張亞東,梁文化,赫磊,趙春芳,朱鎮(zhèn),陳濤,趙慶勇,趙凌,姚姝,周麗慧,路凱,王才林
水稻RIL群體高密度遺傳圖譜構建及粒型QTL定位
張亞東,梁文化,赫磊,趙春芳,朱鎮(zhèn),陳濤,趙慶勇,趙凌,姚姝,周麗慧,路凱,王才林
江蘇省農業(yè)科學院糧食作物研究所/江蘇省優(yōu)質水稻工程技術研究中心/國家水稻改良中心南京分中心,南京 210014
【目的】水稻粒型是與產量直接相關的重要農藝性狀,影響稻米的外觀品質和商品價值。挖掘新的水稻粒型相關基因,對揭示水稻粒型調控的遺傳機理研究有重要意義,同時可為水稻粒型分子育種提供新的基因資源。【方法】以極端粒型差異的粳稻TD70和秈稻Kasalath,以及雜交構建的186個家系的重組自交系群體為研究材料,利用高通量測序技術對親本和RIL株系進行深度測序。統(tǒng)計186個RIL基因型數據,利用滑動窗法(SNP/InDel數目為15),將窗口內SNP/InDel信息轉換成窗口的基因型,預測染色體上的重組斷點構建RIL群體的BinMap遺傳圖譜,結合2年的粒長、粒寬、粒厚和千粒重的表型數據,運用QTL IciMapping軟件,采用復合區(qū)間作圖法對RIL群體的4個性狀進行QTL定位?!窘Y果】構建了一張包含12 328個Bin標記的高密度遺傳圖譜,該圖譜各染色體Bin標記數為763—1 367個,標記間平均物理距離為30.26 kb。粒長、粒寬、粒厚和千粒重4個性狀在RIL群體中呈近正態(tài)連續(xù)分布,且2年間的變化趨勢相似,符合QTL作圖要求。2018年對粒長、粒寬、粒厚及千粒重進行QTL分析,共檢測到40個粒型QTL,其中,粒長12個,粒寬9個,粒厚8個,千粒重11個,2019年對粒長、粒寬、粒厚及千粒重進行QTL分析,檢測到56個籽粒相關的QTL,粒長15個,粒寬11個,粒厚13個,千粒重17個。分析定位到的96個粒型QTL位點,連續(xù)2年都能檢測到的QTL位點有11個,其中7個為已克隆的粒型基因位點,4個為未知的新位點,分別分布于第1、3、4、5染色體上,分別為粒長和、粒厚、粒寬?!窘Y論】構建了一張包含12 328個Bin標記的分子遺傳連鎖圖譜,解析大粒粳稻資源的粒型基因,獲得了、、、等4個新的粒型QTL,可用于后續(xù)粒型調控基因的精細定位及克隆研究。
水稻;Bin圖譜;粒型;QTL定位
【研究意義】水稻粒型是與產量性狀直接相關的重要農藝性狀,影響稻米的外觀品質和商品價值[1-3]。重要農藝性狀(如產量、品質性狀)QTL定位、克隆是高產優(yōu)質水稻分子育種的基礎和前提;而連鎖圖譜,尤其是高密度遺傳連鎖圖譜,又是QTL定位、克隆的基礎。因此,構建高密度遺傳連鎖圖譜對QTL定位和分子育種具有很大的實際意義[4]。【前人研究進展】基于傳統(tǒng)方法的分子標記(如RFLP、AFLP、SSR、CAPs、STS、ETS)構建的遺傳圖譜存在標記數量少、分布不均、覆蓋密度低等缺陷,對后續(xù)QTL精細定位和克隆極為不利[5-6]。隨著高通量測序技術發(fā)展出來的SNP、Indel等標記,由于遺傳穩(wěn)定性高、分布廣泛、多樣性高、數量大等特點,在水稻復雜數量性狀研究中得到了高度重視和廣泛應用。隨著下一代測序(next-generation sequencing,NGS)技術的發(fā)展,快速高效地進行SNP大規(guī)模開發(fā)及基因型分析的成本越來越低、質量越來越高。取一定數量的連續(xù)SNP標記作為判斷染色體重組事件的最小單位(recombination bin),判斷子代每個Bin的來源,得到每個子代的全基因組物理圖譜,從而構建出的遺傳圖譜稱之為Bin圖譜[7]。Bin圖譜是基于SSR/RFLP標記的傳統(tǒng)遺傳圖譜后的新一代遺傳圖譜,通過高通量測序進行,自動化程度高、構建時間短、精確度高,可以直接進行QTL定位后續(xù)的候選篩選和分子標記的直接開發(fā)。Bin圖譜已成功應用于谷子[8]、水稻[9]、玉米[10]等的QTL定位中。近年來,已有多個控制粒型的基因被克隆,幾乎分布于水稻所有染色體上。證實了、、、等通過MAPK信號途徑[11-15];、、、、等通過泛素蛋白酶體降解途徑[16-20];、、等通過G蛋白信號通路[21-24];、、等通過植物激素途徑[25-27];、、、、、、等通過轉錄調控途徑來調控水稻粒型[28-35]。【本研究切入點】目前,粒型基因克隆較多,但已知水稻粒型仍不足以解釋其復雜的分子調控機制?!緮M解決的關鍵問題】本研究利用重測序技術,對特大粒粳稻TD70和小粒秈稻Kasalath構建的包含186個株系RIL群體為作圖群體,采用基因分型測序(genotyping-by-sequencing,GBS)技術構建Bin標記的高密度遺傳圖譜,對粒型QTL進行檢測,以期鑒定到新的、可穩(wěn)定遺傳的粒型QTL,為水稻粒型基因的克隆、功能解析及分子育種提供依據。
用來源于天鵝谷///9520//(72-496/御糯)后代粒重超親本的粳型超大粒品系TD70和秈稻小粒型品種Kasalath雜交,通過單粒傳法,從F2代開始構建TD70/Kasalath的重組自交系群體。群體包含186個株系,基因型鑒定為F8世代,表型調查為F9—F10世代。上述材料于2018—2019年種植在江蘇省農業(yè)科學院試驗田,每行8株,行距為26.7 cm,株距為16.7 cm(單苗種植),田間管理與大田相同。
