• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors

    2021-12-29 02:29:24SHIJingTIANXiaodongLIXiaoLIUYequnSUNHaizhen
    新型炭材料 2021年6期

    SHI Jing, TIAN Xiao-dong*, LI Xiao, LIU Ye-qun, SUN Hai-zhen

    (1. Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry,Chinese Academy of Sciences, Taiyuan 030001, China;2. CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;3. School of Chemistry and Materials Science, Ludong University, Yantai 264025, China)

    Abstract: Micro/mesopore carbon spheres for use as the electrode materials of supercapacitors were prepared by hydrothermal carbonization followed by KOH/NaOH activation using sucrose as the carbon precursor. The effects of the KOH and NaOH activation parameters on the specific surface area, pore size distribution and electrochemical performance of the carbon spheres were investigated. Results indicate that the use of NaOH leads to the development of mesopores while the use of KOH increases the specific surface area and micropore volume. The pore size distribution of carbon spheres could be adjusted by varying the relative amounts of the reagents in the activation. Using a NaOH/KOH mass ratio of 2∶1 and a reagent/carbon sphere mass ratio of 3∶1, a good capacitance and rate performance of the supercapacitor electrode in both a 6 mol L?1 KOH aqueous electrolyte and a 1 mol L?1 MeEt3NBF4/propylene carbonate electrolyte was achieved. The prepared activated carbon gave a capacitance of 235 F g?1 at 0.1 A g?1 and a capacitance retention of 81.5% at 20 A g?1 in the 6 mol L?1 KOH aqueous electrolyte, and in a cell using the 1 mol L?1 MeEt3NBF4/propylene carbonate electrolyte, it gave the highest energy density of 30.4 Wh kg?1 and a power output of 18.5 kW kg?1.

    Key words: Sucrose;Carbon sphere;Hydrothermal carbonization;Mixed alkali activation;Supercapacitor

    1 Introduction

    During the past decades, environmentally friendly energy storage devices, such as secondary batteries, supercapacitors (SCs) and fuel cells have gained intensive attention due to the growing requirement of sustainable energy and abatement of environmental pollution[1–3]. Owing to their high power output, rapid charge/discharge rate and excellent cycle stability, SCs are regarded as the most promising energy storage device for high power applications, such as wind turbines, digital communication devices,laptops and peak power sources[4]. To achieve high energy and high power output, it is curial to have a high specific capacitance even at a high charge/discharge rate.

    Porous carbon materials are envisioned as the promising electrode materials for SCs owing to their adjustable pore size distribution (PSD), large specific surface area, good electrical conductivity and low cost[5]. Various biomass materials as the sustainable precursors, such as neem leaves[6], camellia petals[7],cornstalk[8], willow catkins[9]and prawn shells[10], have been used for the preparation of porous carbons via high temperature carbonization followed by physical/chemical activation[9–12]. As an important component of biomass, sucrose is widely used in most aspects of daily life including food industry, medical care, chemical industry, cosmetics, etc. It is well known that sucrose contains abundant carbon and oxygen, which are conductive to prepare activated carbons with good electrochemical performance[13]. In addition, compared with the direct carbonization method, the hydrothermal carbonization is a facile approach to prepare sphere-shaped carbon materials.Sphere-shaped sucrose-derived porous carbons can be obtained after further activation and annealing. For instance, the hydrothermal carbonized microspheres activated by KOH exhibits a high specific capacitance of 296.1 F g?1owing to its large amount of micropores centered at 0.6?0.8 nm[13], which are suitable for storing charge as revealed by the results from carbide-derived carbon (CDC) materials[14]. Nevertheless, the reported materials suffer from inferior capacitive performance at high current densities. Thus, a further pore texture improvement is required to attain an excellent electrochemical performance of sucrose-derived carbon materials. Fortunately, the researches on hierarchical porous carbons open a new avenue for fabricating high performance SCs[15–17]. By taking the advantages of micropores for charge storage of a high amount and mesopores for fast ion transport in the hierarchical porous carbons, porous carbon electrodes with a high specific capacitance and good rate capability can be obtained.

    It is well demonstrated that micropore-dominated activated carbons can be prepared by KOH activation[18,19]. Although the template methods are usually needed to fabricate mesopore-dominated carbons, they are tedious and toxic[20]. Can a hierarchical porous structure be constructed via a simple method? Since the NaOH activation method can be used to prepared porous carbons with a certain amount of mesopore ranging from 2-5 nm[21], herein, a mixture of KOH and NaOH was adopted as activating agents for increasing the specific surface area and tuning the pore size distribution. The oxygen groups on the surface of the porous carbon spheres generated during the preparation process can improve the overall electrochemical performance by the enhancement of the electrode wettability and the extra pseudo capacitance. The hydrothermal carbonized sucrose was activated by NaOH and KOH activation to prepare spherical activated carbons, which exhibited impressive rate capability in both aqueous and organic electrolytes. This work provides an approach for high value-added use of sucrose.

