• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical long-term evolution and perturbation compensation models for BeiDou MEO satellites

    2018-03-21 05:28:59LiFANMinHUChoJIANG
    CHINESE JOURNAL OF AERONAUTICS 2018年2期

    Li FAN,Min HU,Cho JIANG,c

    aSchool of Aerospace Engineering,Tsinghua University,Beijing 100084,China

    bSpace Engineering University,Beijing 101416,China

    cCollege of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

    1.Introduction

    The Chinese BeiDou Navigation Satellite System(BDS)completed regional deployment phase on December 27,2012,which comprises five Geostationary Earth Orbit(GEO),five Inclined Geosynchronous Satellite Orbit(IGSO),and four Medium Earth Orbit(MEO)satellites.1The eventual BDS constellation will consist of five GEO,twenty-seven MEO,and three IGSO satellites.2The long-term evolution of the relative motion among the satellites under the perturbations plays a crucial role for the constellation performance.Frequent station keeping maneuver will consume the fuel,reduce the satellite lifetime, and interrupt the service of navigation constellation.To maintain a stable configuration and provide a better navigation service,the long-term perturbation model and perturbation compensation method should be focused,which aims to reduce the station keeping frequency as few as possible.

    The main perturbations of the BDS MEO satellites include the non-spherical perturbations,the luni-solar perturbations,and the solar radiation pressure perturbations.Considering the order of the perturbations,theJ2perturbation is the main factor,with the magnitude of 10-5–10-3.For a group of satellites with the same semi-major axis,eccentricity,and inclination,the long-term evolution law under theJ2perturbation is identical.When there are some deviations of the semimajor axis,eccentricity or inclination,the relative in-plane motion will drift in the long term,and the cross-track amplitude will increase.3,4For the MEO region,the luni-solar perturbations are important influence factors except for theJ2perturbation,with the magnitude of 10-7–10-5.5–7Ref.7shows that the luni-solar perturbations will lead to the long-periodic variations of the inclination,and the variations are relevant to the longitude of ascending node.For satellites in the same orbital plane,the long-term evolution law of the inclination is almost identical;for satellites in different orbital planes,the long-term evolution law of the inclination is evidently different.The magnitude of the solar radiation pressure perturbations for MEO region could achieve 10-7.8–10The solar radiation pressure perturbations usually cannot be exactly modeled due to the solar activity and the precision of the area-to-mass ratio.In the sight of the analysis method,for the effects of theJ2perturbation,the analytical approach is adopted,and for the effects of the perturbations on the constellation configuration,the semi-analytical method or numerical simulation method is usually adopted.

    To achieve a ground track that closely repeats from day to day,the orbit period of the GPS satellite is commonly given as half a sidereal day.The GPS satellites experience deep resonance with the Earth gravity,which affects the long stability of the constellation.About two GPS satellites should be maneuvered per month to maintain the configuration,and about four hours should be needed to complete the orbit maneuver and recover the navigation service.5,11As to the Galileo constellation,the station keeping requirements are fulfilled by selecting adequate initial offsets of the orbital parameters for each satellite,and at most one maintenance control is needed for each satellite during the lifetime span.7,12Although the perturbation compensation approach is adopted for Galileo constellation control,little literature introduces the implementation algorithm in detail.The orbital deviations and the perturbations are the fundamental reasons for the secular drifts of the periodical relative motion.Based on the longterm evolution law of relative motion under various perturbations,and by actively offsetting the orbital deviations to compensate the perturbations,the long-term variations of relative motion can be eliminated or mitigated.Therefore,the constellation configuration with certain deviations could be set as the target configuration,and by eliminating or mitigating the relative drift velocity,the control frequency and control budget can be reduced.In current literature,the orbital deviations for perturbation compensation are usually calculated by using the numerical simulation method.Daniel designed the deviations of semi-major axis,inclination,and argument of latitude for Galileo constellation,and by offsetting the initial configuration deviations,the constellation configuration can be maintained within a stable boundary.Zhang et al.proposed the semi-analytical design method of offsetting the orbital elements,which describes the approximate linear relationship between the semi-major axis deviation Δa,the inclination deviation Δiand the longitude of ascending node offset ΔΩ,the mean argument of latitude offset Δλ.13,14The existing perturbation compensation approach demonstrated the effectiveness of offsetting the configuration deviations to maintain the constellation stability.However,these methods are usually semianalytical or numerical,they always need several iterations to obtain the satisfied results,and they cannot reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.

    The purpose of the current study is to develop analytical methods of describing the long-term evolution and perturbation compensation.The perturbation analysis models are established,which consider the initial configuration deviation,theJ2perturbation,and the luni-solar perturbations.An analytical method for calculating the offset of the orbit elements is proposed,which is applied to the constellation maintenance of the BDS MEO satellites.

    2.Theoretical analysis of long-term evolution of BDS MEO satellites

    2.1.Perturbation analysis model

    The canonical conjugate variables are constructed based on the Delaunay variables15:

    wherea,e,i,Ω,M,ω and λ correspond to the semi-major axis,eccentricity,inclination,right ascension of the ascending node,mean anomaly,argument of perigee,and mean argument of latitude,respectively;μEis the gravitational constant of the earth.

