• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constructing and Photocatalytic Performance of Flower?like CeO2/TiO2 Heterostructures

    2022-01-14 11:30:14WANGHongXiaLIXinXingZHOUYu

    WANG Hong?Xia LI Xin?Xing ZHOU Yu

    (1Department of Information and Engineering,Suqian University,Suqian,Jiangsu 223800,China)

    (2Suqian Key Laboratory for Functional Materials,Suqian University,Suqian,Jiangsu 223800,China)

    Abstract:A kind of three?dimensional flower?like CeO2/TiO2 heterojunction as photocatalysts was designed by the solvothermal method.The photocatalytic activity was evaluated by the decomposition of methyl orange(MO)under xenon lamp irradiation.The results showed that the flower?like structure was composed of thin nanosheets,on which many CeO2particles were uniformly attached.The molar ratio of Ce to Ti(nCe/nTi)and the solvothermal time influ?enced on the photocatalytic performance.When nCe/nTi=0.1 and the solvothermal time was 6 h,the photocatalytic activity of CeO2/TiO2reached the best,and the degradation rate reached 95% under xenon lamp irradiation for 50 min.The results suggested that the photocatalytic activity of CeO2/TiO2 heterojunction was greatly improved,compared to TiO2,which was mainly the function of heterojunction formed by CeO2and TiO2,and was conducive to the separation of photogenerated electrons and holes.

    Keywords:heterostructure;photocatalysis;photodegradation;micro/nano?materials;semiconductor

    0 Introduction

    Photocatalytic technology can be used to simulate natural photosynthesis,which can change solar energy into chemical energy,and degrade organic pollutants in sewage into harmless substances such as CO2and H2O under normal temperature and pressure[1?3],thus avoiding the secondary pollution problem with tradi?tional methods.TiO2is an n?type semiconductor cata?lyst that is non?toxic,highly active,chemically stable,cheap,environmentally friendly,and it has been widely studied as an ideal photocatalyst[4?7].However,in the process of photocatalysis,TiO2has some defects,such as low quantum efficiency,easy recombination of elec?tron?hole pairs,and low utilization of sunlight,which greatly restricts its extensive industrial application.The solution to these problems depends on in?depth and systematic basic research.

    To improve the photocatalytic activity of TiO2,the researchers used a variety of methods,such as control?ling the morphology[8?11],doping transition metal ions and non ?metallic ions[12?16],surface sensitization[17?18],semiconductor composite[19?20].Recent studies show that the selection of semiconductors with appropriate energy bands to couple with TiO,such as BiWO[21?22],226g?C3N4[23?25],CdS[26?27],CeO2[28?29],is conducive to separat?ing electrons and holes,and improving the visible light catalysis of TiO2.CeO2has high conductivity,thermal stability,oxygen storage capacity,and has a narrow energy gap(2.92 eV).Moreover,Ce4+and Ce3+ions are easy to reciprocal transformation,which makes CeO2have good electron transfer ability and light absorption ability.The bandgap difference between TiO2and CeO2can promote the separation of photogenerated electron?hole pairs and improve catalysis activity[30].Although TiO2and CeO2composite materials have received extensive attention,the research of CeO2/TiO2as prom?ising photocatalytic materials is not deep enough.In particular,the photocatalytic efficiency of CeO2/TiO2is far from practical application.Therefore,it is necessary to further improve the photocatalytic performance of CeO2/TiO2by optimizing the experiment.In this work,we prepared CeO2/TiO2photocatalyst materials with a three?dimensional flower structure by solvothermal method.Under xenon lamp irradiation,flower?like CeO2/TiO2photocatalyst had high activity for methyl orange degradation.

    1 Experimental

    1.1 Preparation of the samples

    Preparation of CeO2:All the chemical reagents were chemically pure and were used directly without further processing.The water used was distilled water.Under strong stirring,0.26 g cerium nitrate was dissolved in 100 mL water.After stirring frequently for 30 min,NaOH was added to the solution to control the pH to 9?10,followed by hydrothermal treatment at 180 ℃ in a Teflon?lined autoclave for 24 h.The prod?uct was centrifugally separated,washed with ethanol and distilled water,then dried.The sample was collect?ed and then put into the annealing furnace at 500℃for 2 h to obtain CeO2.

    Preparation of CeO2/TiO2:polyethylene glycol,cetyltrimethyl ammonium bromide,and carboxamide were immersed into 70 mL acetic acid solution,and after vigorous stirring to dissolve them,CeO2was added into the above?mixed solution,finally added 2 mL butyl titanate by dropping and stirring for 20 min,and then moved the solution to 100 mL stainless steel autoclave lined with polytetrafluoroethylene.The reaction time was different at 150℃,and cooling with the furnace to room temperature.The precipitates were washed with ethanol and water thoroughly three times,drying at 80℃and calcining at 450℃for 1 h.According to the above preparation method,the samples prepared with Ce/Ti molar ratiosnCe/nTiof 0.05,0.1 and 0.2 in the reaction system were marked as 0.05CeO2/TiO2,0.1CeO2/TiO2,0.2CeO2/TiO2respectively.

