• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Main Engine Power Prediction for Large Vessels Based on Gaussian Mixture Model and Deep Neural Network

    2021-12-31 07:49:28-,,-,-,,-,
    船舶力學 2021年12期

    -,,-,-,,-,

    (1.School of Information Science&Engineering,Lanzhou University,Lanzhou 730000,China;2.College of Electronic Information,Guangxi University for Nationalities,Nanning 530006,China)

    Abstract: The marine main engine power is an important data for prediction of fuel consumption during navigation and for evaluation of exhaust emissions. However, the absence of vessel main engine power data hinders the prediction of fuel consumption and emissions of vessels based on large data.A main engine power prediction method for large vessels based on Gaussian mixture model (GMM) and deep neural network (DNN)is proposed in this paper to solve this problem.Firstly,the vessel data are analysed for correlation, and ship features which have large correlation coefficients with the engine power are selected as input of the GMM-DNN hybrid model. Then the clustering algorithm GMM is used to analyse ship characteristics,the result of which is used as an input of DNN.Finally,with DNN optimized by Adam-Dropout, the vessel power is predicted by DNN. In order to explore the effectiveness of the method, the multiple linear regression analysis, nonlinear regression, DNN and GMMDNN with respect to the main engine power prediction of vessels are compared.The experiment shows that the MAPE of GMM-DNN is 14.57%, which is 28.27% lower than that of multiple linear regression, 23.36% lower than that of non-linear regression, and 1.24% lower than that of DNN and shows that the GMM-DNN model is the best in the main engine power prediction for large vessels.

    Key words:main engine power;Gaussian mixture model(GMM);deep neural network(DNN)

    0 Introduction

    With the continuous development of shipping and shipbuilding industry,the type,quantity and tonnage of vessels are increasing. Therefore, the shipping economy and environmental pollution assessment[1-2]is becoming more and more important. However, the vessel power data of Marine-traffic (a global ship tracking and service platform) and the ship net are not disclosed at present. The missing and inaccessible vessel power data have a great influence on the prediction and optimization of fuel consumption[3]and the assessment of vessel exhaust emissions[4-5]. It is more and more important to get the main engine power of vessels[6].

    Nowadays, the prediction methods of the main engine power can be divided into three categories. The first category is multiple regression analysis, such as multiple linear regression, nonlinear regression, and etc.. Based on polynomial regression, Zhou et al[7]obtained regression formulas for the main power and main sizes of fishing and cargo vessels, and determined the power estimation method of the main engines for the inland ships. Based on the AIS data of 200 000 vessels around the world, Polish scholar Tomasz[8]obtained the regression formula of the parameters between load,design speed and length, breadth, draft, main engine power by regression analysis method. The regression formula can be used in the ship preliminary design. But it cannot be directly used to estimate the main engine power of vessels because load and design speed are not easy to obtain.

    The second category is traditional machine learning, such as support vector machine (SVM),random forest regressor (RFR), and etc.. Gkerekos et al[9]presented a comparison between many methods for predicting ship main engine fuel oil consumption (FOC)based on vessel,in which various multiple regression algorithms including SVM, RFR, extra trees regressor (ETR), artificial neural network(ANN),and ensemble methods are employed.Based on a database of 400 vessels,Liu et al[10]established a prediction method for the effective power of vessels by using SVM. But the database data used in the experiment were too old,and there were few new ships in the last decade.

    The third category is deep learning, such as deep neural network (DNN), convolution neural network (CNN)[11]and etc.. With the development of artificial intelligence, DNN has incomparable advantages in fitting high dimensional nonlinear functions. Bal Be?ik?i et al[12]used an inexact method of artificial neural network (ANN) to predict ship fuel consumption for various operational conditions, and developed a decision support system (DSS) employing ANN-based fuel prediction model to be used on board ships on a real time basis for energy efficient ship operations. Farag et al[13]employed a combined technique of ANN and multi-regression (MR)to estimate the vessel power and fuel consumption.

    In the report as shown in Ref.[14], there were 95 402 vessels (more than 100 GT propelling vessels) with a total capacity of 1.970 billion DWT in early 2019. These vessels differ greatly in structure,size,materials,purposes and other aspects.Even with the same type of vessel,their main dimensions and various parameters are different.Therefore,the identification of vessel main engine power cannot be distinguished by a single parameter. Based on the rough set theory, Tian et al[15]proposed a classification method for the vessel main engine power data, and extracted attribute set and decision set that can represent vessel information.Gao et al[16]used GMM to conduct clustering analysis on ship speed, main engine power and fuel consumption, and mined the data of the lowest fuel consumption under different working conditions.Raptodimos et al[17]used a two-stage approach to cluster the key performance parameters for a panamax container ship main engine cylinder. Initially,the data were clustered using the artificial neural network (ANN)-self-organizing map (SOM)and then the clusters were inter-clustered using the Euclidean distance metric into groups.