稻谷成熟后,親本及每個RIL株系按單株收取5個植株的種子進行粒型考察。每個單株隨機挑選10粒飽滿種子使用游標卡尺(精度0.01 mm)測量粒長、粒寬和粒厚,千粒重則利用電子天平(精度0.001 g)測定單株1 000粒風干種子的重量。每個性狀以5株的平均值為最終的表型值。
2018年在水稻分蘗盛期采取幼嫩的葉片,進行親本和RIL群體單株DNA的提取。用1%瓊脂糖凝膠電泳檢測基因組DNA完整性,用Nanodrop2000微量核酸蛋白檢測儀檢測DNA的濃度與純度。質量檢測合格的DNA,采用NEB Next? UltraTMII DNA文庫制備試劑盒進行測序文庫的構建,委托安諾優(yōu)達基因科技(北京)有限公司負責完成測序,采用的測序平臺為NovaSeq 6000,測序模式為Paired-end 150 bp。測序得到原始數據,用軟件包FastQC(Ver 0.11.9)和fastp(Ver 0.20.0)對原始測序數據進行質量評估和質量過濾,主要去除接頭污染的reads,低質量的reads以及含N比例大于5%的reads等,得到后續(xù)分析所用的高質量Clean Reads。
基于二代高通量測序,對親本TD70和Kasalath及186個RIL株系進行深度測序。TD70和Kasalath的Reads與Nipponbare(ssp.)參考基因組的比對率分別為98.7%和97.2%,分別得到121 491 700和131 284 874個clean reads,測序量為18.22和19.69 Gb,平均測序深度分別為40×和44×。RIL群體共獲得數據1 304 Gb的測序數據,每個株系獲得的數據量為5.10—12.37 Gb,平均每個株系獲得7.01 Gb的數據,測序深度為18.80×。測序質量評估顯示,質控后Q30最低為93.45%,平均為94.53%。從以上的數據統(tǒng)計顯示測序數據產量和質量均較好可以進行下一步分析。用軟件BWA軟件將測序reads與水稻日本晴參考基因組(IRGSP-1.0)進行對比。保留唯一比對的雙端reads,通過GATK與Freebayes檢測雙親間的SNP位點。對186個RIL基因型數據進行統(tǒng)計,利用滑動窗法(SNP/InDel數目為15),將窗口內SNP/InDel信息轉換成窗口的基因型,通過窗口周圍的基因型信息,對錯誤的基因型進行修正。進一步基于根據窗口基因型,預測染色體上的重組斷點構建的RIL群體的BinMap圖譜。
分別用2018和2019年RIL群體的粒長、粒寬、粒厚及千粒重表型進行QTL定位。采用軟件QTL IciMapping(Ver 4.2.53)設定PIN為0.001,步長為1 cM,采用完備區(qū)間作圖(inclusive composite interval mapping,ICIM)的方法檢測全基因組內的粒型QTL[36];LOD閾值設定為2.5,以LOD峰值作為該QTL的LOD值,以LOD峰值位置的Bin標記估算QTL的效應,遵循McCouch[37]的原則命名QTL。
對2018和2019年親本TD70、Kasalath及186個RIL株系進行粒長、粒寬、粒厚和千粒重的考察。結果顯示,TD70、Kasalath和RIL株系粒型存在極顯著差異(圖1)。RIL群體2018年粒長平均為9.72 mm,變幅為7.77—13.00 mm;粒寬平均為3.12 mm,變幅為2.37—4.34 mm;粒厚平均為2.10 mm,變幅為1.71—2.63 mm;千粒重平均為30.60 g,變幅為17.95—55.4 g。
P1:TD70;P2:Kasalath;1—14:RIL群體部分株系
綜合2018—2019年數據,發(fā)現(xiàn)粒長、粒寬和粒厚性狀在RIL群體中存在超親分離現(xiàn)象,但均值都在2個親本表型值范圍內,變異系數為7.35— 22.68(表1)。用SPSS(Ver 22.0)軟件對各性狀的正態(tài)性檢驗結果顯示,粒長、粒寬、粒厚和千粒重4個性狀在RIL群體中呈近正態(tài)連續(xù)分布,且2年間的變化趨勢相似,符合QTL作圖要求(圖2)。
表1 親本與RIL群體2年間粒型的表型變異
GL:粒長;GW:粒寬;GT:粒厚;TGW:千粒重。下同
GL: grain length; GW: grain width; GT: grain thickness; TGW: 1000-grain weight. The same as below
GL:粒長;GW:粒寬;GT:粒厚;TGW:千粒重;T:TD70;K:Kasalath
基于RIL群體186個株系的重測序PE reads,利用短序列比對軟件BWA將PE reads比對到日本晴參考基因組上,過濾掉多位點和缺失率大于80%的SNP數據,保留唯一比對的SNP作圖,以提高作圖效率和精度。參考Huang等[7]方法用過濾后的SNP構建Bin標記。采用滑動窗法,將窗口內SNP/InDel信息轉換成窗口的基因型,通過窗口周圍的基因型信息,對錯誤的基因型進行修正。進一步基于根據窗口基因型,預測染色體上的重組斷點,共得到12 328個Bin標記,標記為RBN0001— RBN12328,每條染色體Bin標記數為763—1 367個,平均為1 027個。