    According to Eq.(1)and the Hamiltonian model for MEO orbit,the canonical motion equations caused by the perturbations can be expressed as

    whereHfis Hamiltonian function for the perturbation motion of spacecraft.Thus,the long-term variations of the orbital elements due to theJ2perturbation and the luni-solar perturbations can be analyzed.

    The secular linear drifts of the longitude of ascending node and the mean argument of latitude can be expressed as

    the subscripts L and S represent the corresponding variables of the moon and the sun.oεis the inclination of the ecliptic of the Earth.The long-periodical perturbation terms related to Ω only affect orbital inclination.Based on Eq.(4),we can obtain

    Based on the long-periodical motion of inclination,the secular linear drifts of the longitude of ascending node and the mean argument of latitude,we can find the long-term evolution law between the orbital elements and the relative motion.When the perturbation compensation is the secular linear drift of the reference satellites,the accelerations of the deviations of the longitude of ascending node and the mean argument of latitude can be expressed as

    Therefore,we can see that the fundamental reason for the nonlinear variations of the longitude of ascending node and the mean argument of latitude in the MEO region is the long-periodical variation of inclination due to the luni-solar perturbations.

    2.2.Long-term evolution law of MEO constellation

    The BDS MEO satellites usually deploy on the same orbital altitude and inclination,and form a certain geometry structure by distributing the longitude of ascending node and the mean argument of latitude.The nominal constellation configuration satisfies the condition Δa= Δe= Δi=0 in the case of twobody assumption.

    For any two satellites in the same orbital plane,the condition Δa= Δe= Δi= ΔΩ0=0 can be established,where Δa,Δeand Δimean the relative semi-major axis,the relative eccentricity,and the relative inclination,respectively.According to the long-term perturbation analysis model shown as Eq.(3),the secular drifts of the longitude of ascending node and the mean argument of latitude are almost identical.Moreover,the long-periodical motion of inclination is almost the same.Then,the main influences causing the secular relation drift are initial orbital injection error and the analytical model error.The secular relative drifts are approximately linear,which can be compensated by offsetting the orbital elements and on-orbit identification.

    Based on the perturbation analysis of the luni-solar perturbations,with the assumption of small eccentricity,the following constraints can lead to the approximately linear variations of the inclination:

    wherem,sare natural numbers,respectively.In fact,when the left parts of Eq.(7)are less than 0.03(°)/day,the long periodical variation of Δicannot be neglected,which may destroy the long-term stability of MEO constellation.19In this case,the method of offsetting the initial orbital elements cannot compensate the secular relative drifts completely;it only can maintain the configuration in a certain timescale.

    For MEO orbits with the altitude above 20,000 km and the inclination within the range of 50–60°,we can always find the perturbation terms of the moon or the sun.To keep a stable constellation configuration,it is imperative to analyze and compensate the effects of the luni-solar perturbations.

    3.Design method of offsetting orbital elements

    3.1.Perturbation coefficients of offset value

    When the semi-major axis,eccentricity,and inclination vary secularly under the perturbations,the deviations of the longitude of ascending node and the mean argument of latitude satisfy the following constraints:

    where Δλ0and ΔΩ0represent the initial relative mean argument of latitude and the longitude of ascending node,respectively;Kλ1andKΩ1represent the linear variation velocities of the mean argument of latitude and the longitude of ascending node,respectively;Kλ2andKΩ2represent the variation accelerations of the mean argument of latitude and the longitude of ascending node,respectively.

    The relationship amongKλ1,KΩ1,Kλ2andKΩ2,the initial semi-major axis,eccentricity,inclination deviation,and the rate-of-change of the semi-major axis,eccentricity,inclination deviation are given as follows:

    whereKλ2andKΩ2are determined by the perturbations inducing Δ˙a,Δ˙eand Δ˙i;Kλ1andKΩ1are determined by the initial deviations of the orbital elements.

    When theJ2perturbation is considered,the Hamiltonian functions of the motion can be expressed as

    Thus,the secular drift rates of the longitude of ascending node and the mean argument of latitude can be calculated as

    wherendenotes the angular velocity.

    According to Eq.(11),the perturbation coefficients of the offsets are given as follows:

    In view of the magnitude,the following equations can be obtained:

    We can see that offsetting the semi-major axis to eliminate the secular relative drifts of the mean argument of latitude is the most efficient way to compensate the perturbations.

    3.2.Calculation model for orbital offsets

    whereKλ1andKΩ1are the design parameters,which are determined by the offsets of the orbital elements.To prolong the control time span of configuration maintenance,the initial mean argument of latitude Δλ0should be set as one boundary of the control range [Δλb,Δλg],and the extreme value should be set as another boundary of the control range [Δλb,Δλg].Then,we can obtain

    In the same way,the initial longitude of ascending node ΔΩ0should be set as one boundary of the control range[ΔΩb,ΔΩg],and the extreme value should be set as another boundary of the control range [ΔΩb,ΔΩg].Then,we can also obtain

    By combining Eqs.(21)and(22),the initial offsets of the orbital elements can be calculated.