    1.2 Characterization

    Under the conditions of Cu target,40 kV and 40 mA with CuKαX?ray radiation source(λ=0.154 nm)and 2θrange of 20°?80°,the samples were recorded by X?ray diffractometer of Dandong Haoyuan instrument company;the morphologies of the synthetic samples were used by scanning electron microscope(SEM,Zeiss Merlin field emission)at the acceleration voltage of 5 kV;the specific surface area was measured using the measurement instrument(ASAP2460).The U?3900 ultraviolet?visible spectrophotometer with integrating sphere in Japan was used to measure the absorbance of powder.X?ray photoelectron spectroscopy(XPS)mea?surements were measured on an Escalab 250 Xi spec?trometer.Photoluminescence(PL)spectra were mea?sured using FLS 980 fluorescence spectrophotometer.The photocurrent response and electrochemical imped?ance spectroscopy(EIS)were carried by an electro?chemical workstation(CHI660E).

    1.3 Photocatalytic activity measurement

    CeO2/TiO2was added to methyl orange(MO)solution,then the MO solution was illuminated.The photocatalytic performance of the sample was tested by measuring the degradation rate of MO.The specific processes were listed as follows:0.02 g of catalyst sample was added to 80 mL MO solution(10 mg·L-1),and ultrasonic agitation was performed for 30 min to achieve adsorption?desorption equilibrium in the dark.A 300 W xenon lamp was used to simulate and irradi?ate from the top of the MO solution.The xenon lamp was 10 cm away from the liquid surface.A small portion of the solution was taken every 10 min to be centrifuged and separated.The absorbance of the resid?ual MO was analyzed by an ultraviolet?visible spectro?photometer.

    2 Results and discussion

    2.1 Characterization of the samples

    Fig.1 shows the XRD patterns of CeO2/TiO2heterojunction prepared by adding different amounts of CeO2.There were several different diffraction peaks of CeO2/TiO2heterojunction nanoflowers at 2θ=25.3°,37.9°,48.1°,54.1°,55.2°,62.6°,and 70.3°respective?ly,corresponding to anatase TiO2(PDF No.21?1272).The diffraction peaks with 2θ=28.6°,33.2°,56.6°,and 59.5°belong to the characteristic diffraction peaks of CeO2(PDF No.34 ?0394),indicating that the hetero?structure nanocomposite composed of TiO2and CeO2.It can be seen from the figure that the intensity of the diffraction peak of CeO2increased gradually with the increase of CeO2content.

    Fig.1 XRD patterns of CeO2/TiO2

    Fig.2 showed that the prepared CeO2/TiO2hetero?junction had a three?dimensional flower?like structure,and nano?CeO2particles adhered to the petals of TiO2.With the increase of CeO2content,the number of CeO2nanoparticles on the petals of TiO2increased gradually.

    Fig.2 SEM and TEM images of(a,b)0.05CeO2/TiO2,(c,d)0.1CeO2/TiO2,and(e,f)0.2CeO2/TiO2

    Solvothermal time can affect the morphology and properties of the samples.When the molar ratio of Ce and Ti was 0.1,and the samples were labeled as CeO2/TiO2?t,wheretmin was the reaction time.Fig.3 shows that the diffraction peaks correspond to the characteris?tic diffraction peaks of TiO2and CeO2respectively.

    Fig.3 XRD patterns of(a)CeO2/TiO2?4,(b)CeO2/TiO2?6 and(c)CeO2/TiO2?12

    Fig.4 shows the SEM images of CeO2/TiO2.It can be seen that under solvothermal conditions for 4 h,the CeO2/TiO2heterojunction was a three?dimensional flow?er?like microsphere structure.The diameter of the mi?crospheres was between 0.61 and 0.96 μm.The aver?age diameter was 0.77 μm.The flower structure was formed by the directional aggregation of nanoparticles.When the reaction time increased up to 6 h,the diame?ter of the flower?like microspheres ranged from 0.58 to 1.29 μm,with an average diameter of 0.59 μm.When the solvothermal time was 12 h,the diameter of the three?dimensional flower?like structure was 0.88?1.89 μm,with an average diameter of 1.36 μm.CeO2parti?cles were oriented and integrated into a shuttle shape embedded between thin plates.With the increase of solvothermal time,the diameter of flower?like TiO2became smaller at the beginning and larger at the next stage,and CeO2gradually aggregated from nanoparti?cles to shuttle shape.

    Fig.4 SEM images of(a,b)CeO2/TiO2?4,(c,d)CeO2/TiO2?6 and(e,f)CeO2/TiO2?12

    Fig.5 shows the N2adsorption ?desorption iso?therms and BJH(Barrette?Joyner?Halenda)pore size distribution curves of samples.The Brunauer?Emmett?Teller specific surface area(SBET),pore volume(VP),and average pore size of the samples are shown in Table 1.The results showed the prepared samples had highSBETand largeVP,providing more active sites and light?harvesting capacity,and improving the utilization efficiency of light,thereby contributing to the degrada?tion of organic pollutants.