    Based on the above theory,this paper proposes a new method to predict the main engine power of vessel based on GMM and DNN, with DNN specifically referring to an artificial neural network(ANN)with more layers,which has a stronger ability to model and create abstraction,and can simulate more complex models.Firstly,correlation analyses are made on ship features,and ship features with large power correlation coefficients are selected to the main engine as the input of GMM-DNN.Then, GMM is used to identify and cluster the main engine power, and the clustering results,length, breadth and depth of the vessel are used as the input of DNN. Finally, Adam-Dropout is used to optimize DNN for prediction of the main engine power. In order to explore the effectiveness of the method, we compare the estimation results of multiple linear regression, multiple nonlinear regression[18],DNN and GMM-DNN on the main engine power.

    1 Construction of GMM-DNN model

    The structure of the GMM-DNN model used in the paper is shown in Fig.1. The model consists of GMM, DNN and Adam-Dropout optimizer. In the figure,Lis the length of vessel,Bis the breadth,Dis the depth,Tis the vessel type,Cis the clustering result of GMM,giis the GMM input andGis the aggregation ofgi.

    Fig.1 Structure of GMM-DNN

    GMM is used for identification and clustering of ship features.In this paper,T,L,BandDare selected as input features. We considered that the input featuregifollows a Gaussian distribution expressed by Eq.(1).The probability density of all featuresGcan be expressed as the weighted sum of a single Gaussian density and expressed by Eq.(2).

    In Eqs.(1)-(2),nis the data dimension,Mis the mixing coefficient,ωiis the weight,σiis the covariance matrix of vector,anduiis the mean value of vector.

    GMM uses expectation-maximization (EM)[19]algorithm to estimate parameters. Firstly, the model needs the number of clusters,we need to obtain the estimated value of parameters and calculate the probability of data points belonging to the corresponding cluster.Then,the maximum likelihood function is used to divide the data points into clusters with higher probability.The mean value and covariance of GMM are updated at the same time. Finally, we need to repeat the above two steps until the likelihood function converges and the cluster ends, then the mean value and covariance matrices of GMM are obtained. After clustering, the clustering labels and ship features are sent into DNN.

    The structure of the DNN model is shown in Fig.2. The model is composed of an input layer, multiple hidden layers and an output layer. In this figure,aiis the offset parameter between the input layer and hidden layer, andxiis the input.

    In the model training, the input vectorsX(L,B,D,T,C) linearly add to the weightωi jand bias termajwhen passing through hidden layer neurons, and we obtainAjin the output layer after the nonlinear activation function, as shown in Eq.(3), where the activation function adopts the ReLu function,whose definition is Eq.(4).

    Fig.2 Structure of DNN

    Then,the output of the hidden layer(Aj)passes through full connection layer and outputsOk,as shown in Eq.(5).

    whereekis the prediction error,ηis learning rate,ωi jis the weight between input layer and hidden layer,ai jis the offset parameter between input layer and hidden layer,ωjkis the weight between hidden layer and output layer,andbkis the offset parameter between hidden layer and output layer.

    In order to accelerate the convergence speed of the model and prevent the model from falling into local optimization,the adaptive moment estimation (Adam)optimizer is adopted to optimize the network parameters[19].The optimization strategy is Eqs.(8)-(10).

    wheregtis the gradient of time-stept,mtis a biased first moment estimate,vtis a biased second raw moment estimate, bothβ1andβ2are exponential decay rates for the moment estimates,m^tis a bias-corrected first moment estimate,v^tis a bias-corrected second raw moment estimate,Mtis a parameter,and?is a very small constant.

    In order to solve over-fitting problems of a neural network withL-layer hidden layer,the Dropout is used to randomly reset the partial weight or outputs of any neuron in the hidden layer to zero.The principle is Eqs.(11)-(12)[20].

    2 Experiment and analysis

    2.1 Experimental data

    The experimental data are 8 000 vessels which come from China Classification Society[21], including more than 30 fields,such as ship name,call sign,length,breadth,depth,type,main engine model, main engine power, and etc.. There are more than 10 types of vessels, including tankers,bulk freighters, container ships, chemical ships, tugboats, cargo ships and passenger ships. The basic experimental data are shown in Tab.1.