    3.3.Perturbation compensation for luni-solar perturbations

    The general method of offsetting the orbital elements to compensate the perturbations should be further improved,while the luni-solar perturbations are included.The magnitude of the secular perturbations of the luni-solar perturbations is one tenth of that of theJ2perturbation.Therefore,the lunisolar perturbations must be considered while the perturbation coefficients of the offsets are determined.

    Then,the perturbation coefficients of the offsets can be expressed as17

    where theJ2perturbation coefficients are shown in Eqs.(12)–(17);the subscript Z represents the coefficients of the zonal perturbations,the superscriptJ2represents theJ2perturbation,the subscripts L and S represent the perturbation coefficients of the luni-solar perturbations.17

    Meanwhile,Δ˙ishould be determined according to the main perturbation terms of the luni-solar perturbations.Without loss of generality,according to the analysis about Eq.(7),the long-periodical perturbation terms of the luni-solar perturbations can be calculated by the following equations:

    To increase the precision of perturbation compensation,the calculation formula for Δ˙ican be obtained as

    To compare the analytical perturbation compensation approach with the traditional numerical approach,we introduce the principle of the numerical perturbation compensation approach.

    According to theJ2perturbation,the following linear relationship between Δa,Δiand ΔΩ,Δλ exists.20

    Based on Eq.(26),to eliminate the secular drifts of ΔΩ and Δλ,the offsets of Δaand Δican be obtained as follows:

    According to Eq.(27),Fig.1 presents the calculation flow of using the numerical approach to compensate the perturbations of MEO constellation.

    As seen in Fig.1,the secular drifts of ΔΩ and Δλ can be obtained after high precision numerical propagation,and the offsets of Δaand Δican be obtained by using Eq.(27).To compensate the influences of many perturbations and obtain the satisfied constellation stability,the calculation flow,as shown in Fig.1,should be iterated.

    4.Case study for perturbation compensation of BDS MEO satellites

    4.1.Requirements of constellation stability

    The altitude of the BDS MEO constellation is 21528 km,the inclination is 55°,and the constellation configuration is Walker 24/3/1.15The orbital elements of the constellation are as shown in Table 1.

    To ensure the system service performance,the requirements of the constellation configuration can be given as follows:

    (1)The drift of the inclination should be smaller than ±2°;

    (2)The relative drift of the longitude of ascending node should be smaller than ±2°;

    (3)The relative drift of the mean argument of latitude should be smaller than ±5°.

    4.2.Long-term evolution of BDS MEO constellation

    A long-term evolution for the BDS MEO constellation is conducted to verify the effectiveness of the presented analytical method.A high precision orbital dynamical environment is built,which includes an EGM96 Earth’s gravity field with 20×20 order,the luni-solar perturbations,and the solar radiation pressure perturbations.Random orbital injection errors of semi-major axis with hundreds of meters are considered in the simulation.The calculation time is 10 years.The results of the long-term evolution before compensation are shown in Fig.2.

    Fig.1 Calculation flow of using numerical perturbation compensation approach.

    Fig.2 Long-term evolution of BDS MEO satellites before compensation within 10 years.

    As shown in Table 1,there are eight satellites in each orbital plane,therefore,each legend in Fig.2(c)represent the secular relative drifts of the mean argument of latitude for eight satellites.Orbital injection errors lead to the secular relative drifts of the mean argument of latitude,which can be corrected by using the on-orbit identification method.

    As shown in Fig.2,we can see that the long-term evolution law is consistent with the analytical results discussed in Section 2.2:

    (1)For any two satellites in the same orbital plane,the secular drifts of the longitude of ascending node and the mean argument of latitude are almost identical;the long-periodical motion of inclination is almost the same.

    (2)For any two satellites in different orbital planes,the long-periodical variations caused by the luni-solar perturbations are not identical anymore.

    The long-term evolution of the BDS MEO nominal configuration exceeds the requirement configuration maintenance range,which needs to be controlled.

    4.3.Maintenance control for BDS MEO constellation

    4.3.1.Results of proposed analytical perturbation compensation approach

    The analytical perturbation compensation approach of offsetting the orbital elements is adopted to control the BDS MEO constellation.Based on Eqs.(21)and(22),we calculated the initial deviations.The orbital elements after compensation are shown in Table 2.

    The results of the long-term evolution after compensation are shown in Fig.3.

    As shown in Fig.3,we can see that the proposed analytical perturbation compensation method is effective.For the BDS MEO constellation,the configuration does not require any control during 10 year mission lifetime.

    4.3.2.Results of traditional numerical perturbation compensation approach

    The traditional numerical perturbation compensation approach for offsetting the orbital elements is adopted to control the BDS MEO constellation.We did eight iterations to obtain the orbital offsets,and the results of perturbation compensation are shown in Fig.4.

    4.3.3.Comparisons and discussions

    Comparing Fig.3 with Fig.4,we can see that the long-term evolution performance of the inclinations,the longitude of ascending node and the mean argument of latitude of the proposed analytical perturbation compensation approach are better than those of the traditional numerical perturbation compensation approach.The advantages of the analytical model are shown in two aspects.One is that it needs no iteration for computing the offsets of the orbital elements,and the other is that the offsets of the orbital elements can be calculated with respect to the mean argument of latitude and the longitude of ascending node directly.The comparisons validate the effectiveness of superiority of the proposed analytical perturbation compensation approach.