    Fig.5 (a)N2adsorption?desorption isotherms and(b)pore size distribution curves for CeO2/TiO2?t

    Fig.6 shows the full spectrum of CeO2/TiO2?6 and the high?resolution XPS spectra of Ti2p,O1s,and Ce3d.It can be seen from Fig.6a that the sample only contained C,O,Ti,and Ce elements.C was mainly derived from the residual carbon of some organic pre?cursors during heat treatment and the oily carbon from the XPS instrument itself.The binding energies of 458.78 and 464.48 eV in Fig.6b correspond to the char?acteristic peaks of Ti2p2/3and Ti2p1/2orbits respective?ly,which are the standard bond energies of Ti2pin pure TiO2,indicating that Ti exists in form of Ti4+[31].In the O1sspectrum of Fig.6c,one peak at around 530.10 eV corresponds to the oxygen in the TiO2lattice,and the other peak at around 531.58 eV corresponds to the hydroxyl(—OH)on the surface of TiO2[32?33].In Fig.6d,V(881.52),V″(888.13),and V?(898.41)correspond to Ce3d5/2spin?orbital bands;U(900.11),U″(906.83),and U? (915.81)correspond to Ce3d3/2spin?orbital bands.The peaks labeled as V,V″,V?,U,U″,and U?are attributed to the existence of Ce4+.The peaks at V'(885.13)and U'(903.12)are attributed to the presence of Ce3+in the composite[34].Ce3+is mainly due to the strong interaction between TiO2and CeO2,which makes Ce4+reduced to Ce3+[35].

    Because the intensity of light emission depends on the recombination ability of excited electrons and holes,we can analyze the ability of semiconductor materials to capture and migrate photogenerated holes and electrons.The low intensity of the PL spectrum indicates that the recombination rate of electron?hole pairs is low and the separation efficiency of electron?hole pairs represents reverse.Fig.7 shows the PL spec?tra excited at 350 nm.The PL intensity of CeO2/TiO2?12 was lower than that of CeO2/TiO2?6,indicating that CeO2/TiO2?12 presented high separation efficiency.

    Fig.7 PL spectra of CeO2/TiO2?6 and CeO2/TiO2?12

    2.2 Photocatalytic activity

    To investigate the photocatalytic activity of the sample,the photocatalytic degradation of MO(xenon lamp simulated sunlight)was carried out.The degrada?tion rate of MO was calculated as follows:D=(1-A/A0)×100%,whereDis the degradation rate of MO solution;A0is the absorbance of MO solution before irradiation;Ais the absorbance of MO solution at the wavelength of 464 nm.The experimental results of photocatalysis under light were shown in Fig.8.

    Fig.8 Photocatalytic degradation rate of MO for the samples

    Fig.8a shows the curve of the photocatalytic degra?dation rate of MO under simulated sunlight for the sam?ples prepared with various molar ratios of CeO2and TiO2.Fig.8b shows the photocatalytic degradation rate curves of MO under simulated sunlight irradiation for the samples prepared under different solvothermal times when the molar ratio of CeO2to TiO2was 0.1(The material prepared without polyethylene glycol,cetyltrimethyl ammonium bromide,and carboxamide was recorded as CeO2/TiO2?B).It can be seen that the degradation rate of MO with catalyst increased with the extension of illumination time.The degradation rate of CeO2/TiO2was better than that of TiO2after 50 min illu?mination.The photocatalytic performance of flower?like CeO2/TiO2was higher than that of CeO2/TiO2?B.0.1CeO2/TiO2had the best photocatalytic performance under 50 min illumination and the photocatalytic activ?ity of CeO2/TiO2?6 was the best,and the degradation rate reached 95% after 50 min illumination(Fig.8b).The degradation rate of MO solution added with pure TiO2or CeO2was only 78% or 70% respectively after 50 min illumination,which indicated that the compos?ite of CeO2and TiO2enhances the photocatalytic activity of TiO2.

    Fig.9 is the UV?Vis diffuse reflectance spectra of the samples.It can be seen that the absorption band edges of TiO2,CeO2,CeO2/TiO2?4,CeO2/TiO2?6,and CeO2/TiO2?12 were 393,432,463,481,and 469 nm respectively.According to the formulaEg=1 240/λg(λgis absorption edge),the bandgaps(Eg)of TiO2,CeO2,CeO2/TiO2?4,CeO2/TiO2?6,and CeO2/TiO2?12 were about 3.16,2.87,2.68,2.58,and 2.64 eV respectively,which indicates that CeO2/TiO2broadens the absorp?tion range compared with TiO2and CeO2.

    Fig.9 UV?Vis diffuse reflectance spectra of the samples

    Fig.10 shows the effects of reuse times of CeO2/TiO2?6 catalyst on photocatalytic activity.It can be seen that the degradation rates of MO by CeO2/TiO2?6 were 95%,94%,and 92% respectively when the cata?lyst was reused for the first time,the second time,and the third time.The catalytic activity was not significantly reduced,indicating that the photocatalyst has certain stability and can be recycled many times.