將Bin區(qū)段基因型數據導入軟件R/qtl進行遺傳圖譜的構建。該遺傳圖譜總長為21 295.44 cM,包含12個連鎖群,分別對應水稻的12條染色體,各染色體遺傳距離為1 006.01—2 400.93 cM,其中第4染色體遺傳距離最大,第10染色體的遺傳距離最短,染色體平均遺傳距離為1 774.62 cM;第7染色體Bin標記間平均遺傳距離最大,為2.13cM,第3染色體Bin標記間距離最小,僅為1.22 cM,整個染色體組的標記間距離為1.71 cM。圖譜標記間平均物理距離為30.26 kb(表2和圖3)。
2.3.1 2018年粒型QTL定位 對2018年種植材料的
粒長、粒寬、粒厚及千粒重進行QTL分析,共檢測到40個粒型QTL,其中粒長12個,粒寬9個,粒厚8個,千粒重11個(圖4)。這些QTL除第6染色體外,其他11條染色體均有分布。其中,第3染色體上的QTL最多,為9個,其次是第2染色體,為7個,第8染色體僅檢測到1個。這些QTL的LOD值為2.88—35.15,單個QTL的貢獻率為1.61%—33.33%。檢測到的12個粒長QTL,LOD值為3.59—27.88,貢獻率最高為21.26%。共檢測到9個粒寬相關的QTL,其中有3個QTL位于第4染色體。這些QTL LOD值為3.05—35.15,其中第2染色體上的位點LOD值為35.15,貢獻率為28.82%,第5染色體上的位點LOD值為32.44,可解釋25.59%的表型變異。粒厚相關QTL共檢測到8個,其中第3染色體上檢測到3個。LOD值為2.88—31.44,表型貢獻率為2.10%—33.33%。千粒重共檢測到11個QTL,位于第3染色體上的對表型貢獻率最大為31.19%,其次為第2染色體上的位點可解釋14.67%的表型變異。以上QTL的增效等位基因主要來自大粒親本TD70,說明大粒親本中的QTL位點對籽粒大小具有明顯的增效作用(表3)。
表2 Bin圖譜信息表
圖3 Bin標記構建的遺傳連鎖圖譜
黑色位點為2018年定位的粒型QTL,綠色位點為2019年定位的粒型QTL,紅色位點表示2018和2019年均定位的粒型QTL
2.3.2 2019年粒型QTL定位 對2019年種植材料的粒長、粒寬、粒厚及千粒重進行QTL分析,檢測到56個籽粒相關的QTL,粒長15個,粒寬11個,粒厚13個,千粒重17個(圖4)。這些QTL的LOD值為2.53—33.76,單個QTL解釋的表型變異為1.02%—30.07%。這些QTL分布在水稻的12條染色體上,第2染色體上最多,為11個,其次是第3染色體,為8個,第9染色體上最少,為1個。在第3和第7染色體上各檢測到3個粒長QTL。這些QTL的LOD值為2.58—33.76,單個QTL的貢獻率為1.02%—21.17%。其中第3染色體上、和第7染色體上的位點,分別可以解釋15.44%、12.55%和21.17%的表型變異,加性效應分別為0.456、0.444和0.529。粒寬QTL的LOD值范圍為2.53—32.03,貢獻率為1.60%—30.07%。其中位點LOD值為32.03,可解釋30.07%的表型變異,加性效應為0.214。13個粒厚QTL的LOD值范圍為3.21—17.82,對粒厚的貢獻率為2.51%—16.27%。其中第2染色體上的和位點LOD值分別為11.80和17.82,分別可解釋9.67%和16.27%的表型變異。千粒重共檢測到17個QTL,LOD值最大為27.16,共解釋84.96%的表型變異。其中,、和的LOD值分別為22.27、27.16和23.36,可分別解釋千粒重11.34%、14.59%和12.38%的變異(表3)。
2.3.3 2年粒型QTL定位結果的比較 2018—2019年連續(xù)2年通過連鎖作圖的方法對粒長、粒寬、粒厚以及千粒重4個性狀進行QTL定位(表3)。結果顯示,2年共檢測到96個粒型QTL,其中28個QTL涉及重復交叉,關聯(lián)在11個區(qū)間內,LOD值為2.53—35.50,貢獻率為1.02%—35.15%。從染色體分布看,檢測到的QTL在水稻的12條染色體上皆有分布。其中,第2、第3染色體上檢測到的QTL較多,均為15個,第6和第9染色體檢測到的QTL最少,均為2個。
2018年和2019年都檢測到的QTL有11個,與粒長相關的QTL有6個。位于第2染色體,2年的LOD值分別為7.47和8.27,貢獻率為4.26%和3.69%。和位于第3染色體,2年的LOD值分別為27.88和27.05,貢獻率為20.94%和15.44%;2年的LOD值分別為27.5和22.49,貢獻率分別為21.26%和12.55%。位于第4染色體,2年的LOD值分別為10.85和8.37,貢獻率分別為6.66%和3.86%。位于第5染色體,2年的LOD值分別為5.81和4.31,貢獻率分別為5.13%和4.55%。位于第7染色體,LOD值分別為10.13和33.76,貢獻率分別為5.99%和21.17%。、和分別位于第2、4和5染色體上,是2年均檢測到的粒寬QTL,2年的LOD值為3.22—35.15,可以解釋粒寬3.05%—30.07%的變異。2018年檢測到的與2019年檢測到位于同一區(qū)間,LOD值各為8.56和6.32,分別解釋了粒型性狀6.07%和5.01%的變異;2018年檢測到的粒長與2019年千粒重位于同一區(qū)間,LOD值各為3.60和22.34,分別解釋了粒型性狀3.15%和11.34%的變異。
續(xù)表3 Continued table 3
續(xù)表3 Continued table 3
*:同區(qū)間在不同年份定位出不同粒型性狀;**:同一區(qū)間在不同年份定位出同一粒型性狀