    Tab.1 Basic information of experimental data

    Tab.1(Continued)

    The paper makes the correlation analysis of the experimental data,and the correlation coefficient matrix diagram is shown in Fig.3. It can be seen that the correlation coefficientRbetween main engine power and length, breadth, depth is 0.82, 0.72 and 0.74 respectively, and shows a strong positive correlation.

    2.2 Experiment

    2.2.1 Data preparation

    In the paper, the data of 8 000 vessels are preprocessed.We not only delete the data which lack the field information, such as length(L), breadth(B), depth(D), type(T) and main engine power(P), but also delete the data which do not meet the screening standard.3698 pieces of data that meet the criteria are obtained and their order is randomly disrupted.

    Fig.3 Correlation diagram of experimental data

    The vessel type adopts One-Hot coding and for other fields of the vessel, data are normalized by Eq.(14).

    whereX′ is the normalized data,XmaxandXminare the maximum and minimum values of the sample respectively.

    2.2.2 Evaluation indicator of GMM-DNN model

    In the paper, the experiment is evaluated by mean-square error (MSE), root mean-square error(RMSE),absolute percentage error (APE)and mean absolute percentage error (MAPE).The definitions are shown in Eqs.(15)-(18),whereNis the number of samples,yiandf( )xiare the true and predictive values for theith sample points.

    2.2.3 Model establishing

    Artificial neural network library (Keras) is used in experiments to build GMM-DNN model.The hidden layer is a fully-connected neural network.The loss function isMSEin Eq.(15).

    The preprocessed data are randomly divided into training set and test set according to the proportion of 7:3.The model parameters are randomly initialized and trained by back propagation algorithm.Minimum values are obtained by multiple training to prevent the model from falling into local optimum.After the model training,the optimal training model is saved.

    The trained model and input ship features are loaded in experiments so the main engine power can be predicted.At the same time,the prediction effect is evaluated by Eqs.(15)-(18).

    2.3 Experimental results and analysis

    2.3.1 Exploration of the best input type of DNN

    In this paper, the optimal parameters of GMM-DNN model are determined by using multiple parameters and multiple experiments. Firstly, it is necessary to explore the optimal network layer number and neuron number of DNN. In the experiment, we use SGD, Adam and Adam-Dropout to optimize the model.The number of hidden layers is set as 3-13,the neurons number of each hidden layer is set as 1-50, and the number of iterations is set as 100-1000, then the experimental step and batch-size are set as 100 and 20 separately. Multiple experiments show that the best results can be got when there are 5 hidden layers and 11 neurons of each hidden layer in the model.Finally, 10 parallel experiments with six different input combinations are performed using the above rules.The best results of every experiment are recorded in Tab.2.Among these different input combinations, the input combination of‘L,B,DandT’shows the most outstanding prediction effect and itsMAPEof test set is 15.81%.

    Tab.2 Comparison of DNN using different input combinations and optimizers

    2.3.2 Main engine power prediction effect of GMM-DNN

    In this paper,GMM uses ship characteristics to classify ships,DNN uses clustering results and ship characteristics to predict the main engine power.Firstly,the inputs of GMM and DNN are separately set asL,B,D,TandL,B,D,T,C. Then multiple experiments show that the clustering effect is the best when the number of GMM clusters is set as 4.Finally,a hundred vessel samples are randomly selected to evaluate the trained GMM-DNN models. The evaluation results are shown in Fig.4.

    Fig.4 Comparison of predicted values and real values

    In this experiment,theMAPEof GMM-DNN is 14.57%,the maximum and minimumAPEare 40.75%and 0.23%respectively.

    The comparison of prediction effect between DNN and GMM-DNN based on the same dataset is shown in Fig.5.

    Fig.5 Comparison of predicted values and real values

    It can be seen from the figure that the error of GMM-DNN is smaller than that of DNN, which indicates that the GMM-DNN proposed in this paper effectively improves the anti-interference ability and the practicability of the system.Multiple experiments show that GMM can discover clustering rules hidden in a large number of data without any prior knowledge.In addition,as a pre-processing step of DNN, GMM can discover deeper knowledge. In this experiment, GMM can identify the same type of vessels and even different types of vessels with similar principal dimensions.It improves the overall efficiency and quality of the model.

    2.3.3 Effect comparison of four models of main engine power prediction

    In order to compare the prediction effect with the GMM-DNN mentioned above,we use a multivariate linear regression equation established by IBM SPSS? software, whose optimal parameters are obtained by multiple experiments. The main engine power is set as a dependent variable. The different combinations ofL,B,DandTare set as independent variables, where the vessel type needs to be converted into virtual variable. The model summary is shown in Tab.3. In the model,Ris the multiple correlation coefficient andR2is the proportion of explainable variance in the dependent variable variance.