    Fig.10 Effect of reuse degradation times of CeO2/TiO2?6 on the degradation rate of MO

    In the process of photocatalysis,water molecules or hydroxyl radicals can be oxidized by holes to gener?ate hydroxyl radicals,and superoxide anion radicals may be generated when dissolved oxygen in water receives photogenerated electrons.Electron spin reso?nance(ESR)is generally used to detect hydroxyl radi?cal(·OH)radical and superoxide radical(·O2-).Fig.11 presents the ESR spectra of DMPO?·OH and DMPO?·O2-obtained with 5,5?dimethyl?1?pyrrolineN?oxide(DMPO)as the radical scavenger.Under xenon lamp irradiation,the ESR spectra of·OH showed four char?acteristic peaks,and that of·O2-showed six character?istic peaks.However,there was no signal in the dark.It indicates that·OH and ·O2-exist in the reaction sys?tem with CeO2/TiO2.

    Fig.11 ESR spectra of(a)DMPO?·OH and(b)DMPO?·O2-for CeO2/TiO2?6 in the dark and under xenon lamp irradiation

    The interface charge transfer and photogenerated charge recombination of the catalyst were investigated by electrochemical characterization.Fig.12a shows the photocurrent response of the catalyst under xenon lamp irradiation.It suggests that CeO2,TiO2,and CeO2/TiO2?6 all had obvious photocurrent responses.When the light source was turned off,the current signal returned to the original level,and the response current of CeO2/TiO2?6 was higher than that of pure CeO2or pure TiO2under the light.Generally,the stronger the separation ability of photo?generated carriers,the stronger the photocur?rent of the material.That shows the separation ability of CeO2/TiO2?6 photo?generated carriers was better than pure CeO2and TiO2,which is mainly due to the formation of heterojunction between CeO2and TiO2.EIS can further confirm the effective separation of pho?togenerated electrons and holes.The arc radius in EIS(Fig.12b)is related to the charge transfer resistance of the material.In general,the smaller the arc radius,the faster the separation or transfer speed of photogenerat?ed carriers,and the photocurrent intensity is also increased.It can be seen that CeO2/TiO2?6 had the smallest arc radius,which indicates that CeO2/TiO2?6 has the smallest electron transfer resistance and the best charge separation efficiency,which is consistent with the photocurrent response.

    Fig.12 (a)Transient photocurrent responses of CeO2,TiO2,and CeO2/TiO2?6;(b)EIS spectra of CeO2,TiO2,and CeO2/TiO2?6

    Fig.13 shows the photocatalysis mechanism of CeO2/TiO2.Under simulated sunlight,CeO2/TiO2can absorb not only ultraviolet light but also visible light.Both CeO2and TiO2can be excited by ultraviolet light,then the electrons jump to the conduction band to form the conduction band electron(e-)while leaving holes(H+)in the valence band.Because the conduction band(CB)of CeO2is higher than that of TiO2,the electrons in CB of CeO2transfer to CB of TiO2through the inter?face.On the other hand,the valence gap(VB)of CeO2is lower than that of TiO2,and the holes of VB of TiO2are transferred to VB of CeO2,which is prone to the separation of photogenerated electron?hole pairs[30].Under visible light irradiation,electrons from VB of CeO2are transferred to CB of TiO2,and photogenerated electrons in CB of CeO2can be transferred to CB of TiO2,thus inhibiting the recombination of photogenerat?ed electrons and hole[36].The results were consistent with the photocurrent response and EIS.Subsequently,the e-was reacted with the O2to form·O2-.The H2O could be oxidized by h+to produce·OH.The pollutant was oxidized by·O2-and·OH to produce CO2and H2O.Simultaneously,the h+in VB of CeO2was directly involved in the oxidation of pollutants.

    Fig.13 Photocatalysis mechanism of CeO2/TiO2

    3 Conclusions

    The three?dimensional flower?like CeO2/TiO2heterojunction was prepared by the solvothermal meth?od.Compared with TiO2,flower?like CeO2/TiO2hetero?junction showed better photocatalytic performance un?der simulated sunlight.Among them,the degradation rate of MO reached 95% when CeO2/TiO2?6 was illumi?nated for 50 min,and the photocatalytic performance reached the best.The flower?like CeO2/TiO2heterojunc?tion had excellent catalytic performance,which is mainly due to the following factors.First of all,the three?dimensional hierarchical structure,with a large specific surface area and a different size of pore struc?ture,greatly improves the utilization of light.Secondly,the heterojunction effect can enhance the efficiency of charge separation and interface charge transfer greatly.