    2 Experimental

    2.1 Synthesis of activated carbons

    The hydrothermal carbonization of 0.1 mol L?1sucrose aqueous solution was carried out in a 100 mL Teflon-sealed autoclave at 180 °C for 24 h. Afterwards, the carbonaceous materials was collected and cleaned with deionized water for several times, ovendried at 80 °C for 12 h to obtain carbonized sample named as HTC. Then, the HTC was activated by KOH and/or NaOH activation in a tube furnace at 800 °C for 2 h under nitrogen atmosphere with a mass ratio of KOH+NaOH to HTC of 3 to yield samples designated as ATCx, wherexreferred to KOH and/or Na-OH. For example, when KOH alone was used, the sample was marked as ATCK.

    2.2 Characterization

    The samples were characterized by scanning electron microscopy (SEM, JEOL 7001F), X-ray diffraction (XRD, Bruker D8 Advance), Raman spectroscopy (Jobin Yvon LabRam HR800, excited by a 632.8 nm He/Ne laser), X-ray photoelectron spectroscopy (XPS, Kratos Axis Ultra DLD) and N2adsorption (BET, Quantachrome Autosorb-iQ2). The surface area (SBET) was calculated according to the Brunauer-Emmett-Teller method and the PSD was calculated from desorption branch isotherms by the density functional theory (DFT) with a slit shaped pore assumption.

    2.3 Electrochemical measurements

    The cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests were carried out on the CHI 660C workstation. The cycling stability and rate capability were obtained with the LAND 2001B battery test system. The working electrode was prepared by blending the as-obtained samples, polytetrafluoroethylene, and carbon black (80∶10∶10 weight ratios) in 5 mL alcohol, and then the mixture was grinded by a mortar and coated onto a Ti foil current collector and dried at 80 °C overnight. In the three-electrode system, Pt sheet and Hg/HgO electrode were used as the counter electrode and reference electrode,respectively, using a 6 mol L?1KOH aqueous solution as the electrolyte. For the two-electrode configuration, two identical ATCK/Naworking electrodes were separated by a polypropylene film soaked in a 1 mol L?1MeEt3NBF4/propylene carbonate (PC) organic electrolyte. The specific capacitances of the single electrode (Cs, F g?1) and SC device (Ccell, F g?1)were calculated according to the Eq. (1) and (2). The energy density (E, Wh kg?1) and power density (P, W kg?1) of the device were obtained based on the Eq. (3)and Eq. (4):

    whereiand Δtare discharge current (A) and discharge time (s), respectively, ΔVis the potential window after the internal resistance drop (V),mandmtotalrepresent the mass of single electrode materials (g)and the total mass of two electrode materials (g), respectively,Cs,Ccell,EandPrepresent the specific capacitance of single electrode (F g?1), the specific capacitance of a device (F g?1), energy density (Wh kg?1),power density (W kg?1), respectively.

    3 Results and discussion

    Fig. 1 SEM images of the samples using HTC∶KOH∶NaOH in mass ratios of (a) 1∶0∶0 (HTC), (b) 1∶3∶0 (ATCK),(c) 1∶0∶3 (ATCNa), (d) 1∶1∶2 (ATCK/Na).

    SEM images of the samples at different synthetic conditions are given in Fig. 1. It can be seen that after hydrothermal carbonization, sucrose transforms into micrometer size carbon spheres with an average diameter of 5.3 μm (Fig. 1a). After activation, remarkable difference between activated carbons can be easily recognized. As shown in Fig. 1b, the activation of HTC with pure KOH leads to a complete change in morphology and bulk-sheet structure appears. Whereas, the sphere morphology can be maintained when the content of KOH is decreased, revealing that the etching ability of KOH is higher than that of NaOH.

    The XRD patterns of the activated carbons(Fig. 2a) show similar reflections. The broad and low intensity diffraction peaks at 23.4° and 44.0° correspond to the diffraction of (002) and (100) plane of the graphite lattice, respectively, confirming the amorphous feature of the activated carbons[22]. Two obvious peaks at 1 338 cm?1(Dband) and 1 581 cm?1(Gband)can be detected in Raman spectra, which are assigned to defect carbons and sp2carbon in the crystalline graphite lattice, respectively[23]. Generally, the relative intensity ofDband andGband (ID/IG) is proportional to the graphitization degree of carbon materials[24]. TheID/IGvalues of ACTK, ACTNaand ACTK/Nashown in Fig. 2b are determined to be 1.11,1.01 and 1.05, respectively, suggesting that more defects existed in ACTK, which is in good agreement with previous SEM analysis.

    Fig. 2 (a) XRD patterns and (b) Raman spectra of ATCK, ATCNa and ATCK/Na.

    Fig. 3 (a) N2 adsorption isotherms and (b) PSDs of ATCK, ATCNa and ATCK/Na.