    Tab.3 Model summary

    The experimental results show that when the independent variables areL,B,DandT,theR2of the model achieves the largest value while the standard error achieves the smallest one.The prediction of this model is effective and the results of variance analysis (ANOVA)are shown in Tab.4.

    Tab.4 ANOVA

    In the experiment,F-test is the overall test of the whole regression equation. Based onFboundary table,the critical value ofFis 1 669 248 303 and it is lower than that in Tab.4.So,every explanatory variable has a significant impact on the dependent variable and the sig value is less than 0.05.The model has statistical significance.

    One hundred vessel samples are randomly selected to evaluate the trained model. TheRMSEof the main engine power is 4 870.717 0 kW and theMAPEis 42.86%.

    The nonlinear regression equation is also obtained by SPSS.The main engine power is set as a dependent variable. The product ofL,BandDis set as the variable. The summary of model curve estimation is shown in Tab.5.

    The experimental results show that when the curve is a power function,R2achieves the largest value and the significant result is 0.000. This model passes the test of significance and the prediction is most effective.The regression results of this model are shown in Fig.6.

    Based on the same pre-processed data, multivariate linear regression, nonlinear regression,and DNN are compared with GMM-DNN proposed in this paper.The experimental results are shownin Tab.6.TheMAPEof GMM-DNN is 14.57%,which is 28.27% lower than that of multiple linear regression, 23.36% lower than that of non-linear regression, and 1.24% lower than that of DNN. It can be seen that GMM-DNN has the best effect in the engine power prediction for large vessels.

    Tab.5 Summary of model curve estimation

    Fig.6 Regression analysis of power function

    3 Concluding remarks

    Tab.6 Results of different methods on power prediction

    In this study,a power prediction method of main engine based on Gaussian mixture model and deep neural network is presented.The experimental results show that the accuracy of this method is significantly improved compared with the traditional method in the engine power prediction for large vessels.This method will provide methodological guidance and data support for perfecting engine power data of large vessels, and for predicting global vessel fuel consumption and regional exhaust emissions.