*: different grain traits were located in the same interval in different years; **: the same grain type trait is located in the same interval in different years
基于傳統(tǒng)的分子標記如RAPD、RFLP、SSR所構建的遺傳圖譜過程耗時、繁瑣,涉及引物設計、PCR擴增、核酸電泳等步驟。這些分子標記所構建的遺傳圖譜因分子標記密度較低,不能提供準確和完全的控制QTL的數目和座位信息[38-39]。隨著高通量測序技術的發(fā)展,測序價格變得越來越便宜,使得高通量測序技術在植物科學研究中得到了越來越廣泛的應用。高通量測序技術的應用極大地促進了高密度或超高密度遺傳圖譜的發(fā)展。與傳統(tǒng)分子標記構建的遺傳圖譜相比,利用高通量測序技術構建的Bin圖譜精確度高、構建時間短[7, 40]。YU等[41]對包含241個株系的RIL群體進行約0.06×的重測序,構建了一個超高密度的Bin遺傳圖譜。并與傳統(tǒng)的SSR、RFLP分子標記構建的圖譜進行了比較發(fā)現(xiàn),利用Bin遺傳圖譜能夠檢測到更多的QTL,而且檢測到的QTL更加精細。YANG等[40]利用簡化基因組測序,構建了一個包含2 498個Bin標記的遺傳圖譜,定位到與種子萌發(fā)、早期生長相關的42個QTL,為培育適宜直播的水稻新品奠定了基礎。YANG等[42]利用2 711個Bin標記的遺傳連鎖圖對水稻幼苗活力性狀進行了QTL定位,并結合RNA-Seq分析獲得了37個候選差異表達基因。DU等[43]利用1 910個Bin標記的遺傳連鎖圖,對水稻粒型性狀進行了QTL定位,并通過CRISPR/Cas9基因敲除的方式進一步驗證了候選基因的功能。本研究對RIL群體的186個株系進行重測序,獲得平均覆蓋深度約為18×的高質量數據,通過基因組重測序技術構建了包含12 328個Bin標記,標記間平均遺傳距離為1.73 cM,物理距離為30.26 kb的Bin圖譜。本研究通過高密度Bin圖譜檢測到的QTL數目與前人相比明顯增多,該圖譜2年共定位到96個粒型QTL位點,11個QTL連續(xù)2年都檢測到,說明這些QTL遺傳穩(wěn)定,可以進行分子標記的開發(fā)和基因利用。
從染色體分布看,粒型QTL在水稻12條染色體上分布不一,本研究中第2和3染色體共發(fā)現(xiàn)30個粒型QTL,占總數近1/3,其次第4、5、7、11和12染色體檢測的粒型QTL數量范圍為7—9個。同時,粒型不同性狀QTL在染色體上往往呈現(xiàn)集中分布,粒長、粒厚QTL在第3染色體上較多;粒寬QTL主要在第2和4染色體;千粒重的QTL主要集中在第2和3染色體。研究表明粒型基因往往存在一因多效現(xiàn)象,本研究中有11個QTL區(qū)間具有一因多效現(xiàn)象。、和為位點,對粒長、粒厚和粒重具有重要貢獻;、和對粒長、粒厚和粒重具有作用;和為同一位點的QTL,該位點對粒長和粒寬均有貢獻;和為位點對粒長和粒重具有明顯的增效作用,增效位點來源于大粒水稻TD70。
開展水稻粒型基因的定位、克隆及效應研究,對產量的提高、加工品質的改良、外觀品質的改善具有重要意義。據Gramene網站(http://archive.gramene.org/qtl/)統(tǒng)計,通過遺傳作圖、關聯(lián)分析等方法,目前鑒定水稻粒型相關的基因/QTL已經超過400個,這些粒型基因/QTL幾乎分布在水稻的12條染色體上[44-45],其中位于第2、3和5染色體上QTL較多。已報道的影響粒長的基因主要有[46]、[47-48]、/[49-50]、[51]、/[52-53]、[54]、[32]、[33]等;粒寬相關的基因有[16]、[26]、[55]、[25, 56]、[31]等;/[17, 57]是粒寬和粒厚調控基因;[58]和[59]是千粒重的主效QTL。此外,還有一些其他的生長調節(jié)因子對粒型有調控作用,如[60]、/[28, 30]等。
本研究通過高密度Bin圖譜檢測到的QTL,由于標記本身特定的物理位置,經比對發(fā)現(xiàn)多數位點與之前檢測或者已克隆的主效粒型基因具有很好的區(qū)間一致性。定位的粒長QTL、和在2年均被檢測到,與前期用該群體通過傳統(tǒng)的方法檢測到的位點一致,進一步分析發(fā)現(xiàn)這3個位點分別為已經克隆的粒型基因、及/位點[60-61]。、位點與前期定位區(qū)間一致,進一步分析證明這兩個位點為已經克隆的粒寬主效基因和[16, 25, 62]。本研究通過高密度Bin圖譜定位到大量的粒型QTL位點,既包含前人已經定位或克隆的、、、、、、等粒型基因[26, 28, 31, 48, 63-65],也有新發(fā)現(xiàn)的4個2年在同一區(qū)間控制粒型的、、新位點,這說明本研究結果是真實可靠的。
構建了一張包含12 328個Bin標記的分子遺傳連鎖圖譜,利用該圖譜對大粒資源的粒型性狀進行了QTL定位,共得到96個粒型QTL。驗證了大部分定位或克隆的粒型基因,同時新鑒定出等4個同區(qū)間粒型QTL,證實了多個粒型基因的組合可行性。
[1] 徐正進, 陳溫福, 馬殿榮, 呂英娜, 周淑清, 劉麗霞. 稻谷粒形與稻米主要品質性狀的關系. 作物學報, 2004, 30(9): 894-900.