    Table 2 Orbital elements after compensation.

    Fig.3 Long-term evolution of BDS MEO satellites within 10 years by using analytical perturbation compensation approach.

    5.Conclusions

    In this study,the analytical models for long-term evolution and perturbation compensation of BeiDou Navigation Satellite System(BDS)Medium Earth Orbit(MEO)constellation are proposed.The proposed methods are intuitive,and can reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.Moreover,they do not need any iteration compared with the traditional semi-analytical or numerical methods.The presented analytical methods are validated by the case study of the BDS MEO constellation maintenance.The results show that the perturbation compensation approach is effective,and the BDS MEO constellation needs no control during 10 years by using the analytical methods.

    Fig.4 Long-term evolution of BDS MEO satellites within 10 years by using traditional numerical perturbation compensation approach.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(No.61403416).

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found,in the online version,at https://doi.org/10.1016/j.cja.2017.10.010.

    1.China Satellite Navigation Office[Internet].BeiDou Navigation Satellite System open service performance standard(Version 1.0).[updated 2013 December;cited 2016 Oct 18].Available from:http://en.beidou.gov.cn/.

    2.China Satellite Navigation Office[Internet].BeiDou Navigation Satellite System signal in space interface control document open service signal(Version 2.0).[updated 2013 December;cited 2016 Oct 18].Available from:http://en.beidou.gov.cn/.

    3.Schaub H,Alfriend KT.J2-invariant relative orbits for spacecraft formations.Celestial Mech Dyn Astron2001;79(2):77–95.

    4.Koon WS,Marsden JE.J2dynamics and formation flight.Reston:AIAA;2001 Aug 6–9.Report No.:AIAA-2001-4090.

    5.Schutz BE,Craig DE.GPS orbit evolution:1998–2000.Reston:AIAA;2000 Aug 14–17.Report No.:AIAA-2000-4237.

    6.Ricardo P,Belen MP,Miguel RM.The Galileo constellation design:a systematic approach.Proceedings of the 18th international technical meeting of the satellite division of the institute of navigation(ION GNSS 2005);2005 Sep 13–16;Long Beach,CA,USA,2005.p.1296–306.

    7.Cambriles AP.Galileo station keeping strategy.20th international symposium on space flight dynamics;2007 Sep 24–28;Annapolis,Maryland,USA,2007.p.1–14.

    8.Marek Z,Sima A,Ant S,Paul C.Taking the long view:the impact of spacecraft structural design and high precision force modeling on long-term orbit evolution.ION GPS/GNSS 2003;2003 Sep 9–12;Portland,OR,USA,2003.p.1002–8.

    9.Rodriguez SC.Adjustable box-wing model for solar radiation pressure impacting GPS satellites[dissertation].Munchen:Technische Universitat Munchen;2012.

    10.Stefanelli L,Metris G.Solar gravitational perturbations on the dynamics of MEO:increase of the eccentricity due to resonances.Adv Space Res2015;55(7):1855–67.

    11.Chao C,Schmitt D.Eliminating GPS stationkeeping maneuvers by changing the orbit altitude.Proceedings of the AAS/AIAA astrodynamics conference;1989 Aug 7–10;San Diego,CA,USA,1990.p.623–43.

    12.Peiro AM,Beech TW,Garcia AM,Merino MR.Galileo in-orbit control strategy.Proceedings of the IAIN world congress in association with the U.S.ION Annual Meeting;2000 Jun 26–28;San Diego,CA,USA,2000.p.469–80.

    13.Zhang YL,Fan L,Zhang Y,Xiang JH.Theory and design of satellite constellation.Beijing:Science Press;2008[Chinese].

    14.Xiang JH,Fan L,Zhang YL.Design and capability analysis of an aircraft with in flatable wing.Flight Dyn2007;25(4):81–5[Chinese].

    15.Kamel A,Ekman D,Tibbitts R.East-west station keeping requirements of nearly synchronous satellites due to Earth’s triaxiality and luni-solar effects.Celestical Mech1973;8(1):129–48.

    16.Jiang C.Perturbations of spacecraft relative motion and its compensation control[dissertation].Beijing:Tsinghua University;2015.

    17.Kaula WM.Development of the Lunar and Solar disturbing functions for a close satellite.Astron J1962;67:300–3.

    18.Delhaise F,Morbidelli A.Luni-solar effects of geosynchronous orbits at the critical inclination.Celestial Mech Dyn Astron1993;57(1–2):155–73.

    19.Li HN,Li JS,Jiao WH.Analyzing perturbation motion and studying con figuration maintenance strategy for Compass-M navigation constellation.J Astron2010;31(7):1756–61[Chinese].

    20.Qian S,Li HN,Wu SG.Perturbation compensation strategy for MEO non-resonant navigation constellation maintenance.J Natil Univ Defense Technol2014;36(2):53–60[Chinese].