    国产伦精品一区二区三区视频9| 国产精品人妻久久久影院| 国产精品人妻久久久影院| 国产精品久久视频播放| 欧洲精品卡2卡3卡4卡5卡区| av天堂中文字幕网| 久久这里只有精品中国| 性插视频无遮挡在线免费观看| 精品无人区乱码1区二区| 日韩欧美国产在线观看| 日本成人三级电影网站| 丰满人妻一区二区三区视频av| 最近中文字幕高清免费大全6| 简卡轻食公司| 免费人成在线观看视频色| 女同久久另类99精品国产91| 丰满人妻一区二区三区视频av| 国产精品久久视频播放| 久久久久久久久久久丰满| 国产精品乱码一区二三区的特点| 欧美bdsm另类| 精品久久久久久久末码| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久噜噜| av专区在线播放| 成人午夜精彩视频在线观看| 国产探花极品一区二区| 国产成人精品久久久久久| 男女啪啪激烈高潮av片| 日韩av不卡免费在线播放| 美女大奶头视频| 色综合亚洲欧美另类图片| 长腿黑丝高跟| 黄色视频,在线免费观看| av卡一久久| 99在线视频只有这里精品首页| 亚洲成a人片在线一区二区| 亚洲不卡免费看| 啦啦啦观看免费观看视频高清| 国产成人午夜福利电影在线观看| 婷婷精品国产亚洲av| 久久精品人妻少妇| 中国国产av一级| 99热6这里只有精品| 国产午夜精品一二区理论片| 哪个播放器可以免费观看大片| 美女黄网站色视频| 免费看a级黄色片| 九九爱精品视频在线观看| 精品无人区乱码1区二区| 国产69精品久久久久777片| 亚洲国产精品国产精品| 波多野结衣巨乳人妻| 色综合色国产| 国产精品一区二区性色av| 久久99蜜桃精品久久| 亚洲综合色惰| 丰满乱子伦码专区| 亚洲精品影视一区二区三区av| 最近的中文字幕免费完整| av黄色大香蕉| 亚洲在久久综合| 欧美一区二区精品小视频在线| 草草在线视频免费看| 少妇猛男粗大的猛烈进出视频 | av天堂在线播放| 我要看日韩黄色一级片| 欧美极品一区二区三区四区| 日本黄色视频三级网站网址| 亚洲内射少妇av| 人妻少妇偷人精品九色| 国产亚洲精品av在线| 自拍偷自拍亚洲精品老妇| av在线天堂中文字幕| 国产亚洲欧美98| 成人永久免费在线观看视频| 男女下面进入的视频免费午夜| 毛片一级片免费看久久久久| 黄色欧美视频在线观看| 国内少妇人妻偷人精品xxx网站| a级毛片免费高清观看在线播放| 国产精品美女特级片免费视频播放器| 日韩欧美在线乱码| 在线观看一区二区三区| 国内精品宾馆在线| 精品久久久久久久人妻蜜臀av| 国产精品一区二区性色av| av国产免费在线观看| 有码 亚洲区| 免费看a级黄色片| avwww免费| 国产一区亚洲一区在线观看| 欧美精品国产亚洲| 久久精品综合一区二区三区| 亚洲成av人片在线播放无| 国产色婷婷99| 伦精品一区二区三区| 亚洲第一区二区三区不卡| 欧美日韩精品成人综合77777| 欧美一区二区国产精品久久精品| 亚洲五月天丁香| 啦啦啦啦在线视频资源| 日本一本二区三区精品| 少妇的逼水好多| 国产精品国产高清国产av| 22中文网久久字幕| www.色视频.com| 超碰av人人做人人爽久久| 好男人在线观看高清免费视频| 精品99又大又爽又粗少妇毛片| 久久久欧美国产精品| 国产一级毛片七仙女欲春2| 3wmmmm亚洲av在线观看| 亚洲无线在线观看| 亚洲va在线va天堂va国产| 国产v大片淫在线免费观看| 国产欧美日韩精品一区二区| 波野结衣二区三区在线| 国产午夜精品久久久久久一区二区三区| av在线观看视频网站免费| 国产精品av视频在线免费观看| 国产精品无大码| 少妇丰满av| 日韩强制内射视频| 99久国产av精品国产电影| 老司机福利观看| 91精品一卡2卡3卡4卡| 麻豆久久精品国产亚洲av| 婷婷六月久久综合丁香| 日本免费a在线| 人妻少妇偷人精品九色| 日韩欧美国产在线观看| 黄色一级大片看看| av在线观看视频网站免费| 久久精品影院6| 欧美成人a在线观看| 丝袜喷水一区| 亚洲国产精品sss在线观看| 国产黄色小视频在线观看| 麻豆成人午夜福利视频| 丝袜喷水一区| 女同久久另类99精品国产91| 激情 狠狠 欧美| 欧美成人精品欧美一级黄| 国产黄片美女视频| 亚洲国产欧美在线一区| 少妇熟女欧美另类| 国产老妇女一区| 国产av不卡久久| 日本黄色片子视频| 在线天堂最新版资源| 男女边吃奶边做爰视频| 九九爱精品视频在线观看| 免费观看在线日韩| 精品免费久久久久久久清纯| 黄色欧美视频在线观看| 