XU Z J, CHEN W F, MA D R, Lü Y N, ZHOU S Q, LIU L X. Correlations between rice grain shapes and main qualitative characteristics. Acta Agronomica Sinica, 2004, 30(9): 894-900. (in Chinese)
[2] 高志強, 占小登, 梁永書, 程式華, 曹立勇. 水稻粒形性狀的遺傳及相關基因定位與克隆研究進展. 遺傳, 2011, 33(4): 314-321.
GAO Z Q, ZHAN X D, LIANG Y S, CHENG S H, CAO L Y. Progress on genetics of rice grain shape trait and its related gene mapping and cloning. Hereditas, 2011, 33(4): 314-321. (in Chinese)
[3] HARBERD N P. Shaping taste: The molecular discovery of rice genes improving grain size, shape and quality. Journal of Genetics & Genomics, 2015, 42(11): 597-599.
[4] 彭強, 李佳麗, 張大雙, 姜雪, 鄧茹月, 吳健強, 朱速松. 不同環(huán)境基于高密度遺傳圖譜的稻米外觀品質QTL定位. 作物學報, 2018, 44(8): 1248-1255.
PENG Q, LI J L, ZHANG D S, JIANG X, DENG R Y, WU J Q, ZHU S S. QTL mapping for rice appearance quality traits based on a high-density genetic map in different environments. Acta Agronomica Sinica, 2018, 44(8): 1248-1255. (in Chinese)
[5] XIE W B, FENG Q, YU H H, HUANG X H, ZHAO Q, XING Y Z, YU S B, HAN B, ZHANG Q F. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proceedings of the National Academy of the Sciences of the United States of America, 2010, 107(23): 10578-10583.
[6] 王洪振, 王姝, 鄺盼盼, 林政發(fā), 程軍, 趙永斌, 李長有, 于長春. DNA分子標記技術及其在植物育種中的應用. 吉林師范大學學報(自然科學版), 2016, 37(1): 108-111.
WANG H Z, WANG S, KUANG P P, LIN Z F, CHENG J, ZHAO Y B, LI C Y, YU C C. DNA molecular marker technology and its application in plant breeding. Jilin Normal University Journal (Natural Science Edition), 2016, 37(1): 108-111. (in Chinese)
[7] HUANG X H, FENG Q, QIAN Q, ZHAO Q, WANG L, WANG A H, GUAN J P, FAN D L, WENG Q J, HUANG T, DONG G J, SANG T, HAN B. High-throughput genotyping by whole-genome resequencing. Genome Research, 2009, 19(6): 1068-1076.
[8] HE Q, ZHI H, TANG S, XING L, WANG S Y, WANG H G, ZHANG A Y, LI Y H, GAO M, ZHANG H J, CHEN G Q, DAI S T, LI J X, YANG J J, LIU H F, ZHANG W, JIA Y C, LI S J, LIU J R, QIAO Z J, GUO E H, JIA G Q, LIU J, DIAO X M. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theoretical and Applied Genetics, 2021, 134(2): 557-572.
[9] 董驥馳, 楊靖, 郭濤, 陳立凱, 陳志強, 王慧. 基于高密度Bin圖譜的水稻抽穗期QTL定位. 作物學報, 2018, 44(6): 938-946.
DONG J C, YANG J, GUO T, CHEN L K, CHEN Z Q, WANG H. QTL mapping for heading date in rice using high-density bin map. Acta Agronomica Sinica, 2018, 44(6): 938-946. (in Chinese)
[10] ZHOU Z, ZHANG C, ZHOU Y, HAO Z, WANG Z, ZENG X, DI H, LI M, ZHANG D, YONG H, ZHANG S, WENG J, LI X. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. BMC Genomics, 2016, 17: 178.
[11] LIU S Y, HUA L, DONG S J, CHEN H Q, ZHU X D, JIANG J E, ZHANG F, LI Y H, FANG X H, CHEN F., a mitogen-activated protein kinase, influences rice grain size and biomass production. The Plant Journal, 2015, 84(4): 672-681.
[12] XU R, YU H, WANG J, DUAN P, ZHANG B, LI J, LI Y, XU J, LYU J, LI N, CHAI T, LI Y. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. The Plant Journal, 2018, 95(6): 937-946.
[13] XU R, DUAN P G, YU H Y, ZHOU Z K, ZHANG B L, WANG R C, LI J, ZHANG G Z, ZHUANG S S, LYU J, LI N, CHAI T Y, TIAN Z X, YAO S G, LI Y H. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Molecular Plant, 2018, 11(6): 860-873.
[14] DUAN P G, RAO Y C, ZENG D L, YANG Y L, XU R, ZHANG B L, DONG G J, QIAN Q, LI Y H., which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. The Plant Journal, 2014, 77(4): 547-557.
[15] GUO T, CHEN K, DONG N Q, SHI C L, YE W W, GAO J P, SHAN J X, LIN H X.negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. The Plant Cell, 2018, 30(4): 871-888.
