• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on the characteristics of atmospheric air dielectric barrier discharge under different square wave pulse polarities

    2022-01-10 14:51:32SongJIANG姜松LifeiHUANG黃利飛ZhonghangWU吳忠航YonggangWANG王永剛ZiLI李孜andJunfengRAO饒俊峰
    Plasma Science and Technology 2021年12期
    關(guān)鍵詞:吳忠

    Song JIANG (姜松) , Lifei HUANG (黃利飛), Zhonghang WU (吳忠航),Yonggang WANG (王永剛), Zi LI (李孜) and Junfeng RAO (饒俊峰)

    1Department of Electrical Engineering, School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People’s Republic of China

    2 Department of Scientific Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, People’s Republic of China

    Abstract Energy efficiency limits the application of atmospheric pressure dielectric barrier discharge(DBD),such as air purification,water treatment and material surface modification.This article focuses on the electrical and optical effects of the DBD under three square wave pulses polarities-positive,negative and bipolar.The result shows that under the same voltage with the quartz glass medium,the discharge efficiency of bipolar polarity pulse is the highest due to the influence of deposited charge.With the increase of air gap distance from 0.5 to 1.5 mm,average power consumed by the discharge air gap and discharge efficiency decrease obviously under alumina, and increase, and then decrease under quartz glass and polymethyl methacrylate (PMMA).Through spectrum diagnosis, in the quartz glass medium, the vibration temperature is the highest under negative polarity pulse excitation.Under bipolar pulse, the vibration temperature does not change significantly with the change of air gap distance.For the three dielectric materials of quartz glass,alumina and PMMA, the molecular vibration temperature is the highest under the quartz glass medium with the same voltage.When the gap spacing, pulse polarity or dielectric material are changed, the rotational temperature does not change significantly.

    Keywords: dielectric barrier discharge, pulse polarity, energy efficiency, molecular vibrational temperature, rotational temperature

    1.Introduction

    Dielectric barrier discharge (DBD) under atmospheric pressure can generate low-temperature plasma, which contains a lot of active particles [1].Therefore, it is widely used in material processing and synthesis [2], energy conversion [3],environmental governance [4], plasma medicine [5], agricultural food[6],seawater desalination and other fields[7,8].The parallel plate dielectric barrier reactor comprises parallel metal electrodes and dielectric, which is suitable for food sterilization and material surface modification [9, 10].In industrial applications, energy efficiency is a key issue.To improve the efficiency of DBD, researchers are committed to optimizing excitation power, dielectric materials and electrode shapes [11–13].

    The traditional DBD is driven by AC power.The discharge overheating is serious and the energy efficiency is low[14].To improve the discharge efficiency, the pulsed power supply is used for DBD [15].Nakanoet alstudied the influence of AC voltage waveform on the characteristics of DBD.The steep voltage edge is more conducive to improving efficiency [16].Wanget alstudied the characteristics of DBD driven by AC and pulsed power supplies.The study showed that nanosecond pulsed coaxial DBD has higher instantaneous power deposition, lower total power consumption and higher energy efficiency in plasma,and the discharge is more uniform and stable [17].Yanget alstudied the characteristics of DBD under sine wave, square wave, symmetrical triangular wave,and positive and negative ramp waves.The study shows that the discharge efficiency is the highest under square wave driving voltage [18].DBD drived by the pulsed power supply has higher efficiency.In DBD related applications, the effects of pulse voltage,frequency and pulse width have been studied more.But the polarity of the pulse is less studied.Pechereauet alused numerical analysis methods to study the reignition of DBDs under different polarities.The results show that there are charges of opposite polarity deposited on the surface of the dielectric.Only when a negative voltage is applied to the electrodes, the reignition of the discharge was significantly affected[19].Yuanet alstudied the influence of different pulse polarities in the atmosphere on ozone production.It was found that the ozone generation efficiency is the highest under the positive polarity.Bipolar pulse could reduce the generation of nitrogen dioxide[20].Seiyaet alstudied the effects of positive and negative pulses on the discharge propagation and the density of OH,NO and O radicals,and found that the polarity of discharge affects the density of some active substances produced in the plasma jet[21].Muaffaqet alstudied the effect of streamer polarity on the reduction of nitric oxide.It was found that the intensity ratio of the first negative system of(391.4 nm, threshold energy 18 eV) to the second positive system of N2(337.1 nm, threshold energy 11 eV) depends on the flow polarity [22].Zhanget alstudied atmospheric air diffusion array-needle DBD excited by positive, negative and bipolar nanosecond pulses in large electrode gap.The study found that bipolar pulses were conducive to the DBD excitation, and could produce room temperature plasma with more uniform discharge and higher intensity [23].In previous studies,the short bell-shaped pulse and the nanosecond pulse with slow descending edge under different polarity are used for the comparative study of DBD polarity [20–23].Under the unipolar pulse, only one discharge occurs in a period, and the bipolar pulse occurs twice in a period.Under square wave pulse,the accumulated surface charge and space charge left by primary discharge are effectively utilized to form secondary discharge,which has more advantages.Therefore,the influence of square wave pulse polarity on the DBD is very important.