    欧美少妇被猛烈插入视频| 妹子高潮喷水视频| 亚洲av电影在线观看一区二区三区| 午夜日本视频在线| 午夜福利,免费看| 超碰97精品在线观看| 国产激情久久老熟女| 久久久久久久久久久久大奶| 久久毛片免费看一区二区三区| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美网| 中文精品一卡2卡3卡4更新| 黄色视频不卡| 毛片一级片免费看久久久久| 亚洲成国产人片在线观看| 午夜日本视频在线| 黄色一级大片看看| 男女午夜视频在线观看| 亚洲自偷自拍图片 自拍| 亚洲成国产人片在线观看| 国产精品无大码| 亚洲人成77777在线视频| 国产免费又黄又爽又色| 激情视频va一区二区三区| 精品卡一卡二卡四卡免费| 啦啦啦在线观看免费高清www| 一区二区三区精品91| 伦理电影大哥的女人| 亚洲男人天堂网一区| 黄色 视频免费看| 亚洲欧美清纯卡通| 亚洲av电影在线观看一区二区三区| 亚洲伊人久久精品综合| 纵有疾风起免费观看全集完整版| 在线天堂中文资源库| 亚洲成人免费av在线播放| 99热全是精品| 丝袜美足系列| 欧美精品av麻豆av| 操美女的视频在线观看| 欧美在线一区亚洲| 日韩,欧美,国产一区二区三区| 久久国产精品男人的天堂亚洲| 国产亚洲av高清不卡| 精品一区二区三区av网在线观看 | 99re6热这里在线精品视频| 亚洲伊人色综图| 水蜜桃什么品种好| 精品卡一卡二卡四卡免费| 国产人伦9x9x在线观看| 精品国产一区二区久久| 午夜日本视频在线| 大话2 男鬼变身卡| 赤兔流量卡办理| 欧美亚洲日本最大视频资源| 99久久综合免费| 欧美国产精品一级二级三级| 人体艺术视频欧美日本| 亚洲精品久久成人aⅴ小说| 超碰成人久久| netflix在线观看网站| 国精品久久久久久国模美| 欧美国产精品一级二级三级| 久久久国产一区二区| 狂野欧美激情性xxxx| 久久精品久久久久久噜噜老黄| 只有这里有精品99| 在线天堂最新版资源| 老汉色av国产亚洲站长工具| 青春草视频在线免费观看| 一级爰片在线观看| 日本91视频免费播放| 十八禁高潮呻吟视频| 亚洲成人免费av在线播放| 如何舔出高潮| 一区二区三区激情视频| www日本在线高清视频| 午夜激情久久久久久久| 国产高清不卡午夜福利| 国产精品国产av在线观看| 欧美精品高潮呻吟av久久| 久久久久久人人人人人| 久热爱精品视频在线9| 老司机亚洲免费影院| 又黄又粗又硬又大视频| 久久青草综合色| 国产精品女同一区二区软件| 男女边吃奶边做爰视频| 国产精品亚洲av一区麻豆 | av卡一久久| 9色porny在线观看| 国产亚洲最大av| 七月丁香在线播放| 亚洲熟女精品中文字幕| 视频在线观看一区二区三区| 永久免费av网站大全| 亚洲成色77777| 国产成人午夜福利电影在线观看| 在线观看一区二区三区激情| 精品人妻一区二区三区麻豆| 18禁动态无遮挡网站| 亚洲熟女毛片儿| 最近2019中文字幕mv第一页| 亚洲精品日本国产第一区| 亚洲欧美清纯卡通| a级毛片黄视频| 亚洲精品国产一区二区精华液| 亚洲免费av在线视频| 操美女的视频在线观看| av网站在线播放免费| 一区二区av电影网| 久久久久精品久久久久真实原创| 在线观看免费午夜福利视频| 日韩不卡一区二区三区视频在线| 国产成人免费观看mmmm| 精品久久蜜臀av无| 国产一区二区 视频在线| 亚洲国产精品一区三区| 久久久精品94久久精品| 一级毛片电影观看| 国产亚洲午夜精品一区二区久久| 中文字幕最新亚洲高清| 午夜91福利影院| 亚洲国产精品成人久久小说| 免费黄色在线免费观看| 午夜激情av网站| 亚洲专区中文字幕在线 | 国产女主播在线喷水免费视频网站| 欧美在线一区亚洲| 亚洲国产av新网站| 热99久久久久精品小说推荐| 两个人免费观看高清视频| 国产又色又爽无遮挡免| 高清视频免费观看一区二区| 1024香蕉在线观看| 日本黄色日本黄色录像| 人人妻人人爽人人添夜夜欢视频| 女性生殖器流出的白浆| 欧美日韩综合久久久久久| 国产熟女欧美一区二区| 精品国产一区二区三区久久久樱花| 久久精品人人爽人人爽视色| www.av在线官网国产| 亚洲男人天堂网一区| 久久女婷五月综合色啪小说| 电影成人av| 免费高清在线观看视频在线观看| 亚洲精品自拍成人| 亚洲色图 男人天堂 中文字幕| 少妇被粗大猛烈的视频| 日韩精品有码人妻一区| 免费观看a级毛片全部| 成人黄色视频免费在线看| 狠狠婷婷综合久久久久久88av| 美女脱内裤让男人舔精品视频| 