李偉 李麗
摘 要:微分方程包含常微分方程和偏微分方程。由于非線性偏微分方程是偏微分方程的重要內(nèi)容,求微分方程的解是微分方程研究的重要內(nèi)容,從而求非線性偏微分方程的解是微分方程研究內(nèi)容中的重中之重。很多重大的物理科學(xué)問題和信息技術(shù)問題都與非線性偏微分方程的研究緊密相關(guān)。一般來說,求非線性偏微分方程的解是不容易的。經(jīng)過科研工作者不斷努力已經(jīng)找到了大量的求解方法。該文借助于行波變換法,直接擬解法和齊次法解得了Boussinesq的新解。這種方法也具有一定的普遍性,可以求一些非線性偏微分方程的解。
關(guān)鍵詞:行波變換 ?精確解 ?擬解齊次平衡法
中圖分類號(hào):O175.2 ? ? 文獻(xiàn)標(biāo)識(shí)號(hào):A 文章編號(hào):1672-3791(2021)10(b)-0000-00
Exact Solution for Solving Boussinesq Equations by Using Direct Quasi Solution
LI Wei ?LI Li
(College of Mathematics and Physics, Bohai University, Jinzhou, Liaoning Province, 121013 China)
Abstract: Differential equations include ordinary differential equations and partial differential equations.Because nonlinear partial differential equation is an important content of partial differential equation, the solution of differential equation is the important content of differential equation research, so the solution of nonlinear partial differential equation is the most important content of differential equation research.Many important physical science and information technology problems are closely related to the study of nonlinear partial differential equations. Generally speaking, it is not easy to find the solution of nonlinear partial differential equations. Through the continuous efforts of scientific researchers, a large number of solutions have been found. In this paper, a new solution of Boussinesq is obtained by means of Traveling Wave Transformation method, Direct Quasi solution and Homogeneous solution. This method also has certain universality, and can find the solutions of some nonlinear partial differential equations.
Key Words: Travellingwave transform; Exact solution; Quasi solution; Homogeneous Balance method
通過科研工作者對(duì)非線性偏微分方程求解的深入研究,獲得了許多求解的方法,如齊次平衡法[1-3]、有理函數(shù)變換法[4]、行波變換法[5-6]、輔助函數(shù)法、Riccati方程法[7-8]、同倫分析法[9]。該文利用行波變換法,直接擬解法和齊次平衡法獲得了Boussinesq方程組的全新的解。
1 Boussinesq方程組的新的精確解
2 結(jié) ?論
利用行波變換法、齊次平衡法、直接擬解法、獲得了Boussinesq方程組的全新的精確解。這種方法也用于解其他非線性偏微分方程(組)。這種方法具有一定的普遍性,可以求一些非線性偏微分方程的解。
參考文獻(xiàn)
[1]王明亮,白雪.齊次平衡原則與BTs[J].蘭州大學(xué)學(xué)報(bào),2000,36(3):12-17.
[2]張金良,王飛,王明亮.四階Burgers方程非線性邊值-初值問題[J].應(yīng)用數(shù)學(xué)學(xué)報(bào).2020,43(6):1029-1041.
[3]YILDIZ G,DAGHAN D.New Exact Solutions of a Nonlinear Iintegrable Equation[J].MathematicalMethods in the Applied Sciences,2020,43(11):6761-6770.
[4]張永麗.基于符號(hào)計(jì)算的若干求精確解方法的研究[D].青島:青島大學(xué),2020.
[5]李志斌.非線性數(shù)學(xué)物理方程的行波解[M].北京:科技出版社,2006.
[6]陸求賜,張宋傳,王學(xué)彬.一類Burgers方程的孤立波解[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2021,51(7):299-303.
[7]趙蓉,夏鐵成,李季.一種新擴(kuò)展的Riccati方程有理展開法及其應(yīng)用[J].渤海大學(xué)學(xué)報(bào):自然科學(xué)版,2006,27(3):237-241.
[8]ODIBAT Z,ALSAEDI A,HAYAT T .Solitary Wave Solutions of Some Nonlinear Physical Models Using Riccati Equation Approach[J].Acta Mathematicae Applicatae Sinica,2020,36(3):401-418.
[9]胥康,任金蓮.淺談最優(yōu)同倫漸近法(OHAM)在求解偏微分方程中的應(yīng)用[J].科技創(chuàng)新導(dǎo)報(bào),2019,16(14):186-188.
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(項(xiàng)目編號(hào):61603055)。
作者簡介:李偉(1977—),男,碩士,講師,研究方向?yàn)楣铝⒆优c可積系統(tǒng)。