    In this article, the high-voltage pulse power supply selfdesigned can generate three square wave pulses with different polarities-positive, negative and bipolar.On this basis, the electrical and optical characteristics of DBD have been studied.By measuring voltage and current combined with the equivalent model of DBD, the averaged power consumption in gap and discharge efficiency is analyzed.Then by using spectral diagnostic technology, the emission spectra under different pulse polarities, dielectric material and air gap distance were measured.Through the emission line of the second positive band of nitrogen molecule (C3Пu→B3Пg) by the emission spectrum, the vibration temperature and rotational temperature of nitrogen molecules (C3Пu) is also studied under different pulse polarities.The result shows that under the same applied voltage with quartz glass, the bipolar pulse discharge efficiency is the highest and the vibration temperature is the highest under negative polarity pulse excitation.Under the same applied voltage, with the change of air gap,for different media materials, the vibration temperature of nitrogen molecule is the highest in quartz glass medium.In alumina,the average power of discharge air gap is the highest,but the rotational temperature is kept at 300±100 K.

    2.Experimental setup

    The schematic diagram of the experimental device is shown in figure 1.It consists of a parallel plate DBD reactor,a high-voltage pulse power supply and an emission spectrum measurement system.

    The DBD reactor is composed of a high-voltage electrode, a ground electrode and a dielectric.The main component of the electrode material is stainless steel.The diameter of electrode is 53 mm.Quartz glass, alumina and polymethyl methacrylate (PMMA) are selected as dielectric materials.The thickness of materials is 1 mm.During the experiment,the medium sticks to the upper electrode.The self-made highvoltage pulse power supply adopts Marx structure,which can output positive, negative and bipolar square wave voltage.The pulse voltage amplitude is adjustable from 0 to 10 kV and the pulse width is adjustable from 1 to 50 μs.The frequency of the voltage is 1 kHz.Three typical voltage output waveforms are shown in figure 2.The voltage and current are measured by a high-voltage probe (Tektronix P6015 A,bandwidth 75 MHz) and a current probe (Pearson 2100,20 MHz).The emission spectrum is directly measured by a fiber optic spectrometer (Avantes AvaSpec Mini 3648).The discharge photos are taken by Canon camera(Canon EOS 5D Mark III).

    3.Experimental results and discussion

    3.1.The analysis of discharge process

    Discharge image at bipolar pulse peak voltage of 9 kV,pulse repetition rate of 1000 Hz and air gap distance of 0.5 mm is shown in figure 3, captured by the Canon EOS 5D Mark III digital camera with 1/30 s exposure time, F3.2 aperture and ISO 20000 sensitivity.It can be seen from the discharge picture that the discharge is relatively uniform.The average power and energy efficiency of the discharge air gap is calculated by the classical theoretical calculation method.The equivalent circuit model of DBD is shown in figure 4.Cdrepresents the capacitance of dielectric layer andCgrepresents the equivalent capacitance of air gap.The calculation process can be found in the relevant literature[24].Secondary discharge under unipolar pulses does not consume the energy of the external circuit at the same time, and the required energy is provided by the accumulated surface and space charges left by the primary discharge [24, 25]

    WhereUtis the voltage applied to the reactor;Itis the current flowing through the reactor;Ptis the instantaneous power of DBD;Ugis the voltage on the air gap;Igis the plasma current flowing through the air gap;Pgis the instantaneous power of discharge air gap;Udis the voltage on the medium;Idis the current flowing through the medium;Pdis the instantaneous power of medium;Pgis the average power consumed by the discharge air gap;Pdis the average power consumed by medium;Ptis the average power consumed by reactor andηis the DBD energy efficiency.

    With the peak voltage of 8 kV, the air gap distance of 0.5 mm,and the dielectric material of quartz glass,the voltage and current applied to the reactor,Ug,Ig,Pg,PdandPtcalculated under the unipolar pulse are shown in figures 5 and 6.There are two discharges in one pulse period, which correspond to the rising and falling edges of the voltage.Under unipolar positive pulse and negative pulse, the peak value of the first discharge current is close, and the positive pulse of the second discharge current is greater than the negative pulse.Secondary discharge is mainly due to deposition charge, the cause of this phenomenon may be related to deposition charge.As shown in figure 5(b),when the unipolar positive pulse first discharges, the currentIgis the smallest and the air gap voltageUgis the largest.But in the second discharge, when the currentIgis maximum, the air gap voltageUgis also maximum.Therefore, the instantaneous power of discharge air gapPgin second discharge is greater than that in first discharge.Under unipolar negative pulse,UgandIgare shown in figure 6(b),UgandIgare opposite to unipolar positive pulses.The corresponding data under bipolar voltage are shown in figures 7(a) and (b).There are four discharges in one cycle.Under bipolar pulse, the discharge current is significantly larger than that under unipolar pulse, because the discharge voltage is lower and the discharge is more intense under bipolar pulse[20].Under bipolar pulse, the occurrence of the second and fourth discharges is mainly caused by the deposition charge, and the required energy is mainly provided by the accumulated surface and space charges left by the first and third discharges.Similar to unipolar pulse,the second discharge and the fourth discharge do not consume the energy of the external circuit at the same time.