[16] SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature genetics, 2007, 39(5): 623-630.
[17] HUANG L J, HUA K, XU R, ZENG D L, WANG R C, DONG G J, ZHANG G Z, LU X L, FANG N, WANG D K, DUAN P G, ZHANG B L, LIU Z P, LI N, LUO Y H, QIAN Q, YAO S G, LI Y H. Theregulatory module controls panicle size and grain number in rice. The Plant Cell, 2021, 33(4): 1212-1228.
[18] HUANG K, WANG D, DUAN P, ZHANG B, XU R, LI N, LI Y. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. The Plant Journal, 2017, 91(5): 849-860.
[19] SHI C L, REN Y L, LIU L L, WANG F, ZHANG H, TIAN P, PAN T, WANG Y F, JING R N, LIU T Z, WU F Q, LIN Q B, LEI C L, ZHANG X, ZHU S S, GUO X P, WANG J L, ZHAO Z C, WANG J, ZHAI H Q, CHENG Z J, WAN J M. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiology, 2019, 180(1): 381-391.
[20] ISHII T, NUMAGUCHI K, MIURA K, YOSHIDA K, THANH P T, HTUN T M, YAMASAKI M, KOMEDA N, MATSUMOTO T, TERAUCHI R. OsLG1 regulates a closed panicle trait in domesticated rice. Nature Genetics, 2013, 45(4): 462-465.
[21] FAN C, XING Y, MAO H, LU T, HAN B, XU C, LI X, ZHANG Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171.
[22] MAO H L, SUN S Y, YAO J L, WANG C R, YU S B, XU C G, LI X H, ZHANG Q I. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of the Sciences of the United States of America, 2010, 107(45): 19579.
[23] SWAIN, D M, SAHOO R K, SRIVASTAVA V K, TRIPATHY B C, TUTEJA R, TUTEJA N. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta, 2016, 245(2): 1-17.
[24] MIAO J, YANG Z F, ZHANG D P, WANG Y Z, XU M B, ZHOU L H, WANG J, WU S J, YAO Y L, DU X, GU F F, GONG Z Y, GU M H, LIANG G H, ZHOU Y. Mutation of, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnology Journal, 2019, 17(3): 650-664.
[25] LIU J F, CHEN J, ZHENG X M, WU F Q, LIN Q B, HENG Y Q, TIAN P, CHENG Z J, YU X W, ZHOU K N, ZHANG X, GUO X P, WANG J L, WANG H Y, WAN J M. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature plants, 2017, 3(5):17043.
[26] LI Y B, FAN C C, XING Y Z, JIANG Y H, LUO L J, SUN L, SHAO D, XU C J, LI X H, XIAO J H, HE Y Q, ZHANG Q F. Natural variation inplays an important role in regulating grain size and yield in rice. Nature genetics, 2011, 43(12): 1266-1269.
[27] SHI C L, DONG N Q, GUO T, YE W W, SHAN J X, LIN H X. A quantitative trait locuscontrols rice grain size and yield through the gibberellin pathway. The Plant Journal, 2020, 103(3): 1174-1188.
[28] HU J, WANG Y X, FANG Y X, ZENG L J, XU J, YU H P, SHI Z Y, PAN J J, ZHANG D, KANG S J, ZHU L, DONG G J, GUO L B, ZENG D, ZHANG G H, XIE L H, XIONG G S, LI J Y, QIAN Q. A rare allele ofenhances grain size and grain yield in rice. Molecular Plant, 2015, 8(10): 1455-1465.
[29] DUAN P G, NI S, WANG J M, ZHANG B L, XU R, WANG Y X, CHEN H Q, ZHU X O, LI Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature plants, 2015, 2(1): 15203.
[30] CHE R H, TONG H N, SHI B H, LIU Y Q, FANG S R, LIU D P, XIAO Y H, HU B, LIU L C, WANG H R. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature plants, 2015, 2(1): 15195.
[31] WANG S K, WU K, YUAN Q B, LIU X Y, LIU Z B, LIN X Y, ZENG R Z, ZHU H T, DONG G J, QIAN Q, ZHANG G Q, FU X D. Control of grain size, shape and quality byin rice. Nature genetics, 2012, 44(8): 950-954.
[32] SI L Z, CHEN J Y, HUANG X H, GONG H, LUO J H, HOU Q Q, ZHOU T Y, LU T T, ZHU J J, SHANGGUAN Y Y, CHEN E W, GONG C X, ZHAO Q, JING Y F, ZHAO Y, LI Y, CUI L L, FAN D L, LU Y Q, WENG Q J, WANG Y C, ZHAN Q L, LIU K Y, WEI X H, AN K, AN G, HAN B.controls grain size in cultivated rice. Nature genetics, 2016, 48(4): 447-456.
[33] ZHAO D S, LI Q F, ZHANG C Q, ZHANG C, YANG Q Q, PAN L X, REN X Y, LU J, GU M H, LIU Q Q.acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature communications, 2018, 9(1): 1240.
[34] LIU Q, HAN R, WU K, ZHANG J Q, YE Y F, WANG S S, CHEN J F, PAN Y J, LI Q, XU X P, ZHOU J W, TAO D Y, WU Y J, FU X D. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature communications, 2018, 9(1): 852.
[35] ZHU X, ZHANG S, CHEN Y, MOU C, HUANG Y, LIU X, JI J, YU J, HAO Q, YANG C, CAI M, NGUYEN T, SONG W, WANG P, DONG H, LIU S, JIANG L, WAN J. Decreased grain size1, a C3HC4-type RING protein, influences grain size in rice (L.). Plant Molecular Biology, 2021, 105(4): 405-417.