18禁黄网站禁片免费观看直播| 国模一区二区三区四区视频| 欧美一级a爱片免费观看看| 国产精品久久久久久久电影| 黄片无遮挡物在线观看| 亚洲18禁久久av| 亚洲五月天丁香| 亚洲一区高清亚洲精品| 看片在线看免费视频| 国产熟女欧美一区二区| 亚洲欧美日韩无卡精品| 综合色av麻豆| 成人性生交大片免费视频hd| 欧美高清性xxxxhd video| 久久精品国产亚洲av涩爱 | 观看美女的网站| 日本撒尿小便嘘嘘汇集6| 国产色婷婷99| 午夜福利在线观看免费完整高清在 | 午夜a级毛片| 久久6这里有精品| 99热全是精品| 蜜桃久久精品国产亚洲av| 哪里可以看免费的av片| 一区二区三区免费毛片| 色视频www国产| 97超碰精品成人国产| 国内少妇人妻偷人精品xxx网站| 国产成人精品婷婷| 亚洲四区av| 中文在线观看免费www的网站| 黄色一级大片看看| av国产免费在线观看| 日本爱情动作片www.在线观看| 青春草国产在线视频 | 亚洲国产高清在线一区二区三| 久久久成人免费电影| 高清毛片免费观看视频网站| 国产成人freesex在线| 黑人高潮一二区| 麻豆av噜噜一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产一区二区在线av高清观看| 欧美成人免费av一区二区三区| 亚洲一区二区三区色噜噜| 国产精品女同一区二区软件| 99热精品在线国产| 日日撸夜夜添| 蜜桃亚洲精品一区二区三区| ponron亚洲| 国产黄色小视频在线观看| 成人美女网站在线观看视频| 一区二区三区高清视频在线| 丰满乱子伦码专区| 国内精品宾馆在线| 午夜免费男女啪啪视频观看| 免费观看人在逋| 亚洲av电影不卡..在线观看| 国产精品久久久久久亚洲av鲁大| 久久国内精品自在自线图片| 白带黄色成豆腐渣| 超碰av人人做人人爽久久| 日本一本二区三区精品| 一区福利在线观看| 亚洲人与动物交配视频| 精品不卡国产一区二区三区| 最近中文字幕高清免费大全6| 日韩大尺度精品在线看网址| 亚洲av.av天堂| 久久精品久久久久久久性| 九九在线视频观看精品| 卡戴珊不雅视频在线播放| 波多野结衣巨乳人妻| 国产高清激情床上av| 一进一出抽搐动态| 色哟哟哟哟哟哟| 岛国在线免费视频观看| 欧美日韩国产亚洲二区| 成年女人永久免费观看视频| 国产精品永久免费网站| 精品久久久久久久久亚洲| 麻豆成人午夜福利视频| 欧美三级亚洲精品| 天天躁日日操中文字幕| 一个人看视频在线观看www免费| 天堂√8在线中文| 免费黄网站久久成人精品| 波多野结衣高清无吗| 欧美成人一区二区免费高清观看| 亚洲欧美日韩东京热| 国产一区二区亚洲精品在线观看| 国产色爽女视频免费观看| 欧美又色又爽又黄视频| 99在线人妻在线中文字幕| 久久99蜜桃精品久久| 我要看日韩黄色一级片| 九九爱精品视频在线观看| 2022亚洲国产成人精品| 简卡轻食公司| 永久网站在线| 好男人视频免费观看在线| 亚洲无线观看免费| 97超视频在线观看视频| 最近2019中文字幕mv第一页| 免费av不卡在线播放| 亚洲精品粉嫩美女一区| 女人被狂操c到高潮| 亚洲电影在线观看av| 日日摸夜夜添夜夜爱| 小蜜桃在线观看免费完整版高清| 一边亲一边摸免费视频| 国产精品麻豆人妻色哟哟久久 | 国产老妇女一区| 最近中文字幕高清免费大全6| 天堂av国产一区二区熟女人妻| 99热网站在线观看| 亚洲国产精品国产精品| 国产伦精品一区二区三区视频9| 色视频www国产| 日韩欧美 国产精品| 中国美女看黄片| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| 亚洲丝袜综合中文字幕| 哪里可以看免费的av片| 免费观看精品视频网站| 中文精品一卡2卡3卡4更新| 日本在线视频免费播放| 久久这里只有精品中国| 高清毛片免费看| 美女大奶头视频| 少妇人妻精品综合一区二区 | 久久韩国三级中文字幕| 国产成人freesex在线| 日韩强制内射视频| 在线国产一区二区在线| 丰满乱子伦码专区| 小蜜桃在线观看免费完整版高清| 久久久久久国产a免费观看| 欧美成人免费av一区二区三区| 三级男女做爰猛烈吃奶摸视频| 床上黄色一级片| 女的被弄到高潮叫床怎么办| 国产精品福利在线免费观看| 麻豆乱淫一区二区| 国产av在哪里看| 熟女人妻精品中文字幕| 日本黄大片高清| 好男人视频免费观看在线| 久久久久国产网址| 一夜夜www| 国产伦理片在线播放av一区 | 久久久久久久亚洲中文字幕| 久久精品国产亚洲av香蕉五月| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩| 免费看av在线观看网站| 村上凉子中文字幕在线| 干丝袜人妻中文字幕| 午夜亚洲福利在线播放| 亚洲精品456在线播放app| 我的老师免费观看完整版| 偷拍熟女少妇极品色| 久久人妻av系列| 国产真实伦视频高清在线观看| 男插女下体视频免费在线播放| 搞女人的毛片| 哪里可以看免费的av片| 内地一区二区视频在线| 国产乱人视频| 好男人视频免费观看在线| 欧美人与善性xxx| 日韩欧美三级三区| 久久久国产成人精品二区| 成人毛片a级毛片在线播放| 日本爱情动作片www.