    N2adsorption isotherms (Fig. 3a) of the obtained porous carbons show apparent distinction, indicating the different pore textures and specific surface areas.The ATCKexhibits a typical I isotherm according to the International Union of Pure and Applied Chemistry (IUPAC) classification, which is related to microporous materials[18]. On the contrary, the ATCNashows an arc at the relative pressure rang of 0.05?0.20, suggesting the coexistence of a large amount of micropores and a small fraction of small size mesopores in ATCNa, which is confirmed by previous reports[25–27]. According to Linares-Solano’work, Na2O may be generated during the activating process[28], which can be transformed into NaCl by HCl washing. As for ATCK/Na, the isotherm displays the features of both ATCKand ATCNa. Over the entire relative pressure region, the more increment in nitrogen adsorption capacity of ATCKimplies more pores and higher specific surface area in this sample, which further demonstrates the higher etching efficiency of KOH in comparison with NaOH. The PSD curves(Fig. 3b) show that ATCKis a typical microporous material with a narrow size range of 0.4?1.6 nm,while the ATCNahas a large fraction of micropores centered at 0.64 nm and a few developed mesopores ranging from 2.0 to 3.7 nm. According to data listed in Table 1, the average pore diameter (Pav) of ATCNais up to 1.95 nm as compared with 1.79 nm of ATCK.Furthermore, the mesopore volumes ranging from 2.0?3.7 nm is 0.06 cm3g?1for ATCNaas compared with 0 of ATCK, revealing that NaOH is favorable to enlarge pore size, which is beneficial for improving rate capability. However, the smaller specific surface area of ATCNalimits its capacitance as compared with ATCK. Herein, a porous carbon (ACTK/Na) with both a high specific surface area and a proper micro/mesoporous structure is constructed by using mixture of KOH and NaOH as the activating agent. As shown in Fig. 3 and Table 1, the specific surface area of ACTK/Nais higher than that of ATCNaand its corresponding PSD is wider than ATCK. The high surface area can provide more active sites for charge storage,and the micro and mesoporous structure is beneficial to achieve a high capacitance with an improved rateperformance.

    Table 1 Results of sorption tests and elemental compositions of activated carbons.

    The activation not only results in developed porosity, but also affects the surface functionality. The XPS results shown in Fig. 4a reveal that oxygen-containing groups exist in all samples and their relative contents are listed in Table 1. The existence of oxygen-containing groups are considered to effectively enhance the hydrophilicity and wettability of the samples in electrolytes as well as to provide extra pseudocapacitance. As depicted in Fig. 4b-d, the chemical states of oxygen groups can be assigned to four peaks at 531.2, 532.3, 533.2, 535.2 eV, attributed by carbonyl/quinone (O I), phenolic/hydroxyl/ether (O II), carboxyl (O III) and chemisorbed oxygen/water (O IV), respectively[29,30]. More adsorbed oxygen/water content (8.3% for ATCKand 7.6% for ATCK/Na, while that of ATCNais 6.6%) can be detected in the KOH-activated sample, which means that a larger specific surface area contributes to more oxygen/water adsorption. These activated carbons were then tested as electrode materials for SCs.

    The activated carbons were firstly tested in a 6 mol L?1KOH electrolyte with a three-electrode configuration. As shown in Fig. 5a, all samples exhibit an ideal rectangular-like shape with a slight hump at low potential region, suggesting the double layer capacitance is dominated with a small contribution of pseudocapacitance[31]. The oxygen-containing groups are commonly formed during activation. These functionalities can not only provide extra capacitance, but also improve the wettability of surface, resulting in good ion diffusion and surface utilization rate in electrolytes[32]. ATCKwith the largest specific surface area displays the largest capacitance. Fig. 5b gives the GCD plots at a low current density of 0.1 A g?1, from which, it can be found that the charge/discharge curves are symmetric, indicating a good electrochemical reversibility.

    Fig. 4 X-ray photoelectron survey scanning spectra of (a) all samples, the deconvoluted O 1s peaks for (b) ATCK, (c) ATCNa and (d) ATCK/Na, respectively.

    Fig. 5 The electrochemical performances of ATCK, ATCNa and ATCK/Na. (a) CV curves at 5 mV s?1, GCD plots at (b) 0.1 A g?1 and (c) 20 A g?1, (d) the IR drop, (e) specific capacitance as a function of current density and (f) Nyquist plots.