    国产精品免费一区二区三区在线| 男女边吃奶边做爰视频| 国产三级中文精品| 久久精品91蜜桃| 99久久九九国产精品国产免费| 免费一级毛片在线播放高清视频| 一卡2卡三卡四卡精品乱码亚洲| 最近手机中文字幕大全| 99久久中文字幕三级久久日本| 国产三级中文精品| 久久热精品热| 国产爱豆传媒在线观看| 1000部很黄的大片| 插逼视频在线观看| 婷婷亚洲欧美| 日韩,欧美,国产一区二区三区 | 一个人观看的视频www高清免费观看| 国国产精品蜜臀av免费| 97人妻精品一区二区三区麻豆| 12—13女人毛片做爰片一| 日本-黄色视频高清免费观看| 人妻制服诱惑在线中文字幕| 亚洲人成网站在线观看播放| kizo精华| 久久久久久久久中文| 日本一本二区三区精品| 一级毛片我不卡| 天美传媒精品一区二区| 青春草亚洲视频在线观看| 我的女老师完整版在线观看| 男女下面进入的视频免费午夜| 精品人妻偷拍中文字幕| av在线蜜桃| 成人亚洲精品av一区二区| 美女内射精品一级片tv| 欧美zozozo另类| 91在线精品国自产拍蜜月| 夜夜爽天天搞| 插阴视频在线观看视频| 99riav亚洲国产免费| 日本一二三区视频观看| 老司机影院成人| 性色avwww在线观看| 好男人视频免费观看在线| 一本久久中文字幕| 国产淫片久久久久久久久| 精品欧美国产一区二区三| 99久国产av精品国产电影| 好男人在线观看高清免费视频| 美女cb高潮喷水在线观看| 日本一二三区视频观看| av女优亚洲男人天堂| 久久精品国产亚洲网站| 亚洲欧美精品综合久久99| 精品99又大又爽又粗少妇毛片| 欧美高清性xxxxhd video| 九九爱精品视频在线观看| 亚洲国产精品国产精品| 级片在线观看| 国内精品久久久久精免费| 啦啦啦韩国在线观看视频| 亚洲av中文字字幕乱码综合| 波多野结衣巨乳人妻| 久久久久久久久久成人| 亚洲无线观看免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产探花极品一区二区| 国产欧美日韩精品一区二区| 一进一出抽搐动态| 观看美女的网站| 精品国产三级普通话版| 国产精品一区二区三区四区免费观看| 亚洲人成网站在线播| 亚洲欧美清纯卡通| 国产一区二区亚洲精品在线观看| 日产精品乱码卡一卡2卡三| 伊人久久精品亚洲午夜| 亚洲人成网站在线播| 六月丁香七月| 精品一区二区免费观看| 久久热精品热| 看免费成人av毛片| 亚洲人成网站高清观看| 国产真实乱freesex| 久久综合国产亚洲精品| 少妇被粗大猛烈的视频| 久久久久久久久久久免费av| 国产又黄又爽又无遮挡在线| 在线免费十八禁| 亚洲av熟女| 亚洲最大成人av| 观看美女的网站| 夜夜爽天天搞| 99在线视频只有这里精品首页| 亚洲欧美日韩高清专用| 午夜激情福利司机影院| 中出人妻视频一区二区| 最近最新中文字幕大全电影3| 久久久精品大字幕| 精品国内亚洲2022精品成人| 九草在线视频观看| 国内精品久久久久精免费| 国产激情偷乱视频一区二区| 尾随美女入室| 欧美激情久久久久久爽电影| 国产亚洲精品久久久久久毛片| 熟女电影av网| 99久久久亚洲精品蜜臀av| 日韩欧美精品v在线| 26uuu在线亚洲综合色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | www.av在线官网国产| 搞女人的毛片| 高清午夜精品一区二区三区 | 国产真实乱freesex| 久久久久性生活片| 亚洲人成网站在线播| 欧美一级a爱片免费观看看| 18+在线观看网站| 看免费成人av毛片| 人妻夜夜爽99麻豆av| 波多野结衣高清无吗| 搡女人真爽免费视频火全软件| 长腿黑丝高跟| 舔av片在线| 亚洲aⅴ乱码一区二区在线播放| 禁无遮挡网站| 亚洲成a人片在线一区二区| 一级av片app| 超碰av人人做人人爽久久| 欧美一区二区亚洲| 卡戴珊不雅视频在线播放| 国产亚洲精品久久久com| 精品无人区乱码1区二区| 午夜福利成人在线免费观看| 日韩欧美国产在线观看| 国产伦精品一区二区三区四那| 看免费成人av毛片| 三级国产精品欧美在线观看| 天天躁夜夜躁狠狠久久av| 黄片wwwwww| 亚洲乱码一区二区免费版| 最新中文字幕久久久久| АⅤ资源中文在线天堂| 成人特级av手机在线观看| 亚洲熟妇中文字幕五十中出| 此物有八面人人有两片| 在线观看66精品国产| 啦啦啦观看免费观看视频高清| 性欧美人与动物交配| 男插女下体视频免费在线播放| 午夜亚洲福利在线播放| 国产国拍精品亚洲av在线观看| 