在线观看| 久久久a久久爽久久v久久| 日产精品乱码卡一卡2卡三| 一本久久中文字幕| 久久久久免费精品人妻一区二区| 免费av毛片视频| 简卡轻食公司| 亚洲最大成人中文| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 国内精品美女久久久久久| 亚洲av第一区精品v没综合| 久久久久久久亚洲中文字幕| 自拍偷自拍亚洲精品老妇| 最近手机中文字幕大全| 欧美日本视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美日韩卡通动漫| 免费观看精品视频网站| 男女下面进入的视频免费午夜| 国产精品久久久久久精品电影小说 | 在线观看午夜福利视频| 日韩成人伦理影院| 亚洲精品色激情综合| 欧美成人免费av一区二区三区| 国产精品一区二区性色av| 岛国在线免费视频观看| 99精品在免费线老司机午夜| 男女下面进入的视频免费午夜| 亚洲人与动物交配视频| 成人毛片60女人毛片免费| 亚洲四区av| 寂寞人妻少妇视频99o| 亚洲精品国产av成人精品| 插逼视频在线观看| 日本欧美国产在线视频| 男的添女的下面高潮视频| 国产精品一区www在线观看| 1000部很黄的大片| 少妇人妻精品综合一区二区 | 午夜精品在线福利| 三级经典国产精品| 亚洲欧美日韩卡通动漫| av福利片在线观看| 久久久久九九精品影院| 国内精品美女久久久久久| 男人和女人高潮做爰伦理| 麻豆久久精品国产亚洲av| 亚洲国产色片| 久久精品人妻少妇| 美女高潮的动态| 亚洲欧美日韩无卡精品| 国产精品久久电影中文字幕| av免费在线看不卡| 黄色欧美视频在线观看| 丰满乱子伦码专区| 欧美人与善性xxx| 精品免费久久久久久久清纯| 三级经典国产精品| 免费观看的影片在线观看| 国产一级毛片七仙女欲春2| 国产老妇伦熟女老妇高清| 两个人的视频大全免费| 最近2019中文字幕mv第一页| 久久人人精品亚洲av| 中出人妻视频一区二区| 日韩制服骚丝袜av| 亚洲在线观看片| 国产av不卡久久| 国产在线男女| 观看美女的网站| 久久久久国产网址| 性色avwww在线观看| 精品熟女少妇av免费看| 亚洲人与动物交配视频| 国产一区二区三区av在线 | 久久中文看片网| 国产色爽女视频免费观看| 亚洲熟妇中文字幕五十中出| 日韩欧美在线乱码| 日日干狠狠操夜夜爽| 网址你懂的国产日韩在线| 18禁在线无遮挡免费观看视频| 女同久久另类99精品国产91| av女优亚洲男人天堂| 久久久久久九九精品二区国产| 国产中年淑女户外野战色| 免费看a级黄色片| 晚上一个人看的免费电影| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 国产国拍精品亚洲av在线观看| 波多野结衣巨乳人妻| 麻豆国产97在线/欧美| 国产日韩欧美在线精品| 久久久成人免费电影| 蜜桃亚洲精品一区二区三区| 日本五十路高清| 99在线视频只有这里精品首页| 人妻制服诱惑在线中文字幕| 色综合站精品国产| 乱码一卡2卡4卡精品| 久久精品久久久久久噜噜老黄 | 亚洲精品乱码久久久v下载方式| av在线观看视频网站免费| 亚洲国产精品成人久久小说 | 一本久久精品| 色综合色国产| 综合色丁香网| 日韩在线高清观看一区二区三区| 国产成人福利小说| 观看免费一级毛片| 午夜a级毛片| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说 | 干丝袜人妻中文字幕| 最新中文字幕久久久久| 亚洲人成网站高清观看| 激情 狠狠 欧美| www.av在线官网国产| 99riav亚洲国产免费| 成人毛片a级毛片在线播放| 国产视频内射| 久久婷婷人人爽人人干人人爱| av黄色大香蕉| 色吧在线观看| 中文在线观看免费www的网站| 日本免费a在线| 国产免费男女视频| 