    The symmetrical shape of GCD curves can still be maintained and no obvious IR drops can be observed even when the current density is increased up to 20 A g?1, revealing the good reversibility. As can be seen in Fig. 5d, the IR drops of ATCK, ATCNaand ATCK/Naat 20 A g?1are 64, 55 and 60 mV, which are quite smaller than previous reports[22,33,34]. A lower value of IR drop means a better ion transportation capability and superior reversibility. As depicted in Fig. 5e, although the capacitance decreases gradually with increasing current density, the samples (ATCNaand ATCK/Na) treated with NaOH show enhanced rate capability. For example, a capacitance retention rate of 74.6% is obtained for ATCK, while that of ATCNaand ATCK/Naare 80.1% and 81.5%, demonstrating that a porous carbon electrode with both a high capacitance and good rate performance should be made by adjusting the fraction of micropores and mesopores.Furthermore, the rate capability of ATCK/Nais superior to many activated carbons, such as petroleum cokebased porous carbon (59%, 50 to 1 000 mA g?1)[35],hierarchical porous carbon derived from parasol fluff(36.4%, 0.2 to 10 A g?1)[36], hollow mesoporous carbon spheres (87.2%, 0.5 to 10 A g?1)[37], porous carbon derived from waste plastics (60%, 1 to 20 A g?1).The Nyquist plots in Fig. 5f also verify good ion permeation after PSD is optimized by adjusting the activating agent composition. From the results of the threeelectrode system, it can be seen that ATCK/Nahas the best overall electrochemical performance (comprehensive specific capacitance and rate capability) due to its proper PSD and moderate accessible surface area. By adjusting the micropore and mesopore proportion and size, an optimal pore structure can be obtained to achieve both superior charge storage and better ion transportation or to balance the capacitance and rate performance of the as-obtained samples.

    To investigate its electrochemical properties in real operating conditions, a symmetric SC device assembled from two identical ATCK/Naelectrodes was evaluated. As shown in Fig. 6a, a slight distortion of the rectangular shape can be evidenced upon the increase of the scan rate, indicating the fast ion incorporation. The GCD curves at 2, 5, 10 20 A g?1are nearly linear and symmetrical with small IR drops,suggesting the good capacitive property and electrochemical reversibility. The deviation from linearity can be attributed to pseudo faradic reaction and polarization during charge/discharge. The calculated capacitances of the device at 0.5, 1, 2, 5, 10, 20 A g?1are 30.3, 29.2, 27.9, 27.0, 25.9, 25.4 F g?1, respectively,with a retention rate of 83.8% at 20 A g?1. The capacitances based on single electrode at 0.5, 1, 2, 5, 10,20 A g?1are 121.2, 116.9, 111.7, 108, 103.9 and 101.7 F g?1, respectively. These results suggest that the interconnected micro/mesoporous structure provides efficient pathways for electrolyte ion movement throughout the carbon matrix, which can shorten ion diffusion and transport pathways during charge/discharge.

    Fig. 6 The electrochemical performance of ATCK/Na electrode in organic electrolyte. (a) CV curves at various scan rates, (b) GCD plots and (c) Cs, Ccell at different current densities, (d) Ragone plot and (e) cycling performance at 5 A g-1.

    Ragone plot has also been used to characterize the device. As shown in Fig. 6d, the device can achieve the highest energy density of 30.4 Wh kg?1at 0.8 kW kg?1and still holds on 12.3 Wh kg?1with a power density of 18.5 kW kg?1, which is much higher than those of N-doped electrospun nanofibers[29],chemically reduced graphene[38]and chemically converted graphene sheets[39]. After 15 000 cycles at 5 A g?1, a capacitance retention rate of 73.0% is obtained, indicating a high cycling stability.

    4 Conclusion

    The activated carbon spheres with rich micropores and a small fraction of mesopores were fabricated via hydrothermal carbonization followed by KOH+NaOH activation using sucrose as the precursor. The mixed use of KOH and NaOH plays a vital role in maintaining the sphere shape and adjusting pore size distribution during activation. The electrode based on the activated carbon spheres exhibits intriguing electrochemical performance in terms of capacitive performance, rate performance as well as cycle stability. It can deliver the highest energy density of 30.4 Wh kg?1at 0.8 kW kg?1, which is retained at 12.3 Wh kg?1with a high power density of 18.5 kW kg?1.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (51602322, 21878321),Natural Science Foundation of Shanxi Province(201801D221371) and the Outstanding Ph.D. Program of Shanxi Province (SQ2019001).