    Under unipolar pulse, the average air gap discharge powerPgof the first discharge and the second discharge is shown in figure 8.At low voltage, the average powerPgof the first discharge is less than that of the second discharge,and with the increase of voltage,the average powerPgof the second discharge is greater than that of the first discharge.In parallel plate DBD reactor, high-voltage electrode covers medium.The rising time and falling time of the positive polarity pulse are 160 and 133 ns from figure 5(a), and those of the negative polarity pulse are 248 and 137 ns from figure 6(a).The faster the rising edge of the voltage, the higher the discharge power and discharge efficiency[16].The energy of the second discharge is provided by the first discharge, so the size of the second discharge is related to the deposition charge and the time of the rise and fall edges.As shown in figure 9,under bipolar pulse,the average discharge powerPgof the second discharge gap is the first discharge,and the fourth discharge power is greater than the third discharge power.It is mainly due to the low bipolar breakdown voltage and more deposition charges than unipolar.

    With the voltage change, the average power input to the reactorPtis shown in figure 10 under pulse voltages of different polarities.Whether applying the positive, negative or bipolar pulse voltage, theinput to the dielectric barrier reactor also increases as the voltage increases.Obviously,the bipolar power is the most.The average power consumed by the discharge air gapcalculated is shown in figure 11.ThePgof bipolar pulse is still the highest.The curve of DBD energy efficiencyηwith voltage is shown in figure 12.Under the same voltage,the efficiency of the bipolar polarity pulse is the highest, and the negative polarity pulse is the lowest.When the applied voltage is 9 kV, the discharge energy efficiencies of positive pulse,bipolar pulse and negative pulse are 52.8%, 59.5%, 49.6% respectively.

    It can be seen from figure 12 that with the change of voltage, the average power consumed by the reactor under bipolar pulse is about twice that under unipolar pulse.Through the analysis of the average power consumption of the rising edge and falling air gap of the pulse,it can be seen that under the bipolar pulse, due to the influence of the deposition charge, the average power of the air gap of the bipolar positive pulse is greater than that of the unipolar positive pulse, and the power of the bipolar negative pulse is greater than that of the unipolar negative pulse.So bipolar pulse discharge efficiency is greater than unipolar pulse.The discharge efficiency under bipolar square wave pulse is greater than that under unipolar pulse.After the second discharge with bipolar positive pulse, some deposition charges are still retained to participate in the third discharge.

    3.2.The effect of dielectric material and air gap distance on discharge

    Under the bipolar voltage of 9 kV and three different dielectric (quartz glass, alumina and PMMA), the average power input to the reactoris shown in figure 13 with the change of air gap distance.Theof three different dielectric material is shown in figure 14.The energy efficiencyηof DBD with the air gap distance is shown in figure 15.The average power consumed by the discharge air gap and discharge efficiency decrease obviously under alumina, and increase and then decrease under quartz glass and PMMA.

    For parallel plate DBD reactors, the electrode configuration is known and can be calculated by the following equation:

    whereddis the thickness of the dielectric barrier;dgis the thickness of the discharge gap;ε0is the permittivity of the air gap; εris the dielectric constant of the used dielectric barrier material andCeqis the equivalent capacitance of DBD reactor.

    Geometry parameters of the reactor(in section 2)and the relative permittivity of quartz glass, alumina and PMMA are shown in table 1.It can be seen from the above formula that the larger the relative dielectric constant, the larger the dielectric layer capacitance,the higher the voltage on the air gap of the reactor, and the larger the air gap spacing, the smaller the air gap capacitance.Due to the dielectric capacitance is different, so different dielectric, the best discharge efficiency of air gap distance is different.

    From the figures 13, 14 and table 1, the relative permittivity of alumina medium is the largest, and the average power and air gap power of the dielectric barrier reactor are the largest.The relative dielectric constant of PMMA is small,so the average power and air gap power are the smallest.The influence of dielectric materials on DBD efficiency mainly depends on the relative dielectric constant and dielectric loss factors.From the figure 15, the higher the relative dielectric constant is, the higher the DBD efficiency is when the discharge gap distance is small.

    3.3.The spectrum characteristics of discharge

    The vibration temperature reflects the electron temperature in the plasma to a certain extent.Under the voltage of 9 kV with different pulse polarities and quartz glass dielectric, the typical spectrum measured is shown in figure 16.From the emission line of the second positive band of nitrogen molecule (C3Пu→B3Пg), the vibration temperature (Tvib) and rotation temperature(Trot)of N2(C,υ)is calculated.SPECAIR software is used to simulate the spectrum, and the plasma parameters are obtained by comparing the simulated spectrum and the experimental spectrum [26].The slit function is the trapezoid of 0.66 nm on the substrate and 0.22 nm on the top.The vibration temperature and rotation temperature were determined by fitting SPECAIR spectrum in the range of 350–410 nm.

    An example of a best fit is presented in figure 17 achieved with values ofTvib=3000 K andTrot=290 K.The estimated value of the error bar is obtained as the range of the fitting parameter values.According to our best fitting standard,the fitting parameter values will still produce acceptable fitting without considering the additional influence of physical errors.

    Under the quartz glass dielectric and air gap distance of 0.5 mm, the vibration temperature and rotational temperature ofnitrogen molecules with different pulse polarities is shown in figure 18.

    Table 1.Typical parameters of quartz glass, alumina and polymethyl methacrylate.