久久韩国三级中文字幕| 身体一侧抽搐| 日本黄色片子视频| 色综合亚洲欧美另类图片| 欧美一级a爱片免费观看看| 日韩强制内射视频| 国语自产精品视频在线第100页| 亚洲欧美清纯卡通| 欧美又色又爽又黄视频| 内地一区二区视频在线| 变态另类丝袜制服| 日本熟妇午夜| 亚洲av免费高清在线观看| 日日啪夜夜撸| 免费黄网站久久成人精品| 国产精品一区二区三区四区久久| 国产伦理片在线播放av一区 | 欧美+日韩+精品| 欧美成人a在线观看| 国产免费一级a男人的天堂| 日本黄色片子视频| 久久精品国产清高在天天线| 人人妻人人看人人澡| 丝袜美腿在线中文| 不卡一级毛片| 夜夜夜夜夜久久久久| 久久这里只有精品中国| 99久久人妻综合| 婷婷六月久久综合丁香| 91在线精品国自产拍蜜月| 午夜福利在线观看吧| 国产精品99久久久久久久久| 久久久精品欧美日韩精品| 美女被艹到高潮喷水动态| 亚洲一级一片aⅴ在线观看| 中文在线观看免费www的网站| 免费av毛片视频| 级片在线观看| 91麻豆精品激情在线观看国产| 最近最新中文字幕大全电影3| 我的女老师完整版在线观看| 亚洲天堂国产精品一区在线| 免费av毛片视频| 中文在线观看免费www的网站| 日日撸夜夜添| 亚洲av成人精品一区久久| 亚洲18禁久久av| 联通29元200g的流量卡| 五月玫瑰六月丁香| 亚洲三级黄色毛片| 久久人人爽人人爽人人片va| 日韩视频在线欧美| 国产精品一区二区三区四区久久| 免费人成在线观看视频色| 久久久久久久久久成人| 观看美女的网站| 亚洲欧美日韩东京热| 一区二区三区四区激情视频 | 91麻豆精品激情在线观看国产| 亚洲图色成人| 久久精品国产清高在天天线| 日韩大尺度精品在线看网址| or卡值多少钱| 国产精品99久久久久久久久| 国产黄片视频在线免费观看| 插逼视频在线观看| 美女高潮的动态| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av男天堂| 国产亚洲精品av在线| 最后的刺客免费高清国语| 日产精品乱码卡一卡2卡三| 天堂影院成人在线观看| 欧美性感艳星| 国产一级毛片七仙女欲春2| 亚洲精品456在线播放app| 亚洲av.av天堂| 国产探花在线观看一区二区| 国国产精品蜜臀av免费| 内射极品少妇av片p| 日韩高清综合在线| 亚洲中文字幕一区二区三区有码在线看| 国内精品宾馆在线| 精品一区二区三区人妻视频| 乱系列少妇在线播放| 人人妻人人澡欧美一区二区| 精品日产1卡2卡| 精品一区二区免费观看| 又黄又爽又刺激的免费视频.| 波多野结衣高清作品| 99久久精品一区二区三区| 欧美一区二区国产精品久久精品| kizo精华| а√天堂www在线а√下载| 国产黄片美女视频| 国产 一区精品| 人妻久久中文字幕网| 青青草视频在线视频观看| 九九在线视频观看精品| 啦啦啦啦在线视频资源| 亚洲熟妇中文字幕五十中出| 黄色一级大片看看| 日韩亚洲欧美综合| 国产亚洲5aaaaa淫片| 日本在线视频免费播放| av在线天堂中文字幕| 国产一级毛片七仙女欲春2| 精品日产1卡2卡| 97在线视频观看| 黄色日韩在线| 青春草国产在线视频 | 蜜桃亚洲精品一区二区三区| 亚洲内射少妇av| 波野结衣二区三区在线| 夜夜夜夜夜久久久久| 波多野结衣高清作品| 老熟妇乱子伦视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产成人91sexporn| 免费av观看视频| av视频在线观看入口| 亚洲成人av在线免费| 人妻少妇偷人精品九色| 久久人人精品亚洲av| 蜜桃久久精品国产亚洲av| 亚洲av免费在线观看| 久久久久久久久中文| 国产高清有码在线观看视频| 成人亚洲欧美一区二区av| 亚洲欧美日韩高清专用| 天天躁夜夜躁狠狠久久av| 日本黄色片子视频| 男女下面进入的视频免费午夜| 国产又黄又爽又无遮挡在线| 久久久久久国产a免费观看| 搞女人的毛片| 亚洲va在线va天堂va国产| 日韩人妻高清精品专区| 欧美成人精品欧美一级黄| 亚洲一级一片aⅴ在线观看| 国产精品野战在线观看| 日韩成人av中文字幕在线观看| 夫妻性生交免费视频一级片| 久久午夜亚洲精品久久| 国产亚洲5aaaaa淫片| 国产久久久一区二区三区| 久久人人爽人人爽人人片va| 麻豆成人av视频| 欧美xxxx黑人xx丫x性爽| ponron亚洲| 极品教师在线视频| 美女黄网站色视频| 97超碰精品成人国产| 性插视频无遮挡在线免费观看| 国产女主播在线喷水免费视频网站 |