    国产人妻一区二区三区在| 又粗又爽又猛毛片免费看| 国产精品,欧美在线| 岛国在线免费视频观看| 三级国产精品片| 日韩视频在线欧美| 亚洲av日韩在线播放| 精品一区二区免费观看| 91在线精品国自产拍蜜月| 国产黄色视频一区二区在线观看 | 日韩三级伦理在线观看| 97热精品久久久久久| 中文字幕亚洲精品专区| 搞女人的毛片| 午夜福利在线在线| 舔av片在线| 乱系列少妇在线播放| av在线老鸭窝| 精品熟女少妇av免费看| 国产精品一区二区三区四区久久| 亚洲欧美日韩高清专用| 精品国内亚洲2022精品成人| 亚洲欧美成人精品一区二区| 美女脱内裤让男人舔精品视频| 国产不卡一卡二| 国产精品女同一区二区软件| 麻豆乱淫一区二区| 97超碰精品成人国产| 我的老师免费观看完整版| 99热网站在线观看| 午夜福利视频1000在线观看| 夜夜爽夜夜爽视频| 男的添女的下面高潮视频| 亚洲国产欧美在线一区| 久99久视频精品免费| 国产日韩欧美在线精品| 欧美日韩一区二区视频在线观看视频在线 | 一级av片app| 中文资源天堂在线| 免费看a级黄色片| 久久久久久久午夜电影| 麻豆成人午夜福利视频| 精品久久久久久久久久久久久| 成人欧美大片| 亚洲精品亚洲一区二区| 日韩强制内射视频| 人妻系列 视频| 日韩欧美在线乱码| 美女大奶头视频| 观看美女的网站| 三级国产精品片| 日韩成人伦理影院| 亚洲精品,欧美精品| 国产一区二区亚洲精品在线观看| a级毛色黄片| 免费av观看视频| 免费看a级黄色片| 一级二级三级毛片免费看| 最近的中文字幕免费完整| 秋霞伦理黄片| 国产三级在线视频| 免费大片18禁| 亚洲久久久久久中文字幕| 国产白丝娇喘喷水9色精品| 少妇被粗大猛烈的视频| 午夜老司机福利剧场| 亚洲精品一区蜜桃| 欧美区成人在线视频| 色综合亚洲欧美另类图片| 亚洲五月天丁香| 在线播放国产精品三级| 身体一侧抽搐| 九九热线精品视视频播放| 乱系列少妇在线播放| 亚洲av中文字字幕乱码综合| 日韩av在线免费看完整版不卡| 亚洲欧洲日产国产| av女优亚洲男人天堂| av专区在线播放| 国产乱人视频| 欧美性猛交╳xxx乱大交人| 亚洲欧美中文字幕日韩二区| 国产精品不卡视频一区二区| 久久精品久久久久久噜噜老黄 | 亚洲国产高清在线一区二区三| 日韩大片免费观看网站 | 亚洲经典国产精华液单| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| a级一级毛片免费在线观看| 欧美又色又爽又黄视频| 卡戴珊不雅视频在线播放| 精品久久久久久成人av| 亚洲av日韩在线播放| 国国产精品蜜臀av免费| 人妻系列 视频| 国产免费男女视频| 色吧在线观看| 日韩 亚洲 欧美在线| 97超碰精品成人国产| 亚洲乱码一区二区免费版| 久久精品久久精品一区二区三区| 国产色爽女视频免费观看| 成人毛片60女人毛片免费| 亚洲国产欧美人成| 老司机福利观看| .国产精品久久| 亚洲av男天堂| 国产人妻一区二区三区在| 免费av观看视频| 美女大奶头视频| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 欧美又色又爽又黄视频| 六月丁香七月| 免费一级毛片在线播放高清视频| 成人三级黄色视频| 男人的好看免费观看在线视频| 日韩视频在线欧美| 日本色播在线视频| 毛片女人毛片| 搞女人的毛片| 五月玫瑰六月丁香| 国产精品一二三区在线看| 国产伦在线观看视频一区| 欧美日韩在线观看h| 亚洲欧美日韩卡通动漫| 国产色爽女视频免费观看| 国产爱豆传媒在线观看| 69人妻影院| 精品久久久久久久久久久久久| 国内精品美女久久久久久| 日本猛色少妇xxxxx猛交久久| 久久人人爽人人片av| 欧美+日韩+精品| 黄片wwwwww| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站高清观看| 成人三级黄色视频| 97热精品久久久久久| 亚洲三级黄色毛片| av播播在线观看一区| 欧美一区二区亚洲| 久久人妻av系列| 成人毛片a级毛片在线播放| 噜噜噜噜噜久久久久久91| 女的被弄到高潮叫床怎么办| 身体一侧抽搐| 69av精品久久久久久| 国产大屁股一区二区在线视频| 22中文网久久字幕| 91精品伊人久久大香线蕉| 观看免费一级毛片| av播播在线观看一区| 亚洲高清免费不卡视频| 国产精品不卡视频一区二区| 久久亚洲精品不卡| 