    When the voltage is 8 kV,the nitrogen molecular vibration temperature under positive, negative and bipolar polarities is 3000±100 K, 3100±100 K and 2900±100 K respectively, and all the rotational temperature under positive, negative and bipolar polarities is 290±100 K.From the overall trend, the vibration temperature and rotational temperature of nitrogen molecules is the highest under the excitation of the positive polarity pulse.Figure 18 shows that the polarity of square pulse has a significant effect on the plasma vibration temperature, and the molecular vibration temperature is the highest under negative pulse.Whether bipolar pulse or unipolar pulse(positive pulse or negative pulse),the gas temperature of plasma has no obvious change with the increase of pulse peak voltage, which is roughly maintained in the range of 300±100 K.The results show that no matter what the polarity of the driving pulse is, the heating effect of the plasma is not obvious.The reason is that electrons can obtain the maximum acceleration in the average free path in the pulse electric field,while the displacement of gas molecules and ions is very small in the short pulse duration, which means that the Joule heat effect is not obvious, so the use of high-voltage pulse power supply can obtain higher energy efficiency.

    Figure 1.Schematics of the experimental setup.

    Figure 2.The output voltage waveforms of high-voltage pulse power supply.(a) Positive pulse, (b) negative pulse, (c) bipolar pulse.

    Figure 3.Image of DBD under bipolar square wave pulse at 9 kV voltage, 1 kHz pulse repetition rate, and 0.5 mm electrode gap distance.

    Figure 4.Equivalent circuit of parallel plate dielectric barrier discharge under high-voltage electrode dielectric coverage.

    Figure 5.The (a) voltage–current waveforms and calculated (b) Ug,Ig, (c) Pg, Pd and Pt of the parallel plate DBD reactor with quartz glass at 8 kV positive square pulse and 0.5 mm electrode gap distance.

    Figure 6.The (a) voltage–current waveforms and calculated (b) Ug,Ig, (c) Pg, Pd and Pt of the parallel plate DBD reactor with quartz glass at 8 kV negative square pulse and 0.5 mm electrode gap distance.

    Figure 7.The (a) voltage–current waveforms and calculated (b) Pg, Pd and Pt of the parallel plate DBD reactor with quartz glass at 8 kV bipolar square pulse and 0.5 mm electrode gap distance.

    Figure 8.The variation of the first and second discharge power under positive and negative square pulses.

    Figure 9.The four discharges power under bipolar square pulse.

    Figure 10.Change of Pt for varies voltage.

    Figure 11.Change of Pg for varies voltage.

    Figure 12.The energy efficiency for varies voltage.

    Figure 13.Change of Pt with gap distance.

    Figure 14.Change of Pg with gap distance.

    Figure 15.The energy efficiency for varies gap distance.

    Figure 16.Emission spectra in the range of 350–410 nm of air dielectric barrier discharge under postive,negative and bipolar pulse at 9 kV.

    Figure 17.The simulated spectra and experimental emission spectra with quartz glass at 7 kV bipolar square pulse and 0.5 mm air gap distance.

    Figure 18.Variations of (a) vibration temperature and (b) rotational temperature under different pulse polarities.

    Figure 19.Variations of (a) vibration temperature and (b) rotational temperature under different dielectric materials.

    With the bipolar pulse voltage of 9 kV, the vibration temperature and rotational temperature of nitrogen molecules with different dielectric materials are shown in figure 19.It can be seen from figure 19 that under bipolar pulse, the rotational temperature and vibration temperature do not change significantly with the change of air gap distance, and the dielectric material has an effect on the molecular vibration temperature.The rotational temperature has no obvious change regardless of the change of air gap spacing and dielectric material.The material has no significant effect on the rotational temperature, possibly due to the short discharge time.

    4.Conclusions

    This work studies the power and efficiency of DBD under different pulse polarities.At the same time, according to the measured emission spectrum, the vibration temperature of N2(C,υ) is calculated using the intensity of the emission spectrum of the vibration band sequence.

    No matter what polarity voltage is applied, with the increase of voltage in quartz glass medium,the average power consumed by reactor and the average power consumed by the discharge gap also increases.Under the same applied voltage,the bipolar pulse discharge efficiency and average power consumed by the discharge air gap are the highest, the positive pulse discharge efficiency is the second,and the negative pulse nitrogen molecular vibration temperature is the highest.Whether applied positive, negative or bipolar pulses, the rotational temperature of nitrogen molecules did not change significantly.For three different dielectric materials (quartz glass,alumina and PMMA)with the same bipolar voltage,the nitrogen molecular vibration temperature is the highest under quartz glass.Under the alumina medium, the average power consumed by the discharge air gap is the highest.When the gap spacing and dielectric material are changed,the rotational temperature does not change significantly.

    Acknowledgments

    This work is supported by Shanghai Sailing Program (No.19YF1435000) and National Natural Science Foundation of China (Nos.51707122 and 12005128).