久久精品国产自在天天线| 国产高潮美女av| 亚洲av二区三区四区| 中文资源天堂在线| 久久精品国产鲁丝片午夜精品| 日韩一区二区三区影片| 久久国内精品自在自线图片| 亚洲欧美日韩卡通动漫| 综合色丁香网| 国产成人影院久久av| 简卡轻食公司| 韩国av在线不卡| 国产在视频线在精品| 欧美最黄视频在线播放免费| 黄色日韩在线| 国产av在哪里看| 欧美精品国产亚洲| 99国产精品一区二区蜜桃av| 99riav亚洲国产免费| 晚上一个人看的免费电影| 成人综合一区亚洲| 夫妻性生交免费视频一级片| 久久人人精品亚洲av| 亚洲18禁久久av| 欧美日韩乱码在线| 能在线免费观看的黄片| 精品人妻一区二区三区麻豆| 天天一区二区日本电影三级| 国产高潮美女av| 免费电影在线观看免费观看| 国产成年人精品一区二区| 精品免费久久久久久久清纯| 国产成人aa在线观看| 国产人妻一区二区三区在| 久久久色成人| 99久久成人亚洲精品观看| 伦精品一区二区三区| 日韩人妻高清精品专区| 色吧在线观看| 亚洲aⅴ乱码一区二区在线播放| 夜夜夜夜夜久久久久| 成人一区二区视频在线观看| 在线观看免费视频日本深夜| 少妇被粗大猛烈的视频| 最近视频中文字幕2019在线8| 久久午夜福利片| 欧美色欧美亚洲另类二区| 国产精品永久免费网站| 精品久久久久久久人妻蜜臀av| 黄色配什么色好看| 2022亚洲国产成人精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品sss在线观看| 五月玫瑰六月丁香| 我要看日韩黄色一级片| 亚洲最大成人手机在线| 国产淫片久久久久久久久| 免费黄网站久久成人精品| a级一级毛片免费在线观看| 亚洲成人av在线免费| 成人三级黄色视频| 在线免费观看的www视频| 一个人免费在线观看电影| 乱系列少妇在线播放| 国内久久婷婷六月综合欲色啪| 国产av麻豆久久久久久久| 日本成人三级电影网站| 精品无人区乱码1区二区| 99在线视频只有这里精品首页| 乱码一卡2卡4卡精品| 看免费成人av毛片| 深夜a级毛片| 嫩草影院精品99| 精品一区二区三区视频在线| 国产色爽女视频免费观看| 成人亚洲欧美一区二区av| 白带黄色成豆腐渣| 亚洲精品亚洲一区二区| 国产一区亚洲一区在线观看| 毛片一级片免费看久久久久| 亚洲一区高清亚洲精品| 在线国产一区二区在线| 成年女人看的毛片在线观看| 久久精品国产亚洲av香蕉五月| 一区二区三区四区激情视频 | 国产女主播在线喷水免费视频网站 | 99国产精品一区二区蜜桃av| 亚洲人与动物交配视频| 亚洲不卡免费看| 国产精品不卡视频一区二区| 三级男女做爰猛烈吃奶摸视频| 男女下面进入的视频免费午夜| 成人午夜高清在线视频| 热99re8久久精品国产| 99热精品在线国产| 人妻夜夜爽99麻豆av| 免费电影在线观看免费观看| 午夜老司机福利剧场| 欧美另类亚洲清纯唯美| 国产精品一区二区三区四区免费观看| 国产av在哪里看| 少妇的逼好多水| 亚洲国产精品成人综合色| 免费看av在线观看网站| 欧美变态另类bdsm刘玥| 国产午夜福利久久久久久| 精品一区二区免费观看| 六月丁香七月| 特大巨黑吊av在线直播| 国产探花极品一区二区| 成人三级黄色视频| 嫩草影院精品99| 国产69精品久久久久777片| 日韩欧美在线乱码| 天天躁夜夜躁狠狠久久av| 波多野结衣高清作品| 久久久久九九精品影院| 十八禁国产超污无遮挡网站| 亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 99国产精品一区二区蜜桃av| 国产91av在线免费观看| 特级一级黄色大片| 91av网一区二区| 午夜亚洲福利在线播放| 一级av片app| 内射极品少妇av片p| 少妇被粗大猛烈的视频| 男女视频在线观看网站免费| 99久久人妻综合| www.av在线官网国产| 精品国产三级普通话版| 亚洲av第一区精品v没综合| 如何舔出高潮| 国产白丝娇喘喷水9色精品| 国产伦精品一区二区三区视频9| 能在线免费看毛片的网站| av在线老鸭窝| 天堂中文最新版在线下载 | 免费看a级黄色片| 一级二级三级毛片免费看| 精品无人区乱码1区二区| 亚洲成av人片在线播放无| 国产三级在线视频| 青青草视频在线视频观看| 精品人妻熟女av久视频| 麻豆一二三区av精品| 久久精品人妻少妇| 国产一区二区三区在线臀色熟女| 日本黄色片子视频| 天天一区二区日本电影三级| 成人国产麻豆网| 免费观看的影片在线观看| 啦啦啦韩国在线观看视频| 不卡一级毛片| 国产成人福利小说| 精品无人区乱码1区二区| 国产精品不卡视频一区二区| 亚洲成人精品中文字幕电影| 最近中文字幕高清免费大全6| 极品教师在线视频| 国产精品1区2区在线观看.