99在线视频只有这里精品首页| 看黄色毛片网站| 免费观看a级毛片全部| 日韩高清综合在线| 久久久久免费精品人妻一区二区| 男女下面进入的视频免费午夜| av国产久精品久网站免费入址| 大又大粗又爽又黄少妇毛片口| 国产精品国产三级专区第一集| 亚洲av熟女| 乱码一卡2卡4卡精品| 男女啪啪激烈高潮av片| 嫩草影院新地址| 久久久a久久爽久久v久久| 国产免费一级a男人的天堂| 乱人视频在线观看| 精品久久久噜噜| 自拍偷自拍亚洲精品老妇| 嫩草影院入口| 国产伦精品一区二区三区四那| 成人三级黄色视频| 日韩 亚洲 欧美在线| 岛国毛片在线播放| 少妇的逼好多水| 免费在线观看成人毛片| av.在线天堂| 国产视频首页在线观看| 天堂影院成人在线观看| 自拍偷自拍亚洲精品老妇| 18禁在线无遮挡免费观看视频| 成人欧美大片| 我的女老师完整版在线观看| 韩国高清视频一区二区三区| 欧美三级亚洲精品| 免费观看人在逋| 观看免费一级毛片| 男女下面进入的视频免费午夜| 日韩亚洲欧美综合| 女人久久www免费人成看片 | 岛国毛片在线播放| 长腿黑丝高跟| 亚洲图色成人| 中文欧美无线码| 男插女下体视频免费在线播放| 欧美日本视频| 日本猛色少妇xxxxx猛交久久| 欧美成人免费av一区二区三区| 身体一侧抽搐| 亚洲国产最新在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 色综合站精品国产| 国产一区有黄有色的免费视频 | 国产精品久久久久久精品电影| 一级黄片播放器| 精品不卡国产一区二区三区| 国产高清有码在线观看视频| 大又大粗又爽又黄少妇毛片口| 日韩中字成人| 久久精品国产亚洲网站| 亚洲国产高清在线一区二区三| 偷拍熟女少妇极品色| 午夜久久久久精精品| av在线观看视频网站免费| videossex国产| 国产亚洲精品av在线| 免费电影在线观看免费观看| 中文字幕制服av| 纵有疾风起免费观看全集完整版 | 国产片特级美女逼逼视频| 搞女人的毛片| 狂野欧美激情性xxxx在线观看| 级片在线观看| 免费播放大片免费观看视频在线观看 | 亚洲欧美日韩卡通动漫| 国产精品人妻久久久久久| 国产私拍福利视频在线观看| 久久久久久久国产电影| 久久久久久九九精品二区国产| 国产精品久久久久久av不卡| 中国美白少妇内射xxxbb| 精品久久久久久电影网 | 欧美日韩精品成人综合77777| 精品一区二区三区视频在线| 亚洲经典国产精华液单| 欧美性猛交╳xxx乱大交人| 国产色爽女视频免费观看| 免费观看a级毛片全部| av女优亚洲男人天堂| 国产探花极品一区二区| 中文字幕熟女人妻在线| 欧美潮喷喷水| 美女黄网站色视频| 国产精品永久免费网站| 亚洲成人中文字幕在线播放| 99热这里只有是精品在线观看| 久久精品91蜜桃| 69人妻影院| 精品久久久久久久人妻蜜臀av| 亚洲怡红院男人天堂| 99热这里只有是精品在线观看| 亚洲欧美精品自产自拍| 好男人视频免费观看在线| 国产成人午夜福利电影在线观看| 有码 亚洲区| 日本三级黄在线观看| av在线观看视频网站免费| 老司机影院成人| 国产白丝娇喘喷水9色精品| 最近视频中文字幕2019在线8| 观看免费一级毛片| 亚洲综合色惰| 国产在线一区二区三区精 | 在线免费十八禁| av天堂中文字幕网| 亚洲国产精品成人综合色| 国产亚洲精品av在线| 国产成人精品婷婷| 亚洲人成网站高清观看| 色吧在线观看| 久久久久久久国产电影| av国产免费在线观看| 国产中年淑女户外野战色| 精品国产露脸久久av麻豆 | 日本欧美国产在线视频| 波野结衣二区三区在线| 91精品伊人久久大香线蕉| av在线亚洲专区| 麻豆国产97在线/欧美| 直男gayav资源| 美女大奶头视频| 99热全是精品| 男人舔奶头视频| 男人和女人高潮做爰伦理| 国产精品一区二区在线观看99 | 天天躁日日操中文字幕| 久久鲁丝午夜福利片| 嫩草影院精品99| 亚洲三级黄色毛片| 国产亚洲91精品色在线| 欧美一级a爱片免费观看看| 免费播放大片免费观看视频在线观看 | 欧美日本视频| 国产视频首页在线观看| 久久久久久久久中文| 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 欧美日韩在线观看h| 在线免费观看不下载黄p国产| 日本免费在线观看一区| 亚洲欧美清纯卡通| 一级黄色大片毛片| 丰满少妇做爰视频| 99视频精品全部免费 在线| 岛国在线免费视频观看| 