久久99一区二区三区| 午夜福利,免费看| 久热这里只有精品99| 妹子高潮喷水视频| 韩国高清视频一区二区三区| 麻豆精品久久久久久蜜桃| 久久久久久免费高清国产稀缺| 久久人人爽人人片av| 激情视频va一区二区三区| 成年人午夜在线观看视频| 秋霞在线观看毛片| 天天躁夜夜躁狠狠躁躁| 日韩视频在线欧美| av视频免费观看在线观看| 看免费成人av毛片| 美女脱内裤让男人舔精品视频| 99精国产麻豆久久婷婷| 国产免费现黄频在线看| 色94色欧美一区二区| 成年美女黄网站色视频大全免费| 欧美日韩一区二区视频在线观看视频在线| 亚洲一码二码三码区别大吗| 视频在线观看一区二区三区| 天天躁夜夜躁狠狠久久av| 国产女主播在线喷水免费视频网站| 国产精品偷伦视频观看了| 最近最新中文字幕免费大全7| 各种免费的搞黄视频| 自拍欧美九色日韩亚洲蝌蚪91| 大片电影免费在线观看免费| 成人漫画全彩无遮挡| 亚洲,一卡二卡三卡| 亚洲四区av| 亚洲欧美一区二区三区国产| 热re99久久精品国产66热6| 精品亚洲乱码少妇综合久久| 少妇精品久久久久久久| 精品人妻在线不人妻| 国产精品.久久久| 黑丝袜美女国产一区| 久久精品国产亚洲av高清一级| 亚洲人成电影观看| 亚洲av成人精品一二三区| 一级片'在线观看视频| 国产99久久九九免费精品| 午夜日韩欧美国产| 黄色视频在线播放观看不卡| 热99国产精品久久久久久7| 亚洲欧美中文字幕日韩二区| 一区二区三区激情视频| 精品亚洲乱码少妇综合久久| 精品人妻一区二区三区麻豆| 波多野结衣av一区二区av| 蜜桃在线观看..| 欧美激情极品国产一区二区三区| videosex国产| 精品国产乱码久久久久久男人| 1024视频免费在线观看| 街头女战士在线观看网站| 久久这里只有精品19| 伦理电影免费视频| 久久 成人 亚洲| 一区二区三区乱码不卡18| 97精品久久久久久久久久精品| 热re99久久精品国产66热6| 国产亚洲精品第一综合不卡| 国产又色又爽无遮挡免| 精品国产露脸久久av麻豆| 十八禁人妻一区二区| e午夜精品久久久久久久| 亚洲综合色网址| 两个人看的免费小视频| 高清不卡的av网站| 亚洲四区av| 国产精品久久久久久精品古装| 韩国精品一区二区三区| 美女中出高潮动态图| 看免费成人av毛片| 精品亚洲成国产av| 午夜福利视频在线观看免费| 99re6热这里在线精品视频| 午夜福利免费观看在线| 亚洲精品aⅴ在线观看| 亚洲精品,欧美精品| bbb黄色大片| 日韩大片免费观看网站| 夫妻午夜视频| 久久精品国产综合久久久| 老司机亚洲免费影院| 中文字幕制服av| 欧美黑人精品巨大| 岛国毛片在线播放| 成人毛片60女人毛片免费| 如日韩欧美国产精品一区二区三区| 色吧在线观看| 久久久久久久久免费视频了| 欧美人与性动交α欧美软件| 男人舔女人的私密视频| a级片在线免费高清观看视频| 亚洲国产精品一区二区三区在线| 亚洲av福利一区| a 毛片基地| 80岁老熟妇乱子伦牲交| 免费观看a级毛片全部| 伦理电影免费视频| 日韩一区二区三区影片| 欧美黑人欧美精品刺激| 国产福利在线免费观看视频| 老司机在亚洲福利影院| 超碰97精品在线观看| 日韩欧美一区视频在线观看| 久久99一区二区三区| 精品久久蜜臀av无| 成年人午夜在线观看视频| 国产精品99久久99久久久不卡 | 在线观看免费日韩欧美大片| 久久久久精品人妻al黑| 成人午夜精彩视频在线观看| 亚洲精品久久成人aⅴ小说| 五月开心婷婷网| 亚洲精品久久久久久婷婷小说| 夫妻午夜视频| 国语对白做爰xxxⅹ性视频网站| 一区二区三区激情视频| 极品少妇高潮喷水抽搐| 不卡视频在线观看欧美| 久久久久久久久久久久大奶| 亚洲av男天堂| 国产免费视频播放在线视频| 亚洲熟女毛片儿| 成年动漫av网址| 亚洲成人av在线免费| 视频在线观看一区二区三区| 成人国产av品久久久| 国产精品av久久久久免费| 麻豆av在线久日| 最近最新中文字幕免费大全7| 一区二区三区四区激情视频| 久久久精品区二区三区| 人妻 亚洲 视频| 国产在线视频一区二区| 母亲3免费完整高清在线观看| 色吧在线观看| 国产成人a∨麻豆精品| 精品国产超薄肉色丝袜足j| 久久久精品免费免费高清| 丝袜美腿诱惑在线| 色婷婷av一区二区三区视频| 亚洲,一卡二卡三卡| 丝袜脚勾引网站| 嫩草影视91久久| 久久久久精品人妻al黑| 久久精品国产亚洲av高清一级| 亚洲国产av新网站| 久久青草综合色| 国产精品免费视频内射| 亚洲专区中文字幕在线 | 