    ORCID iDs

    猜你喜歡
    吳忠
    《祖國(guó),祖國(guó)》曲譜
    耐空蝕涂層及其研究進(jìn)展
    吃在吳忠,從一頓早茶開始
    基于b值分析寧夏吳忠—靈武地區(qū)強(qiáng)震危險(xiǎn)性
    地震研究(2021年1期)2021-04-13 01:05:00
    淺談博物館在現(xiàn)代公共文化服務(wù)體系建設(shè)中的擔(dān)當(dāng)
    祖國(guó)(2017年20期)2017-11-23 17:40:42
    新中國(guó)史上最年輕的開國(guó)將軍
    軍事文摘(2016年2期)2016-02-04 20:08:20
    探析電視欄目短劇《吳忠故事》之魅力
    新聞傳播(2015年4期)2015-07-18 11:11:30
    一道三角函數(shù)題的多種解法評(píng)析
    吳德、吳忠與林彪、江青集團(tuán)的覆滅
    軍事歷史(2004年3期)2004-11-22 07:28:36
    高處不勝寒
    東西南北(2000年8期)2000-06-05 06:55:08
    亚洲欧美日韩另类电影网站 | 成人综合一区亚洲| 欧美变态另类bdsm刘玥| 欧美日韩一区二区视频在线观看视频在线| 久久国产乱子免费精品| 日韩强制内射视频| 婷婷色综合www| 高清毛片免费看| 97超碰精品成人国产| 交换朋友夫妻互换小说| 国产男女内射视频| 成年人午夜在线观看视频| 高清在线视频一区二区三区| 熟女av电影| av.在线天堂| 只有这里有精品99| 青春草亚洲视频在线观看| 简卡轻食公司| 国产高清三级在线| 亚洲av二区三区四区| 一区在线观看完整版| 男女国产视频网站| 女性被躁到高潮视频| 精品人妻一区二区三区麻豆| 亚洲经典国产精华液单| 亚洲伊人久久精品综合| 亚洲国产最新在线播放| 亚洲国产精品国产精品| 亚洲成色77777| 亚洲天堂av无毛| 黑人猛操日本美女一级片| 男人和女人高潮做爰伦理| 久久精品国产a三级三级三级| 日日摸夜夜添夜夜添av毛片| 欧美亚洲 丝袜 人妻 在线| 一级片'在线观看视频| 97热精品久久久久久| 丝瓜视频免费看黄片| 精品酒店卫生间| 精华霜和精华液先用哪个| 我要看日韩黄色一级片| 人妻系列 视频| 亚洲人成网站在线观看播放| 汤姆久久久久久久影院中文字幕| 久久影院123| 成年人午夜在线观看视频| 国产色婷婷99| 我的老师免费观看完整版| 亚洲精品色激情综合| 欧美xxxx黑人xx丫x性爽| 亚洲美女搞黄在线观看| 国产白丝娇喘喷水9色精品| 91aial.com中文字幕在线观看| 欧美另类一区| 久久精品夜色国产| 国产av一区二区精品久久 | 91久久精品国产一区二区成人| 亚洲精品中文字幕在线视频 | 大陆偷拍与自拍| 国产伦精品一区二区三区视频9| 久久 成人 亚洲| 18禁动态无遮挡网站| 九草在线视频观看| 高清日韩中文字幕在线| 久久国内精品自在自线图片| 男女无遮挡免费网站观看| 男女免费视频国产| 亚洲精品国产成人久久av| 久久精品国产亚洲网站| 中文资源天堂在线| 国产一区二区在线观看日韩| 欧美日韩国产mv在线观看视频 | 我要看日韩黄色一级片| 中文字幕亚洲精品专区| 欧美区成人在线视频| av免费在线看不卡| 简卡轻食公司| 十八禁网站网址无遮挡 | 国产成人免费无遮挡视频| 亚洲精品国产av蜜桃| 精品酒店卫生间| 亚洲国产欧美在线一区| 国产精品av视频在线免费观看| 啦啦啦视频在线资源免费观看| 男人狂女人下面高潮的视频| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 国产精品久久久久成人av| 免费黄频网站在线观看国产| 亚洲电影在线观看av| 亚洲精品乱久久久久久| 狂野欧美白嫩少妇大欣赏| 欧美日本视频| 国内精品宾馆在线| 国产一区有黄有色的免费视频| 99精国产麻豆久久婷婷| 一级a做视频免费观看| 国产 精品1| 亚洲人成网站在线观看播放| av免费观看日本| 啦啦啦中文免费视频观看日本| 如何舔出高潮| 寂寞人妻少妇视频99o| 亚洲内射少妇av| 在线免费观看不下载黄p国产| 免费看不卡的av| 亚洲精品视频女| 中国三级夫妇交换| 一级二级三级毛片免费看| 在线观看三级黄色| 高清av免费在线| 免费久久久久久久精品成人欧美视频 | 久久国产精品男人的天堂亚洲 | 久久热精品热| 日韩人妻高清精品专区| 日韩av不卡免费在线播放| 亚洲精品,欧美精品| av又黄又爽大尺度在线免费看| 一二三四中文在线观看免费高清| 国产大屁股一区二区在线视频| 