[36] LEI M, LI H H, ZHANG L Y, WANG J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop Journal, 2015(3): 103-117.
[37] MCCOUCH S R. Gene nomenclature system for rice. Rice, 2008, 1(1): 72-84.
[38] YU H H, XIE W B, LI J, ZHOU F S, ZHANG Q F. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnology Journal, 2013, 12(1): 28-37.
[39] BAYER P E. Skim-based genotyping by sequencing using a double haploid population to call SNPs, infer gene conversions, and improve genome assemblies//EDWARDS D. Plant Bioinformatics: Methods and Protocols. New York: Springer New York Press, 2016: 285-292.
[40] YANG J, SUN K, LI D X, LUO L X, LIU Y Z, HUANG M, YANG C L, LIU H, WANG H, CHEN Z Q, GUO T. Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq. BMC genomics, 2019, 20: 355.
[41] YU H H, XIE W B, WANG J, XING Y Z, XU C G, LI X H, XIAO J H, ZHANG Q F. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. Plos One, 2011, 6(3): e17595.
[42] Yang J, Guo Z h, Luo L X, Gao Q L, Xiao W M, Wang J F, Wang H, Chen Z Q, Guo T. Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq. The Crop Journal, 2021, 9(2): 360-371.
[43] DU Z X, ZHOU H, LI J B, BAO J Z, TU H, ZENG C H, WU Z, FU H H, XU J, ZHOU D H, ZHU C L, FU J R, HE H H., a naturally varying QTL, regulates grain weight in rice. Theoretical and Applied Genetics, 2021.https://doi.org/10.1007/s00122-021-03857-4.
[44] PONCE K, ZHANG Y, GUO L B, LENG Y J, YE G Y. Genome-wide association study of grain size traits in indica rice multiparent advanced generation intercross (MAGIC) population. Frontiers in Plant Science, 2020, 11: 395.
[45] LO S F, CHENG M L, HSING Y C, CHEN Y S, LEE K W, HONG Y F, HSIAO Y, HSIAO A S, CHEN P J, WONG L I, CHEN N C, REUZEAU C, HO T D, YU S M. Ricepromotes cell division to enhance organ development, stress tolerance and grain yield. Plant Biotechnology Journal, 2020, 18(9): 1969-1983.
[46] FAN C C, YU S B, WANG C R, XING Y Z. A causal C-A mutation in the second exon ofhighly associated with rice grain length and validated as a functional marker. Theoretical and Applied Genetics, 2009, 118(3): 465-472.
[47] QI P, LIN Y S, SONG X J, SHEN J B, HUANG W, SHAN J X, ZHU M Z, JIANG L W, GAO J P, LIN H X. The novel quantitative trait locuscontrols rice grain size and yield by regulating Cyclin-T1;3. Cell Research, 2012, 22(12): 1666-1680.
[48] ZHANG X J, WANG J F, HUANG J, LAN H X, WANG C L, YIN C F, WU Y Y, TANG H J, QIAN Q, LI J Y. Rare allele ofassociated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of the Sciences of the United States of America, 2012, 109(52): 21534-21539.
[49] WANG Y, XIONG G, HU J, JIANG L, YU H, XU J, FANG Y, ZENG L, XU E, XU J, YE W, MENG X, LIU R, CHEN H, JING Y, WANG Y, ZHU X, LI J, QIAN Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature genetics, 2015, 47(8): 944-948.
[50] WANG S, LI S, LIU Q, WU K, ZHANG J, WANG S, WANG Y, CHEN X, ZHANG Y, GAO C, WANG F, HUANG H, FU X. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature genetics, 2015, 47(8): 949-954.
[51] WU W, LIU X, WANG M, MEYER R S, LUO X, NDJIONDJOP M N, TAN L, ZHANG J, WU J, CAI H, SUN C, WANG X, WING R A, ZHU Z. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature plants, 2017, 3: 17064.
[52] YING J Z, MA M, BAI C, HUANG X H, LIU J L, FAN Y Y, SONG X J., a major QTL that negatively modulates grain length and weight in rice. Molecular Plant, 2018, 11(5): 750-753.
[53] XIA D, ZHOU H, LIU R J, DAN W H, LI P B, WU B, CHEN J X, WANG L Q, GAO G J, ZHANG Q L, HE Y Q., a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts withto produce extra-long grains in rice. Molecular Plant, 2018, 11(5): 754-756.
[54] ZHANG Y P, ZHANG Z Y, SUN X M, ZHU X Y, LI B, LI J J, GUO H F, CHEN C, PAN Y H, LIANG Y T, XU Z J, ZHANG H L, LI Z C. Natural alleles offor grain length and awn development were differently domesticated in rice subspeciesand. Plant Biotechnology Journal, 2019, 17(8): 1547-1559.
[55] DUAN P G, XU J S, ZENG D L, ZHANG B L, GENG M F, ZHANG G Z, HUANG K, HUANG L J, XU R, GE S, QIAN Q, LI Y H. Natural variation in the promoter ofcontributes to grain size diversity in rice. Molecular Plant, 2017, 10(5): 685-694.
[56] SHOMURA A, IZAWA T, EBANA K, EBITANI T, KANEGAE H, KONISHI S, YANO M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature genetics, 2008, 40(8): 1023-1028.
[57] WANG S S, WU K, QIAN Q, LIU Q, LI Q, PAN Y J, YE Y F, LIU X Y, WANG J, ZHANG J Q, LI S, WU Y J, FU X D. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Research, 2017, 27(9): 1142-1156.