黄片无遮挡物在线观看| 最新在线观看一区二区三区 | 欧美精品人与动牲交sv欧美| 成人国产麻豆网| 狂野欧美激情性xxxx| av国产久精品久网站免费入址| 国产片特级美女逼逼视频| 亚洲三区欧美一区| 国产精品麻豆人妻色哟哟久久| 99re6热这里在线精品视频| 麻豆av在线久日| 色综合欧美亚洲国产小说| av在线播放精品| 侵犯人妻中文字幕一二三四区| 国产淫语在线视频| 亚洲成色77777| 最黄视频免费看| 中文字幕av电影在线播放| 亚洲成人一二三区av| 国产av一区二区精品久久| 国产精品av久久久久免费| 亚洲美女视频黄频| 久久久久久久久免费视频了| 亚洲精品第二区| 久久天堂一区二区三区四区| 色网站视频免费| 操美女的视频在线观看| 在线观看免费高清a一片| 亚洲av综合色区一区| 熟女av电影| 日韩一本色道免费dvd| 自拍欧美九色日韩亚洲蝌蚪91| av线在线观看网站| 国产精品一二三区在线看| 国产又色又爽无遮挡免| 亚洲精品自拍成人| 中文字幕色久视频| 五月天丁香电影| av在线老鸭窝| 免费高清在线观看日韩| 一区二区av电影网| 校园人妻丝袜中文字幕| 精品国产超薄肉色丝袜足j| 国产精品久久久人人做人人爽| av.在线天堂| 十分钟在线观看高清视频www| 咕卡用的链子| 久久久久久久大尺度免费视频| 久久精品熟女亚洲av麻豆精品| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 两个人看的免费小视频| 国产精品一二三区在线看| 国产成人一区二区在线| 日本av免费视频播放| 最近中文字幕高清免费大全6| 婷婷成人精品国产| 久久久久久久久久久免费av| 日本一区二区免费在线视频| 中文字幕av电影在线播放| 婷婷色av中文字幕| 久久天堂一区二区三区四区| 美女大奶头黄色视频| 欧美人与性动交α欧美精品济南到| 欧美另类一区| 9热在线视频观看99| 涩涩av久久男人的天堂| 亚洲精华国产精华液的使用体验| 男女免费视频国产| 精品一区二区三区四区五区乱码 | 美女午夜性视频免费| 叶爱在线成人免费视频播放| 久久精品亚洲av国产电影网| 国产99久久九九免费精品| 乱人伦中国视频| 香蕉丝袜av| 中国三级夫妇交换| 99九九在线精品视频| 亚洲av在线观看美女高潮| 黄频高清免费视频| 国产精品秋霞免费鲁丝片| 我要看黄色一级片免费的| 国产在线一区二区三区精| 夫妻性生交免费视频一级片| 国产成人91sexporn| 国产精品熟女久久久久浪| 乱人伦中国视频| 叶爱在线成人免费视频播放| e午夜精品久久久久久久| 国产 精品1| 亚洲欧美成人精品一区二区| 青草久久国产| 一二三四中文在线观看免费高清| 亚洲图色成人| 男女之事视频高清在线观看 | 亚洲视频免费观看视频| 亚洲一区二区三区欧美精品| 青青草视频在线视频观看| 成年av动漫网址| 欧美激情高清一区二区三区 | 女人高潮潮喷娇喘18禁视频| 国产av码专区亚洲av| 国产精品人妻久久久影院| 少妇 在线观看| 欧美黑人精品巨大| 超色免费av| 啦啦啦在线免费观看视频4| 人人妻,人人澡人人爽秒播 | 精品亚洲成a人片在线观看| 欧美精品一区二区大全| 黑人欧美特级aaaaaa片| 亚洲av在线观看美女高潮| 亚洲七黄色美女视频| 国产精品 欧美亚洲| 黄色 视频免费看| 中文字幕人妻丝袜制服| 亚洲国产中文字幕在线视频| 国产无遮挡羞羞视频在线观看| 成人亚洲精品一区在线观看| xxx大片免费视频| 日韩中文字幕欧美一区二区 | 亚洲在久久综合| 国产97色在线日韩免费| 免费黄色在线免费观看| 看十八女毛片水多多多| 日韩av免费高清视频| 丁香六月天网| 精品久久久久久电影网| 狂野欧美激情性bbbbbb| 肉色欧美久久久久久久蜜桃| 一区二区三区四区激情视频| 国产亚洲一区二区精品| 宅男免费午夜| 少妇人妻 视频| 老司机亚洲免费影院| 日韩,欧美,国产一区二区三区| 久久久久视频综合| 麻豆乱淫一区二区| 午夜福利免费观看在线| 色综合欧美亚洲国产小说| 亚洲av综合色区一区| 欧美日韩综合久久久久久| 激情五月婷婷亚洲| 999久久久国产精品视频| 男女下面插进去视频免费观看| 9色porny在线观看| 极品少妇高潮喷水抽搐| 国产成人精品久久二区二区91 | 国语对白做爰xxxⅹ性视频网站| 国产精品香港三级国产av潘金莲 | 亚洲精品aⅴ在线观看| 久热爱精品视频在线9| 免费观看人在逋| 啦啦啦在线免费观看视频4| 国产精品香港三级国产av潘金莲 | 成人毛片60女人毛片免费| 