黄色配什么色好看| 一区二区三区四区激情视频| 精品少妇黑人巨大在线播放 | 欧美不卡视频在线免费观看| 日日摸夜夜添夜夜爱| 国产精品99久久久久久久久| 国产成人91sexporn| 亚洲国产精品成人久久小说| 国产一区有黄有色的免费视频 | 水蜜桃什么品种好| 夫妻性生交免费视频一级片| 亚洲熟妇中文字幕五十中出| 极品教师在线视频| 亚洲欧美精品自产自拍| 岛国在线免费视频观看| 亚洲人成网站高清观看| 哪个播放器可以免费观看大片| 日本一二三区视频观看| 搞女人的毛片| 国产成年人精品一区二区| 三级毛片av免费| 色综合色国产| 一级毛片电影观看 | 91久久精品电影网| 成年女人永久免费观看视频| 午夜福利成人在线免费观看| 看免费成人av毛片| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| 国产老妇伦熟女老妇高清| 天天一区二区日本电影三级| 精品一区二区免费观看| 欧美丝袜亚洲另类| 国产熟女欧美一区二区| 亚洲av电影在线观看一区二区三区 | 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| 99久国产av精品| 精品不卡国产一区二区三区| 亚洲内射少妇av| 特大巨黑吊av在线直播| 国产午夜福利久久久久久| 中文字幕熟女人妻在线| 久久精品国产鲁丝片午夜精品| 日韩人妻高清精品专区| av卡一久久| 啦啦啦韩国在线观看视频| 村上凉子中文字幕在线| 最近手机中文字幕大全| 麻豆一二三区av精品| 精华霜和精华液先用哪个| 国产精华一区二区三区| 欧美日韩国产亚洲二区| 九九久久精品国产亚洲av麻豆| 久久久国产成人免费| 欧美+日韩+精品| 少妇丰满av| 中文乱码字字幕精品一区二区三区 | 久久久久性生活片| 亚洲欧美日韩东京热| 日日撸夜夜添| 亚洲欧美一区二区三区国产| 国产免费男女视频| 爱豆传媒免费全集在线观看| 成年免费大片在线观看| 免费无遮挡裸体视频| 变态另类丝袜制服| 亚洲人成网站在线播| 久久久亚洲精品成人影院| 一二三四中文在线观看免费高清| 99热网站在线观看| 少妇人妻精品综合一区二区| 色网站视频免费| 青春草亚洲视频在线观看| 精品久久久久久久久久久久久| 日本五十路高清| 69av精品久久久久久| 成人综合一区亚洲| 日韩中字成人| 色尼玛亚洲综合影院| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品,欧美精品| 欧美丝袜亚洲另类| 3wmmmm亚洲av在线观看| 在线播放国产精品三级| 国产男人的电影天堂91| 久久这里有精品视频免费| 九九热线精品视视频播放| 亚洲国产日韩欧美精品在线观看| 国产高清有码在线观看视频| 在线a可以看的网站| 春色校园在线视频观看| 人妻夜夜爽99麻豆av| 国产精品美女特级片免费视频播放器| 欧美日本亚洲视频在线播放| 精品久久久久久成人av| www.色视频.com| 男女那种视频在线观看| 床上黄色一级片| 国产又色又爽无遮挡免| 69人妻影院| 国产黄片美女视频| 日本欧美国产在线视频| 亚洲av中文av极速乱| 亚洲一区高清亚洲精品| 亚洲美女视频黄频| 亚洲在线观看片| 99在线人妻在线中文字幕| 中文字幕av在线有码专区| 深爱激情五月婷婷| 亚洲经典国产精华液单| 国产精品熟女久久久久浪| 国产免费一级a男人的天堂| 最近2019中文字幕mv第一页| 成人三级黄色视频| 又爽又黄a免费视频| 97超视频在线观看视频| 日韩一区二区视频免费看| 噜噜噜噜噜久久久久久91| 国产又色又爽无遮挡免| 亚洲国产欧美在线一区| 在线播放国产精品三级| 久久99精品国语久久久| 极品教师在线视频| 日韩大片免费观看网站 | 亚洲怡红院男人天堂| 十八禁国产超污无遮挡网站| a级毛片免费高清观看在线播放| 国产伦在线观看视频一区| 亚洲aⅴ乱码一区二区在线播放| 最近中文字幕2019免费版| 国产在视频线精品| 国产爱豆传媒在线观看| 亚洲精品456在线播放app| 草草在线视频免费看| 亚洲在线自拍视频| 91久久精品国产一区二区三区| 国产伦理片在线播放av一区| 日韩av在线大香蕉| 日本黄大片高清| 精品无人区乱码1区二区| 日本午夜av视频| 国产久久久一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 日韩成人伦理影院| 国产精品久久久久久av不卡| 两个人的视频大全免费| 女人被狂操c到高潮| 99久久精品热视频| 亚洲三级黄色毛片| 青青草视频在线视频观看| 国产精品.