[58] ISHIMARU K, HIROTSU N, MADOKA Y, MURAKAMI N, HARA N, ONODERA H, KASHIWAGI T, UJIIE K, SHIMIZU B-I, ONISHI A, MIYAGAWA H, KATOH E. Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield. Nature genetics, 2013, 45(6): 707-711.
[59] SONG X J, KUROHA T, AYANO M, FURUTA T, NAGAI K, KOMEDA N, SEGAMI S, MIURA K, OGAWA D, KAMURA T, SUZUKI T, HIGASHIYAMA T, YAMASAKI M, MORI H, INUKAI Y, WU J Z, KITANO H, SAKAKIBARA H, JACOBSEN S E, ASHIKARI M. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 76-81.
[60] SEGAMI S, KONO I, ANDO T, YANO M, IWASAKI Y.gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice, 2012, 5(1): 4.
[61] Wang C R, Chen S, Yu S B. Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theoretical and Applied Genetics, 2011, 122: 905-913.
[62] 張亞東, 張穎慧, 董少玲, 陳濤, 趙慶勇, 朱鎮(zhèn), 周麗慧, 姚姝, 趙凌, 于新, 王才林. 特大粒水稻材料粒型性狀的QTL檢測. 中國水稻科學, 2013, 27(2): 122-128.
ZHANG Y D, ZHANG Y H, DONG S L, CHEN T, ZHAO Q Y, ZHU Z, ZHOU L H, YAO S, ZHAO L, YU X, WANG C L. Identification of QTL for rice grain traits based on an extra-large grain material. Chinese Journal of Rice Science, 2013, 27(2): 122-128. (in Chinese)
[63] JIANG Y H, BAO L, JEONG S Y, KIM S K, XU C G, LI X H, ZHANG Q F.is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. The Plant Journal, 2012, 70(3): 398-408.
[64] RUAN B P, SHANG L G, ZHANG B, HU J, WANG Y X, LIN H, ZHANG A P, LIU C L, PENG Y L, ZHU L, REN D Y, SHEN L, DONG G J, ZHANG G H, ZENG D L, GUO L B, QIAN Q, GAO Z Y. Natural variation in the promoter ofdetermines grain width and weight in rice. New Phytologist, 2020, 227(2): 629-640.
[65] LYU J, WANG D K, DUAN P G, LU Y P, HUANG K, ZENG D L, ZHANG L M, DONG G J, LI Y J, XU R, ZHANG B L, HUANG X H, LI N, WANG Y C, QIAN Q, LI Y H. Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice. The Plant Cell, 2020, 32(6): 1905-1918.
Construction of high-Density genetic map and QTL analysis of grain shape in rice RIL population
ZHANG YaDong, LIANG WenHua, HE Lei, ZHAO ChunFang, ZHU Zhen, CHEN Tao, ZHAO QingYong, ZHAO Ling, YAO Shu, ZHOU LiHui, LU Kai, WANG CaiLin
Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice R&D Center/Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014
【Objective】Rice grain shape is an important agronomic trait directly related to yield , which affects the appearance quality and commercial value of rice. Research on new rice grain shape genes is of great value for revealing the genetic mechanism of rice grain shape, and it can provide some new genetic resources for molecular breeding.【Method】In the present study, a RIL population which constructed by an extra-large grainrice variety TD70 and a small-grainrice variety Kasalath was used as the research material. The phenotypic data of grain shape, such as grain length, grain width, grain thickness and thousand grain weight were investigated. Using the Genotyping-By-Sequencing approach to re-sequence the parents and RILs to obtain SNP information. The sliding window method (the number of SNP/InDel is 15) was used for genotype calling and recombination breakpoint determination. Based on these results, a high-density Bin map was constructed. Meanwhile, the compound interval mapping method of QTL IciMapping software was used to map the QTLs related to grain shape.【Result】A high-density genetic map containing 12 328 Bin markers was constructed. The number of Bin markers on each chromosome is 763 to 1367, and the average physical distance between markers was 30.26 kb. The frequency distribution of each trait for RIL population was continuous, which were consistent with the characteristics of quantitative characters, so it was suitable for the detection of QTL. QTL analysis of RIL population in 2018 showed that 40 grain-shape QTL were detected, including 12 grain length QTL, 9 grain width QTL, 8 grain thickness QTL, and 11 thousand-grain weight QTL. QTL analysis was performed of RIL population in 2019, and 56 grain-related QTL were detected, including 15 grain length QTL, 11 grain width QTL, 13 grain thickness QTL, and 17 thousand-grain weight QTL. Based on the two-year mapping results, we have mapped a total of 96 grain shape QTL. We found that 11 QTL could be detected for two consecutive years; among them, 7 QTL have been cloned and 4 new QTL were distributed on 1, 3, 4 and 5 chromosomes. Among the 4 new QTL,andwas related to grain length,related grain thickness andrelated to grain width.【Conclusion】We constructed a molecular genetic linkage map containing 12 328 Bin markers and used the map to analyze the grain shape loci of extra-large grain rice resources. Four new QTLs related to grain shape were obtained, which can be used for subsequent fine mapping, cloning and functional studies.
rice (L.); Bin genetic map; grain shape; QTL mapping
2021-06-07;
2021-08-03
國家自然科學基金(31771761)、江蘇省現(xiàn)代農業(yè)重點項目(BE2019339)、現(xiàn)代農業(yè)產業(yè)技術體系建設專項資金(CARS-01-67)
張亞東,E-mail:zhangyd@jaas.ac.cn。通信作者王才林,E-mail:clwang@jaas.ac.cn
(責任編輯 李莉)