欧美日韩视频高清一区二区三区二| 亚洲av在线观看美女高潮| 一级片免费观看大全| 亚洲 欧美一区二区三区| 国产精品麻豆人妻色哟哟久久| 汤姆久久久久久久影院中文字幕| 国产免费视频播放在线视频| 国产色婷婷99| 日本午夜av视频| 免费在线观看视频国产中文字幕亚洲 | 女人高潮潮喷娇喘18禁视频| 亚洲国产欧美一区二区综合| 中文字幕av电影在线播放| 午夜影院在线不卡| 国产一区二区三区av在线| 高清欧美精品videossex| 亚洲成人国产一区在线观看 | 成人黄色视频免费在线看| av不卡在线播放| 亚洲精品美女久久久久99蜜臀 | 99香蕉大伊视频| 久久久久精品性色| 黄色一级大片看看| 国产亚洲午夜精品一区二区久久| 啦啦啦啦在线视频资源| 欧美日韩亚洲综合一区二区三区_| 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久| 制服诱惑二区| 色婷婷久久久亚洲欧美| 成年人免费黄色播放视频| 国产精品免费大片| 嫩草影视91久久| 十八禁人妻一区二区| 夜夜骑夜夜射夜夜干| 国产成人一区二区在线| 亚洲av福利一区| 999久久久国产精品视频| a级毛片在线看网站| 色播在线永久视频| 欧美激情 高清一区二区三区| 国产成人欧美在线观看 | 国产极品天堂在线| 国产精品久久久久成人av| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| av在线app专区| 日本av免费视频播放| 亚洲欧美中文字幕日韩二区| 亚洲成色77777| 人人澡人人妻人| avwww免费| e午夜精品久久久久久久| 亚洲精品中文字幕在线视频| 纵有疾风起免费观看全集完整版| 少妇猛男粗大的猛烈进出视频| 另类亚洲欧美激情| 久久久久视频综合| 国产深夜福利视频在线观看| 在线观看免费日韩欧美大片| 亚洲一区中文字幕在线| 精品国产露脸久久av麻豆| 日本爱情动作片www.在线观看| 午夜免费观看性视频| av片东京热男人的天堂| 伊人久久大香线蕉亚洲五| 日本一区二区免费在线视频| 性色av一级| 久久久亚洲精品成人影院| 欧美人与性动交α欧美软件| 岛国毛片在线播放| 国产精品一区二区在线不卡| 日本欧美视频一区| 日韩制服骚丝袜av| 亚洲精品国产区一区二| 男女边摸边吃奶| 美女国产高潮福利片在线看| 色94色欧美一区二区| 午夜免费鲁丝| 亚洲精华国产精华液的使用体验| 日本猛色少妇xxxxx猛交久久| 欧美97在线视频| 大片电影免费在线观看免费| 涩涩av久久男人的天堂| 亚洲免费av在线视频| videos熟女内射| 亚洲国产av新网站| 亚洲美女搞黄在线观看| 视频区图区小说| 嫩草影视91久久| 免费在线观看黄色视频的| 久久人人97超碰香蕉20202| 成人国产麻豆网| 亚洲国产成人一精品久久久| 天天躁夜夜躁狠狠久久av| av女优亚洲男人天堂| 亚洲欧美精品自产自拍| 女人爽到高潮嗷嗷叫在线视频| 在线天堂中文资源库| 啦啦啦在线免费观看视频4| 高清视频免费观看一区二区| 国产高清国产精品国产三级| 久热这里只有精品99| 熟女少妇亚洲综合色aaa.| 国产又爽黄色视频| 久久久久国产一级毛片高清牌| 亚洲av成人不卡在线观看播放网 | 婷婷色综合www| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲av电影在线进入| 国产免费视频播放在线视频| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| a级片在线免费高清观看视频| 国产亚洲最大av| 国产不卡av网站在线观看| 欧美精品av麻豆av| 国产不卡av网站在线观看| 久久久精品94久久精品| 成年动漫av网址| 一边亲一边摸免费视频| 欧美在线黄色| 自拍欧美九色日韩亚洲蝌蚪91| 巨乳人妻的诱惑在线观看| 777米奇影视久久| 日本欧美视频一区| 一级片'在线观看视频| 精品视频人人做人人爽| 熟女少妇亚洲综合色aaa.| 亚洲国产看品久久| 亚洲欧洲日产国产| 考比视频在线观看| 久久久久精品国产欧美久久久 | kizo精华| 欧美日韩视频高清一区二区三区二| 亚洲精品一二三| 欧美久久黑人一区二区| 国产一区二区三区综合在线观看| 欧美日韩视频高清一区二区三区二| 国产伦理片在线播放av一区| 搡老乐熟女国产| a级片在线免费高清观看视频| 欧美久久黑人一区二区| 老汉色av国产亚洲站长工具| 色视频在线一区二区三区| 亚洲精品美女久久久久99蜜臀 |