(qū)域(如圖9中場(chǎng)景B).
圖9 道路交叉口誤提取和漏提取結(jié)果Fig.9 Overview of some subsets of road intersection misdetection and error detection
由于沒(méi)有現(xiàn)成的訓(xùn)練樣本集用于訓(xùn)練道路交叉口分類(lèi),本文通過(guò)人工標(biāo)記從其他道路場(chǎng)景的車(chē)載激光點(diǎn)云中提取不同缺失程度的十字路口、T字路口作為訓(xùn)練樣本,部分樣本如圖10所示.由于人工提取樣本成本較高,為擴(kuò)充訓(xùn)練樣本總數(shù),通過(guò)水平旋轉(zhuǎn)、抖動(dòng)、添加噪聲等操作擴(kuò)增形成3 000個(gè)訓(xùn)練樣本集.
圖10 人工提取道路交叉口樣本Fig.10 Manually extracted road intersections as training samples
在DGCNN模型訓(xùn)練階段,本文對(duì)批處理(Batch Size)、初始學(xué)習(xí)率(Learning-rate)、衰減率(Decay Rate)、最大迭代次數(shù)等訓(xùn)練參數(shù)進(jìn)行了多次調(diào)試,最終將批處理大小設(shè)置為16,學(xué)習(xí)率設(shè)置為0.001,衰減率設(shè)置為0.7,最大迭代次數(shù)設(shè)置為500 .利用訓(xùn)練好的DGCNN模型從兩份實(shí)驗(yàn)數(shù)據(jù)中識(shí)別的道路交叉口結(jié)果如圖11所示.
圖11 道路交叉口分類(lèi)結(jié)果Fig.11 Road intersection classification results
從以上道路交叉口分類(lèi)結(jié)果可以看出,兩份實(shí)驗(yàn)數(shù)據(jù)的絕大部分道路交叉口類(lèi)型均能被正確分類(lèi).本文方法不僅對(duì)于十字路口具有較好的分類(lèi)效果(如圖11a①②和圖11b③),同時(shí)對(duì)于部分受遮擋導(dǎo)致道路交叉口缺失的T字路口也具有較好的分類(lèi)效果(如圖11a④和圖11b②).這說(shuō)明DGCNN模型能夠克服道路交叉口數(shù)據(jù)缺失的影響,準(zhǔn)確地將交叉口分類(lèi).但DGCNN模型交叉口識(shí)別精度一定程度上受樣本類(lèi)型影響,部分并未涉及的環(huán)形道路交叉口類(lèi)型被錯(cuò)誤分類(lèi)為T(mén)字路口(如圖12中場(chǎng)景A).同時(shí)由于部分道路場(chǎng)景噪聲較多,造成DGCNN 將部分非道路交叉口被錯(cuò)誤分類(lèi)為T(mén)字路口(如圖12中場(chǎng)景B).
圖12 道路交叉口誤分類(lèi)結(jié)果Fig.12 Overview of some subsets of road intersection misclassification
由于實(shí)驗(yàn)數(shù)據(jù)中沒(méi)有提供標(biāo)定的真實(shí)參考數(shù)據(jù),本文采用人工標(biāo)定方式統(tǒng)計(jì)實(shí)驗(yàn)數(shù)據(jù)道路交叉口數(shù)量及類(lèi)型,其中數(shù)據(jù)Ⅰ共包含23個(gè)道路交叉口,十字路口為6個(gè),T字路口為17個(gè),數(shù)據(jù)Ⅱ共包含30個(gè)道路交叉口,十字路口為1個(gè),T字路口為29個(gè).本文采用準(zhǔn)確率(Preciosn,P)、召回率(Recall,R)來(lái)計(jì)算本文方法的道路交叉口分類(lèi)精度.
(10)
(11)
式中:TPs為正確識(shí)別道路交叉口個(gè)數(shù);FPs為錯(cuò)誤識(shí)別的道路交叉口個(gè)數(shù);FNs為未被識(shí)別的道路交叉口個(gè)數(shù).
表1為道路交叉口分類(lèi)精度結(jié)果.
從表1中可以看出,本文算法能夠準(zhǔn)確分類(lèi)出實(shí)驗(yàn)數(shù)據(jù)Ⅰ中所有十字和T字路口,兩種類(lèi)型道路交叉口準(zhǔn)確率為100%.但由于部分路段遮擋情況嚴(yán)重,道路交叉口存在漏提取,造成T字交叉口召回率相對(duì)較低.在實(shí)驗(yàn)數(shù)據(jù)Ⅱ中十字路口準(zhǔn)確率和召回率達(dá)100%,T字路口準(zhǔn)確率達(dá)89.65%,召回率達(dá)100%.T字路口準(zhǔn)確率較低的原因在于部分環(huán)形道路交叉口本文尚未涉及,造成道路交叉口誤提取.整體而言,在兩份數(shù)據(jù)中,十字路口分類(lèi)準(zhǔn)確率與召回率均達(dá)100%,T字路口準(zhǔn)確率與召回率均在89%以上,這表明本文方法能夠從車(chē)載激光點(diǎn)云數(shù)據(jù)中分類(lèi)絕大多數(shù)的道路交叉口,適用于復(fù)雜城區(qū)和街區(qū)道路場(chǎng)景.
表1 道路交叉口分類(lèi)精度
本文提出了一種基于動(dòng)態(tài)圖神經(jīng)網(wǎng)絡(luò)的道路交叉口檢測(cè)與識(shí)別的方法,通過(guò)兩份不同城市環(huán)境的車(chē)載掃描數(shù)據(jù)對(duì)本文方法有效性進(jìn)行了驗(yàn)證.目前本文方法能夠識(shí)別道路交叉口及交叉口類(lèi)型,在復(fù)雜城市和街區(qū)中,十字交叉路口的準(zhǔn)確率和召回率可達(dá)100%,T字交叉路口準(zhǔn)確率和召回率可達(dá)89%以上.由于車(chē)載激光掃描系統(tǒng)獲取數(shù)據(jù)易被地物遮擋,本文方法提取的道路邊界存在少量的缺失與噪聲,這造成后續(xù)道路交叉口類(lèi)型的錯(cuò)誤識(shí)別.由于樣本類(lèi)型和數(shù)據(jù)的限制,利用DGCNNN 模型無(wú)法準(zhǔn)確分類(lèi)未見(jiàn)的道路交叉口類(lèi)型.因此在今后的研究中,將致力于提升道路邊界提取的完整度,并進(jìn)一步改進(jìn)道路交叉口識(shí)別優(yōu)化方法,同時(shí)提升道路交叉口識(shí)別的類(lèi)型完整度,服務(wù)于車(chē)載激光點(diǎn)云道路交叉口類(lèi)型識(shí)別.