| 99久久精品热视频| 一本久久精品| 亚洲精品456在线播放app| 精品少妇黑人巨大在线播放 | 久久欧美精品欧美久久欧美| 狂野欧美激情性xxxx在线观看| 成人鲁丝片一二三区免费| 大香蕉久久网| 亚洲综合色惰| 简卡轻食公司| 熟妇人妻久久中文字幕3abv| 九九久久精品国产亚洲av麻豆| 午夜福利视频1000在线观看| 尤物成人国产欧美一区二区三区| 久久久久国产网址| 久久99热这里只有精品18| 在线观看午夜福利视频| 成人综合一区亚洲| 身体一侧抽搐| 色综合站精品国产| 国产单亲对白刺激| 亚洲国产精品合色在线| 国产成人91sexporn| 男人的好看免费观看在线视频| 欧美一级a爱片免费观看看| 欧美又色又爽又黄视频| 亚洲av熟女| 久久久a久久爽久久v久久| 欧美精品一区二区大全| 中文字幕熟女人妻在线| 国产91av在线免费观看| 永久网站在线| 国产精品日韩av在线免费观看| 久久久国产成人精品二区| av福利片在线观看| 国产精品三级大全| 啦啦啦啦在线视频资源| 不卡视频在线观看欧美| 久久久久久久久大av| 麻豆国产av国片精品| 国产精品99久久久久久久久| 午夜福利视频1000在线观看| 国产91av在线免费观看| 三级男女做爰猛烈吃奶摸视频| АⅤ资源中文在线天堂| 性欧美人与动物交配| 老熟妇乱子伦视频在线观看| 亚洲熟妇中文字幕五十中出| 99热全是精品| 国语自产精品视频在线第100页| 国产蜜桃级精品一区二区三区| 午夜福利视频1000在线观看| 又爽又黄a免费视频| 夜夜看夜夜爽夜夜摸| 最近视频中文字幕2019在线8| 午夜福利成人在线免费观看| 一级黄色大片毛片| 中文精品一卡2卡3卡4更新| 日本撒尿小便嘘嘘汇集6| 国产高清不卡午夜福利| 麻豆国产97在线/欧美| 如何舔出高潮| av在线蜜桃| 成人特级av手机在线观看| 国产一级毛片在线| 国产精品久久久久久久电影| 99九九线精品视频在线观看视频| 亚洲不卡免费看| 日韩av不卡免费在线播放| 一个人观看的视频www高清免费观看| 99热精品在线国产| 欧美bdsm另类| 精品人妻熟女av久视频| 内地一区二区视频在线| 国产精品人妻久久久久久| 欧美bdsm另类| 久久久国产成人免费| 内射极品少妇av片p| 国产精品国产三级国产av玫瑰| 美女高潮的动态| 欧美日韩一区二区视频在线观看视频在线 | 观看免费一级毛片| 成人毛片a级毛片在线播放| 欧美性感艳星| 老女人水多毛片| 日韩人妻高清精品专区| 欧美性感艳星| 真实男女啪啪啪动态图| 亚洲av中文av极速乱| а√天堂www在线а√下载| 亚洲久久久久久中文字幕| 99视频精品全部免费 在线| 嫩草影院精品99| 亚洲国产精品久久男人天堂| 亚洲欧洲日产国产| 久久久国产成人免费| 亚洲色图av天堂| 国国产精品蜜臀av免费| 九九爱精品视频在线观看| 亚洲av中文av极速乱| 一边摸一边抽搐一进一小说| 日日摸夜夜添夜夜添av毛片| 99久久中文字幕三级久久日本| 99热这里只有是精品在线观看| 伦理电影大哥的女人| 国产一区二区激情短视频| 亚洲精品乱码久久久v下载方式| 免费av不卡在线播放| 国产视频首页在线观看| 内地一区二区视频在线| 久久久午夜欧美精品| 99久久无色码亚洲精品果冻| 精品久久久久久久人妻蜜臀av| 丰满的人妻完整版| 在线免费观看不下载黄p国产| 人体艺术视频欧美日本| 18禁在线播放成人免费| 久久久a久久爽久久v久久| 精品人妻视频免费看| 国产精品久久久久久精品电影小说 | 日韩欧美一区二区三区在线观看| 久久久久九九精品影院| 国产成人freesex在线| 变态另类丝袜制服| 91麻豆精品激情在线观看国产| 最后的刺客免费高清国语| 成人永久免费在线观看视频| 久久人人爽人人爽人人片va| 九九爱精品视频在线观看| 自拍偷自拍亚洲精品老妇| 1024手机看黄色片| 一级黄色大片毛片| 日本爱情动作片www.