永久免费av网站大全| 男女边吃奶边做爰视频| 亚洲人成网站在线播| 夜夜看夜夜爽夜夜摸| 各种免费的搞黄视频| 99久久精品国产国产毛片| 国产淫语在线视频| 久久国产乱子免费精品| 国产精品嫩草影院av在线观看| 人妻 亚洲 视频| 国产精品偷伦视频观看了| 国产综合精华液| 蜜桃久久精品国产亚洲av| 欧美日韩综合久久久久久| 国产一区亚洲一区在线观看| 天堂俺去俺来也www色官网| 日韩,欧美,国产一区二区三区| 又大又黄又爽视频免费| 亚洲精品国产av成人精品| 大又大粗又爽又黄少妇毛片口| 日韩av在线免费看完整版不卡| 久久久久久久精品精品| 观看免费一级毛片| 国产黄频视频在线观看| 好男人视频免费观看在线| 亚洲人成网站高清观看| 男女边摸边吃奶| 免费大片18禁| 日本欧美视频一区| 亚洲熟女精品中文字幕| 国产片特级美女逼逼视频| 蜜桃亚洲精品一区二区三区| 熟女电影av网| 一边亲一边摸免费视频| 久热久热在线精品观看| 免费观看在线日韩| 国产精品精品国产色婷婷| 九九爱精品视频在线观看| 全区人妻精品视频| 视频中文字幕在线观看| 直男gayav资源| 在线看a的网站| 久久久久人妻精品一区果冻| av在线app专区| 91久久精品电影网| 久久精品久久精品一区二区三区| 国产欧美日韩精品一区二区| 街头女战士在线观看网站| 国产成人免费无遮挡视频| 成人美女网站在线观看视频| 国产极品天堂在线| 能在线免费看毛片的网站| 亚洲人成网站在线观看播放| 成人国产av品久久久| 成人漫画全彩无遮挡| 晚上一个人看的免费电影| 99精国产麻豆久久婷婷| 黄色怎么调成土黄色| 国产日韩欧美亚洲二区| 一区在线观看完整版| 国产亚洲精品久久久com| 人人妻人人看人人澡| 精品久久久久久久久亚洲| 午夜福利影视在线免费观看| 国产伦理片在线播放av一区| 黑人高潮一二区| 丝袜脚勾引网站| 久久久久久久久久久丰满| 麻豆成人av视频| 午夜免费男女啪啪视频观看| 97超碰精品成人国产| 久久久久久久久久久免费av| 免费看不卡的av| 日韩人妻高清精品专区| 午夜免费鲁丝| 欧美3d第一页| 日日摸夜夜添夜夜添av毛片| 亚洲av欧美aⅴ国产| 多毛熟女@视频| 青春草国产在线视频| 免费人成在线观看视频色| av福利片在线观看| 只有这里有精品99| 国产精品三级大全| 色视频www国产| 亚洲精品一二三| 亚洲精品日韩av片在线观看| 黄色怎么调成土黄色| 男人爽女人下面视频在线观看| 2021少妇久久久久久久久久久| 国产久久久一区二区三区| 国产成人freesex在线| 久久久久久久久久人人人人人人| 欧美亚洲 丝袜 人妻 在线| 3wmmmm亚洲av在线观看| 精品午夜福利在线看| 免费观看无遮挡的男女| 国产 精品1| 欧美97在线视频| 五月开心婷婷网| 欧美日韩视频精品一区| 日本av手机在线免费观看| 简卡轻食公司| 欧美老熟妇乱子伦牲交| 久久人人爽人人爽人人片va| 国产视频内射| 人妻制服诱惑在线中文字幕| 中文字幕av成人在线电影| 中文字幕av成人在线电影| 2018国产大陆天天弄谢| 国模一区二区三区四区视频| 最近2019中文字幕mv第一页| 高清毛片免费看| 国产成人freesex在线| 日韩av在线免费看完整版不卡| 久久久久视频综合| 亚洲欧美日韩卡通动漫| 免费黄色在线免费观看| 久久国产精品男人的天堂亚洲 | 亚洲熟女精品中文字幕| 丰满迷人的少妇在线观看| 一级av片app| 日本黄大片高清| 一二三四中文在线观看免费高清| 欧美人与善性xxx| 2018国产大陆天天弄谢| 国产一区有黄有色的免费视频| av免费观看日本| 国产黄色视频一区二区在线观看| av天堂中文字幕网| 最近中文字幕高清免费大全6| 久热这里只有精品99| 久久久久久伊人网av| 一级av片app| 久久久久久九九精品二区国产| 国产免费视频播放在线视频| 欧美激情国产日韩精品一区| 中国国产av一级| 国产色爽女视频免费观看| 最黄视频免费看| 97精品久久久久久久久久精品| 夜夜看夜夜爽夜夜摸| 91久久精品国产一区二区成人| 在线播放无遮挡| 久久久国产一区二区| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 97热精品久久久久久| 日韩国内少妇激情av| 免费久久久久久久精品成人欧美视频 | 三级经典国产精品| 久久久久久久精品精品| 亚洲,欧美,日韩| 少妇的逼好多水| 涩涩av久久男人的天堂| 日韩精品有码人妻一区| 久热久热在线精品观看| 少妇人妻一区二区三区视频| 亚洲精品成人av观看孕妇| 肉色欧美久久久久久久蜜桃| 国产在视频线精品| 夫妻性生交免费视频一级片| 91精品国产国语对白视频| 