久久久| 亚洲最大成人手机在线| 人人妻人人澡欧美一区二区| 色尼玛亚洲综合影院| 国产成人精品婷婷| 熟妇人妻久久中文字幕3abv| 日韩一区二区三区影片| 日韩中字成人| 国产成人精品一,二区| 久久精品综合一区二区三区| 黄色配什么色好看| 在现免费观看毛片| 亚洲欧美精品自产自拍| 春色校园在线视频观看| 在线a可以看的网站| 国产一区二区在线av高清观看| 国产精品国产三级国产专区5o | 能在线免费观看的黄片| 三级国产精品欧美在线观看| 日本一二三区视频观看| 免费无遮挡裸体视频| 欧美zozozo另类| 国产毛片a区久久久久| 欧美性猛交╳xxx乱大交人| 免费一级毛片在线播放高清视频| 亚洲av成人av| 国产91av在线免费观看| 日韩欧美精品v在线| 内地一区二区视频在线| 麻豆国产97在线/欧美| 不卡视频在线观看欧美| 2021少妇久久久久久久久久久| 国产极品天堂在线| 精品久久久久久久久久久久久| 国产亚洲午夜精品一区二区久久 | 欧美潮喷喷水| 成人午夜高清在线视频| 永久免费av网站大全| 成人二区视频| 亚洲自偷自拍三级| 特级一级黄色大片| 2021少妇久久久久久久久久久| av在线观看视频网站免费| 直男gayav资源| 国产精品日韩av在线免费观看| www.av在线官网国产| 免费观看的影片在线观看| 亚洲真实伦在线观看| 亚洲精品乱码久久久v下载方式| 国产黄a三级三级三级人| 亚洲在久久综合| 99久久精品国产国产毛片| 免费看a级黄色片| 精品人妻一区二区三区麻豆| 国产高清国产精品国产三级 | 欧美xxxx性猛交bbbb| 在线观看一区二区三区| 大又大粗又爽又黄少妇毛片口| 一夜夜www| 寂寞人妻少妇视频99o| 久久精品国产99精品国产亚洲性色| 97超视频在线观看视频| 特级一级黄色大片| 大香蕉97超碰在线| 哪个播放器可以免费观看大片| 亚洲在线自拍视频| 最近中文字幕高清免费大全6| 国产免费福利视频在线观看| 免费看av在线观看网站| 国产精品人妻久久久影院| 内射极品少妇av片p| 99久国产av精品国产电影| 国产三级在线视频| 国产成人a区在线观看| 日本免费a在线| 国内精品美女久久久久久| 极品教师在线视频| 有码 亚洲区| 国产白丝娇喘喷水9色精品| 亚洲欧美一区二区三区国产| 国产精品av视频在线免费观看| 赤兔流量卡办理| av国产久精品久网站免费入址| 2022亚洲国产成人精品| 尤物成人国产欧美一区二区三区| 亚洲精品国产成人久久av| 色网站视频免费| 建设人人有责人人尽责人人享有的 | 亚洲精品影视一区二区三区av| 久久精品人妻少妇| av线在线观看网站| 嫩草影院精品99| 夜夜看夜夜爽夜夜摸| 超碰97精品在线观看| 亚洲国产欧美在线一区| 岛国毛片在线播放| 最近的中文字幕免费完整| 亚洲综合色惰| 国产精品99久久久久久久久| 久久久久网色| 搡女人真爽免费视频火全软件| 国产在线男女| 精品久久久久久久末码| 2021天堂中文幕一二区在线观| 久久久a久久爽久久v久久| 搡老妇女老女人老熟妇| 国产爱豆传媒在线观看| 尤物成人国产欧美一区二区三区| 久久综合国产亚洲精品| 麻豆久久精品国产亚洲av| 精品久久久久久成人av| 狂野欧美激情性xxxx在线观看| 亚洲中文字幕日韩| 欧美成人精品欧美一级黄| 国产亚洲午夜精品一区二区久久 | 看免费成人av毛片| 国产麻豆成人av免费视频| 亚洲国产精品专区欧美| 久久久久久久久久成人| 成人性生交大片免费视频hd| 久久久成人免费电影| 伦精品一区二区三区| 国产淫片久久久久久久久| 亚洲怡红院男人天堂| 久久国内精品自在自线图片| 日本午夜av视频| 亚洲av中文字字幕乱码综合| 性色avwww在线观看| 亚洲成人中文字幕在线播放| 成人午夜精彩视频在线观看| 亚洲综合精品二区| 黄片wwwwww| 免费av观看视频| 男人和女人高潮做爰伦理| 搡女人真爽免费视频火全软件| 中国美白少妇内射xxxbb| 老司机影院成人| 久久99热这里只有精品18| 中国美白少妇内射xxxbb| 国产片特级美女逼逼视频| 久久久成人免费电影| 亚洲在久久综合| 国产美女午夜福利| 国产成人91sexporn| 伊人久久精品亚洲午夜| 亚洲欧美中文字幕日韩二区| 久久久久久久久大av| 少妇熟女aⅴ在线视频| 欧美xxxx性猛交bbbb| 亚洲精品色激情综合| 亚洲av二区三区四区|