在线观看| 精品久久久久久久人妻蜜臀av| 我的女老师完整版在线观看| 国产精品蜜桃在线观看 | 免费观看人在逋| 91精品一卡2卡3卡4卡| 国产一区二区在线av高清观看| 国产大屁股一区二区在线视频| 在线观看一区二区三区| 欧美3d第一页| 男女啪啪激烈高潮av片| 卡戴珊不雅视频在线播放| 国产成人一区二区在线| 色综合站精品国产| 国产成人精品一,二区 | 亚洲不卡免费看| 美女大奶头视频| 韩国av在线不卡| 一进一出抽搐gif免费好疼| 最近手机中文字幕大全| 看十八女毛片水多多多| 欧美性感艳星| 啦啦啦韩国在线观看视频| 国产精品国产三级国产av玫瑰| 成人亚洲精品av一区二区| 亚洲精品久久久久久婷婷小说 | 一级毛片电影观看 | 久久精品夜色国产| 成年女人看的毛片在线观看| 久久午夜福利片| 久久久久国产网址| 国产精品女同一区二区软件| 久久午夜福利片| 久久鲁丝午夜福利片| 中国国产av一级| 成人午夜精彩视频在线观看| 国产精品一区二区三区四区久久| 亚洲精品乱码久久久v下载方式| 免费观看a级毛片全部| 亚洲成a人片在线一区二区| 男女啪啪激烈高潮av片| 一本一本综合久久| 精品不卡国产一区二区三区| 久久6这里有精品| 亚洲性久久影院| 国产精品爽爽va在线观看网站| 国产色婷婷99| 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂 | 欧美xxxx性猛交bbbb| 日本-黄色视频高清免费观看| 国产高清有码在线观看视频| 日韩成人伦理影院| or卡值多少钱| av专区在线播放| 日韩三级伦理在线观看| 精品人妻一区二区三区麻豆| 色噜噜av男人的天堂激情| 亚洲人与动物交配视频| 99国产极品粉嫩在线观看| 亚洲四区av| 欧美日韩一区二区视频在线观看视频在线 | 日本五十路高清| 成人性生交大片免费视频hd| 国产精品一区二区性色av| 国内精品宾馆在线| 天堂中文最新版在线下载 | 99九九线精品视频在线观看视频| 免费一级毛片在线播放高清视频| 国产高清视频在线观看网站| 中文在线观看免费www的网站| 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 深夜a级毛片| 国产一级毛片在线| 国产精品无大码| 久久精品国产99精品国产亚洲性色| 亚洲欧美精品自产自拍| 99久久无色码亚洲精品果冻| 免费无遮挡裸体视频| 搡老妇女老女人老熟妇| 国产精品99久久久久久久久| 欧美性感艳星| 亚洲无线观看免费| 中国国产av一级| 欧美日本视频| 男女边吃奶边做爰视频| 国产探花在线观看一区二区| 欧美精品国产亚洲| 99热精品在线国产| 亚洲国产欧美人成| 天堂av国产一区二区熟女人妻| 国产精品三级大全| 国产在线男女| 国产精品一区二区三区四区久久| 精品人妻一区二区三区麻豆| 菩萨蛮人人尽说江南好唐韦庄 | 国产亚洲av嫩草精品影院| 亚洲电影在线观看av| 99riav亚洲国产免费| 你懂的网址亚洲精品在线观看 | 一级毛片我不卡| 亚洲成人av在线免费| 午夜免费激情av| 99视频精品全部免费 在线| 男人的好看免费观看在线视频| 精品熟女少妇av免费看| 男人和女人高潮做爰伦理| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在 | 亚洲美女搞黄在线观看| 久久这里只有精品中国| 精品久久久久久成人av| 菩萨蛮人人尽说江南好唐韦庄 | 99在线视频只有这里精品首页| 两个人的视频大全免费| 国产精品一区www在线观看| 国产三级中文精品| 美女高潮的动态| 26uuu在线亚洲综合色| 免费黄网站久久成人精品| 国产精品久久久久久精品电影| 亚洲第一电影网av| 免费不卡的大黄色大毛片视频在线观看 | 国产乱人视频| 桃色一区二区三区在线观看| 哪个播放器可以免费观看大片| 欧美成人精品欧美一级黄| 亚洲欧美成人综合另类久久久 | 免费观看精品视频网站| 欧美一区二区国产精品久久精品| 午夜免费男女啪啪视频观看| 国产视频首页在线观看| 熟妇人妻久久中文字幕3abv| 久久6这里有精品| 欧美日韩综合久久久久久| 插阴视频在线观看视频| 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 2022亚洲国产成人精品| 免费看av在线观看网站| 3wmmmm亚洲av在线观看| 人妻久久中文字幕网| 久久这里只有精品中国| 精品人妻一区二区三区麻豆| 国产精品一区二区三区四区久久| 午夜视频国产福利| 日韩成人av中文字幕在线观看| 亚洲色图av天堂| 国内精品宾馆在线| 亚洲av中文av极速乱| 国产一级毛片在线| 精品一区二区免费观看| 中文字幕久久专区| 最近视频中文字幕2019在线8| 国内精品一区二区在线观看| 夜夜爽天天搞| 精品一区二区三区人妻视频| 秋霞在线观看毛片| 久久国产乱子免费精品| 亚洲第一电影网av| 99在线人妻在线中文字幕| 91狼人影院| 亚洲婷婷狠狠爱综合网| 悠悠久久av| 性欧美人与动物交配| 九九久久精品国产亚洲av麻豆|