国产精品蜜桃在线观看| 黄片无遮挡物在线观看| 色视频www国产| 国产爱豆传媒在线观看| 女性被躁到高潮视频| 精品国产一区二区三区久久久樱花 | 韩国高清视频一区二区三区| 免费高清在线观看视频在线观看| 国产精品嫩草影院av在线观看| 成人亚洲欧美一区二区av| 一区二区三区四区激情视频| 欧美激情国产日韩精品一区| 天堂8中文在线网| 日韩一区二区视频免费看| 亚洲国产精品专区欧美| 久久久久久人妻| 91aial.com中文字幕在线观看| 最近的中文字幕免费完整| 精品熟女少妇av免费看| av国产久精品久网站免费入址| 亚洲最大成人中文| 亚洲色图综合在线观看| 亚洲在久久综合| 亚洲国产精品一区三区| 国产毛片在线视频| 国产高清国产精品国产三级 | 日本爱情动作片www.在线观看| 人妻 亚洲 视频| 又粗又硬又长又爽又黄的视频| 欧美成人午夜免费资源| 日韩伦理黄色片| 免费在线观看成人毛片| 男女边摸边吃奶| 亚洲国产色片| 肉色欧美久久久久久久蜜桃| 2021少妇久久久久久久久久久| 99精国产麻豆久久婷婷| 嫩草影院入口| 欧美3d第一页| 亚洲av欧美aⅴ国产| av不卡在线播放| av福利片在线观看| 性色avwww在线观看| 伦理电影大哥的女人| 久久综合国产亚洲精品| 亚洲久久久国产精品| 男女国产视频网站| 亚洲欧美成人精品一区二区| 成人漫画全彩无遮挡| 蜜桃在线观看..| 国产精品免费大片| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 蜜桃久久精品国产亚洲av| 黄片wwwwww| 极品教师在线视频| 国内揄拍国产精品人妻在线| 成年av动漫网址| 一区在线观看完整版| 干丝袜人妻中文字幕| 日韩av在线免费看完整版不卡| 精品人妻熟女av久视频| 久久热精品热| 国产乱来视频区| 91午夜精品亚洲一区二区三区| 亚洲欧美中文字幕日韩二区| av网站免费在线观看视频| 麻豆成人午夜福利视频| 久久精品人妻少妇| 建设人人有责人人尽责人人享有的 | 免费av中文字幕在线| 国产色婷婷99| 黑人猛操日本美女一级片| a级一级毛片免费在线观看| 日本猛色少妇xxxxx猛交久久| 男人添女人高潮全过程视频| 国产亚洲欧美精品永久| 精品一品国产午夜福利视频| 国产精品欧美亚洲77777| 免费人成在线观看视频色| 日韩av免费高清视频| 国产高清三级在线| 国产亚洲欧美精品永久| 人人妻人人看人人澡| 噜噜噜噜噜久久久久久91| 日韩视频在线欧美| a级毛片免费高清观看在线播放| 国产乱人偷精品视频| 日本wwww免费看| 超碰97精品在线观看| 男人舔奶头视频| 久久久久性生活片| 黄片无遮挡物在线观看| 亚洲精品国产av蜜桃| 最新中文字幕久久久久| 亚洲人成网站在线播| 国产精品av视频在线免费观看| 老熟女久久久| 一级毛片 在线播放| 亚洲国产毛片av蜜桃av| 国产精品三级大全| 国产伦理片在线播放av一区| 国产av国产精品国产| 亚洲国产日韩一区二区| 久久午夜福利片| 黄色配什么色好看| 嫩草影院入口| 国产熟女欧美一区二区| 简卡轻食公司| 我的老师免费观看完整版| 最近手机中文字幕大全| 欧美人与善性xxx| 欧美少妇被猛烈插入视频| 国产深夜福利视频在线观看| 亚洲精品亚洲一区二区| 午夜老司机福利剧场| 五月开心婷婷网| 精品久久久久久久末码| 在线天堂最新版资源| 国产精品嫩草影院av在线观看| 交换朋友夫妻互换小说| 国产视频内射| 男女下面进入的视频免费午夜| 国产爽快片一区二区三区| 精品一区二区免费观看| 大又大粗又爽又黄少妇毛片口| 多毛熟女@视频| 欧美日本视频| 国产成人免费无遮挡视频| 成人亚洲欧美一区二区av| 国产亚洲精品久久久com| 1000部很黄的大片| 99热这里只有是精品在线观看| 久久99蜜桃精品久久| 欧美日韩亚洲高清精品| 我的女老师完整版在线观看| 99久久精品一区二区三区| 丰满乱子伦码专区| 日韩,欧美,国产一区二区三区| 99久久综合免费| 欧美三级亚洲精品| 国产中年淑女户外野战色| 国产亚洲5aaaaa淫片| 欧美丝袜亚洲另类| 26uuu在线亚洲综合色| 又爽又黄a免费视频| 18禁裸乳无遮挡动漫免费视频| 国产成人精品一,二区| 大片电影免费在线观看免费| 国产欧美日韩精品一区二区| 天堂8中文在线网| 看十八女毛片水多多多| 最近手机中文字幕大全| 亚洲精品视频女| 一级av片app| 国产伦精品一区二区三区视频9| 亚洲国产毛片av蜜桃av| 噜噜噜噜噜久久久久久91| 伊人久久精品亚洲午夜| 一本久久精品| 亚洲一区二区三区欧美精品| 国产欧美日韩一区二区三区在线 | av在线蜜桃| 国产精品99久久99久久久不卡 | 日韩欧美 国产精品| 国产精品一区www在线观看| 一区二区三区精品91| 极品教师在线视频| 国产成人免费观看mmmm| tube8黄色片| 欧美精品国产亚洲| 熟女av电影| 国产高清有码在线观看视频| 肉色欧美久久久久久久蜜桃| 51国产日韩欧美| 欧美精品一区二区免费开放| 精品人妻一区二区三区麻豆| 97在线视频观看| 国产成人freesex在线| 最后的刺客免费高清国语| 国产高潮美女av| 欧美3d第一页| 十分钟在线观看高清视频www | 一个人免费看片子| 九色成人免费人妻av| 欧美+日韩+精品| 欧美成人a在线观看| 亚洲第一区二区三区不卡| 亚洲精品第二区| 亚洲精品日韩av片在线观看| tube8黄色片| 狂野欧美激情性xxxx在线观看| 精品酒店卫生间| 日本欧美国产在线视频| 国产亚洲5aaaaa淫片| 欧美成人午夜免费资源| 日本猛色少妇xxxxx猛交久久| 欧美+日韩+精品| 性色avwww在线观看| 日韩一本色道免费dvd| 成人黄色视频免费在线看| 欧美日韩亚洲高清精品| av免费观看日本| 免费黄频网站在线观看国产| 成人影院久久| 人人妻人人澡人人爽人人夜夜| 国内精品宾馆在线| 日本av免费视频播放| 乱码一卡2卡4卡精品| 有码 亚洲区| 色5月婷婷丁香| 国产精品久久久久久av不卡| 国产永久视频网站| 欧美3d第一页| 国产成人免费观看mmmm| 在线播放无遮挡| 好男人视频免费观看在线| 久久热精品热| 欧美高清性xxxxhd video| 一边亲一边摸免费视频| 欧美激情极品国产一区二区三区 | 亚洲真实伦在线观看| 直男gayav资源| 一级毛片电影观看| 久久女婷五月综合色啪小说| 狂野欧美激情性bbbbbb| 日本wwww免费看| 80岁老熟妇乱子伦牲交| 亚洲aⅴ乱码一区二区在线播放| 高清黄色对白视频在线免费看 | 国产精品.久久久| 在现免费观看毛片| 婷婷色综合大香蕉| 黄色欧美视频在线观看| 午夜免费鲁丝| 男女免费视频国产| 18禁动态无遮挡网站| 啦啦啦在线观看免费高清www| 国产毛片在线视频| 国产亚洲精品久久久com| 街头女战士在线观看网站| 免费黄频网站在线观看国产| 国产综合精华液| 亚洲第一区二区三区不卡| 亚洲av综合色区一区| 我的女老师完整版在线观看| 国产伦在线观看视频一区| 美女cb高潮喷水在线观看| 午夜福利在线在线| 免费黄频网站在线观看国产| 色视频在线一区二区三区| 寂寞人妻少妇视频99o| 蜜桃亚洲精品一区二区三区| 2018国产大陆天天弄谢| 性高湖久久久久久久久免费观看| 久久精品夜色国产| 亚洲国产精品专区欧美| 久久av网站| 2021少妇久久久久久久久久久| 亚洲熟女精品中文字幕| 日韩电影二区| 国产精品久久久久久av不卡| 婷婷色麻豆天堂久久| 精品亚洲成a人片在线观看 | 日本免费在线观看一区| 99热全是精品| 国产成人免费观看mmmm| 伦精品一区二区三区| 色婷婷久久久亚洲欧美| 最新中文字幕久久久久| 国产午夜精品一二区理论片| 亚洲婷婷狠狠爱综合网| 亚洲精品,欧美精品| 国产色爽女视频免费观看| 精品少妇久久久久久888优播| 永久免费av网站大全| 免费黄网站久久成人精品| 亚洲国产欧美人成| 国产av精品麻豆| 少妇熟女欧美另类| 七月丁香在线播放| 精品少妇黑人巨大在线播放| 一本一本综合久久| 精品人妻视频免费看| 美女中出高潮动态图| 嫩草影院新地址| 永久免费av网站大全| 丝瓜视频免费看黄片| 成人18禁高潮啪啪吃奶动态图 | 精品一品国产午夜福利视频| 六月丁香七月| 国产精品成人在线| 免费少妇av软件| 午夜福利视频精品| 亚洲真实伦在线观看| 精品久久久噜噜| 在线观看免费高清a一片| 汤姆久久久久久久影院中文字幕| 亚洲人成网站高清观看| 国产成人免费无遮挡视频| 久久久午夜欧美精品| 在线观看人妻少妇| 国产乱人视频| 中文在线观看免费www的网站| 久久久久久久精品精品| 日韩人妻高清精品专区| 国产大屁股一区二区在线视频| 日本爱情动作片www.在线观看| 天天躁夜夜躁狠狠久久av| 国产大屁股一区二区在线视频| 久久青草综合色| 亚洲精品视频女| 一级爰片在线观看| 女人十人毛片免费观看3o分钟| 久久久午夜欧美精品| 黄色欧美视频在线观看| 亚洲婷婷狠狠爱综合网| 欧美日韩在线观看h| 男女无遮挡免费网站观看| 国模一区二区三区四区视频| 哪个播放器可以免费观看大片| av视频免费观看在线观看| 最后的刺客免费高清国语| 欧美日韩精品成人综合77777| 免费看不卡的av| 老司机影院成人| 亚洲伊人久久精品综合| 免费看光身美女| 久久人人爽人人片av| 一级片'在线观看视频| 大陆偷拍与自拍| 中文字幕制服av|